1932

Abstract

▪ Abstract 

This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his “scientific family” he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry.

“What to leave out and what to put in? That's the problem.”

Hugh Lofting, Doctor Dolittle's Zoo, 1925

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.56.092503.141246
2006-05-05
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/pc/57/1/annurev.physchem.56.092503.141246.html?itemId=/content/journals/10.1146/annurev.physchem.56.092503.141246&mimeType=html&fmt=ahah

Literature Cited

  1. Jortner J. 2003. Unended quest in science. Isr. J. Chem. 43:169–217 [Google Scholar]
  2. Lanouette W. 1993. Genius in the Shadows Chicago: Univ. Chicago Press
  3. Urey H. 1933. Editorial. J. Chem. Phys. 1:1–2 [Google Scholar]
  4. Stoltzenberg D. 2004. Fritz Haber, Chemist, Nobel Laureate, German, Jew Philadelphia: Chem. Heritage
  5. Farkas L. 1928. Der reaktionsmechanismus des photochemischen jodwasserstoffzerfalls Doctorate Diss. Tech. Hochsch., Berlin:
  6. Bonhoeffer KF, Farkas L. 1927. Zur Deutung der diffusen molekülspectren. Z. Phys. Chem. 134:337–46 [Google Scholar]
  7. Jortner J, Bixon M. 1997. Molecular dynamics in femtochemistry and femtobiology. See Ref. 146 pp. 349–85
  8. Farkas A, Wigner EP. eds. 1952. L Farkas Memorial Volume Jerusalem: Res. Counc. Isr., Spec. Publ.1
  9. Jortner J, Stein G. 1955. Electrons in solution. Nature 175:893–94 [Google Scholar]
  10. Jortner J. 1957. Model for metal-ammonia solutions. J. Chem. Phys. 27:823–24 [Google Scholar]
  11. Jortner J. 1959. Energy levels of bound electrons in liquid ammonia. J. Chem. Phys. 30:839–46 [Google Scholar]
  12. Jortner J, Coulson CA. 1961. Environmental effects on atomic energy levels. Mol. Phys. 4:451–64 [Google Scholar]
  13. Jortner J, Stein G. 1962. The photochemical evolution of hydrogen from aqueous solutions of ferrous ions. I. The reaction mechanism at low pH. J. Phys. Chem. 66:1258–64 [Google Scholar]
  14. Jortner J, Stein G. 1962. Deuterium isotope effects in the photochemical evolution of hydrogen from aqueous ferrous solutions. J. Phys. Chem. 66:2200–4 [Google Scholar]
  15. Jortner J, Treinin A. 1962. Intensities of the absorption bands of halide ions in solution. Trans. Faraday Soc. 58:1503–10 [Google Scholar]
  16. Jortner J. 1964. A conjecture on electron binding in aqueous solutions. Radiat. Res. Suppl. 4:24–28 [Google Scholar]
  17. Czapski G, Jortner J. 1960. Role of ferrous hydride in the oxidation of ferrous ion by hydrogen atoms. Nature 188:50–52 [Google Scholar]
  18. Jortner J, Levine RD, Ottolenghi M, Stein G. 1961. Photochemistry of the iodide ion in aqueous solution. J. Phys. Chem. 65:1232–38 [Google Scholar]
  19. Jortner J, Ottolenghi M, Stein G. 1963. The formation of solvated electrons in the photochemistry of the phenolate ion in aqueous solutions. J. Am. Chem. Soc. 85:2712–15 [Google Scholar]
  20. Halpern J, Czapski G, Jortner J, Stein G. 1960. Mechanism of the oxidation and reduction of metal ions by hydrogen atoms. Nature 186:629–30 [Google Scholar]
  21. Czapski G, Schwarz HA. 1962. Nature of reducing radicals in water radiolysis. J. Phys. Chem. 66:471–74 [Google Scholar]
  22. Jortner J. 1962. Dielectric medium effects on loosely bound electrons. Mol. Phys. 5:257–70 [Google Scholar]
  23. Marcus RA. 1956. On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 24:966–78 [Google Scholar]
  24. Berry RS. 2003. Exploring many dimensions of science. Isr. J. Chem. 43:A57–61 [Google Scholar]
  25. Rice SA. 2003. Joshua then and now. Isr. J. Chem. 43:A53–56 [Google Scholar]
  26. Jortner J, Wilson EG, Rice SA. 1963. Theoretical and experimental studies of the electronic structure of the xenon fluorides. In Noble-Gas Compounds ed. HH Hyman pp. 358–88 Chicago: Univ. Chicago Press [Google Scholar]
  27. Katz JL, Rice SA, Choi SI, Jortner J. 1963. On the excess electron and hole band structures and carrier mobility in naphthalene, anthracene and several polythenyls. J. Chem. Phys. 39:1683–97 [Google Scholar]
  28. Jortner J, Choi SI, Katz JL, Rice SA. 1963. Triplet energy transfer and triplet-triplet interaction in aromatic crystals. Phys. Rev. Lett. 11:323–26 [Google Scholar]
  29. Silbey R, Jortner J, Rice SA. 1965. On the singlet-exciton states of crystalline anthracene. J. Chem. Phys. 42:1515–34 [Google Scholar]
  30. Jortner J, Rice SA. 1965. Photoconductivity in crystals of organic molecules. See Ref. 147, Part 3 pp. 235–48
  31. Jortner J, Rice SA. 1965. Possible uses of high pressure techniques for the study of the electronic states of molecular crystals. In Physics of Solids at High Pressures ed. CT Tomizuku, RM Emmet pp. 63–170 New York: Academic [Google Scholar]
  32. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME. 1998. Charge transfer and transport in DNA. Proc. Natl. Acad. Sci. USA 95:12759–65 [Google Scholar]
  33. Bixon M, Jortner J. 2001. Charge transport in DNA via thermally induced hopping. J. Am. Chem. Soc. 123:12556–67 [Google Scholar]
  34. Voityuk AA, Jortner J, Bixon M, Rösch N. 2001. Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid. J. Chem. Phys. 114:5614–20 [Google Scholar]
  35. Jortner J, Meyer L, Rice SA, Wilson EG. 1964. Energy transfer phenomena in liquid helium. Phys. Rev. Lett. 12:415–16 [Google Scholar]
  36. Jortner J, Meyer L, Rice SA, Wilson EG. 1965. Localized excitations in condensed Ne, Ar, Kr and Xe. J. Chem. Phys. 42:4250–53 [Google Scholar]
  37. Jortner J, Kestner NR, Rice SA, Cohen MH. 1965. Study of the properties of an excess electron in liquid helium. I. The nature of the electron-helium interactions. J. Chem. Phys. 43:2614–25 [Google Scholar]
  38. Jortner J, Rice SA, Kestner NR. 1965. Electrons in liquids. See Ref. 147, Part 2 pp. 133–64
  39. Onsager L. 1965. Electrons in liquids. See Ref. 147, Part 2 pp. 123–28
  40. Levine M, Jortner J, Szöke A. 1966. Diffusion of triplet excitons in crystalline anthracene. J. Chem. Phys. 45:1591–604 [Google Scholar]
  41. Bergman A, Levine M, Jortner J. 1967. Collision ionization of singlet excitons in molecular crystals. Phys. Rev. Lett. 18:593–96 [Google Scholar]
  42. Courtens E, Bergman A, Jortner J. 1967. Photo-ionization and two-photon excited singlet excitons in anthracene. Phys. Rev. 159:948–50 [Google Scholar]
  43. Klafter J, Jortner J. 1980. Some features of two-particle exciton-phonon excitations in molecular crystals. Chem. Phys. 47:25–48 [Google Scholar]
  44. Klafter J, Jortner J. 1978. Effects of structural disorder on the optical properties of molecular crystals. J. Chem. Phys. 68:1513–22 [Google Scholar]
  45. Klafter J, Jortner J. 1979. Electronic energy transfer in impurity bands of mixed organic solids. J. Chem. Phys. 71:1961–66 [Google Scholar]
  46. Klafter J, Jortner J. 1979. Effects of off-diagonal disorder on localization of electronic excitations in mixed molecular solids. J. Chem. Phys. 71:2210–21 [Google Scholar]
  47. Hoshen J, Jortner J. 1972. Application of the coherent potential approximation to the excited electronic states of substitutionally disordered molecular crystals. J. Chem. Phys. 56:5550–75 [Google Scholar]
  48. Gedanken A, Raz B, Jortner J. 1973. Extravalence molecular excitations in inert matrices. J. Chem. Phys. 58:1178–94 [Google Scholar]
  49. Schwentner N, Koch EE, Jortner J. 1985. Electronic excitations in condensed rare gases. Springer Tracts Mod. Phys. 107:1–239 [Google Scholar]
  50. Rice SA, Jortner J. 1966. Do exciton states exist in the liquid phase. J. Chem. Phys. 44:4470–72 [Google Scholar]
  51. Raz B, Jortner J. 1970. Experimental evidence for trapped exciton states in liquid rare gases. Proc. R. Soc. London Ser. A 317:113–31 [Google Scholar]
  52. Raz B, Gedanken A, Even U, Jortner J. 1972. Screening of Wannier exciton states near the metal-insulator transition. Phys. Rev. Lett. 28:1643–46 [Google Scholar]
  53. Cheshnovsky O, Even U, Jortner J. 1981. The polarization catastrophe and the metal-nonmetal transition in disordered materials. Philos. Mag. B 44:1–7 [Google Scholar]
  54. Even U, Jortner J. 1972. Evidence for the formation of a pseudogap in a divalent liquid metal. Phys. Rev. Lett. 28:31–34 [Google Scholar]
  55. Even U, Jortner J. 1972. Experimental relations for the Hall effect near the metal insulator transition. Philos. Mag. 25:715–20 [Google Scholar]
  56. Cohen MH, Jortner J. 1976. Metal-nonmetal transition in metal-ammonia solutions. Phys. Rev. B 13:1548–68 Erratum. 1976. Phys. Rev. B 13:5540 [Google Scholar]
  57. Jortner J, Gaathon A. 1977. Effects of phase density on ionization processes and electron localization in fluids. Can. J. Chem. 55:1801–19 [Google Scholar]
  58. Springett BE, Cohen MH, Jortner J. 1967. Properties of an excess electron in liquid helium: The effect of pressure on the properties of the negative ion. Phys. Rev. 159:1830–37 [Google Scholar]
  59. Springett BE, Jortner J, Cohen MH. 1968. Stability criterion for the localization of an excess electron in a nonpolar fluid. J. Chem. Phys. 48:2720–31 [Google Scholar]
  60. Jortner J, Kestner NR. 1970. Elementary electronic excitations in insulating liquids. In Metal-Ammonia Solutions ed. JJ Lagowski, MJ Sienko pp. 49–104 London: Butterworth [Google Scholar]
  61. Rosenblit M, Jortner J. 1995. Dynamics of the formation of the electron bubble in liquid helium. Phys. Rev. Lett. 75:C4079–82 [Google Scholar]
  62. Copeland DA, Kestner NR, Jortner J. 1970. Excess electrons in polar solvents. J. Chem. Phys. 53:1189–216 [Google Scholar]
  63. Barnett RN, Landman U, Cleveland CL, Jortner J. 1988. Electron localization in water clusters. II. Surface and internal states J. Chem. Phys. 88:4429–47 [Google Scholar]
  64. Barnett RN, Landman U, Cleveland CL, Kestner NR. 1988. Excess electrons in polar molecular clusters. J. Chem. Phys. 88:6670–71 [Google Scholar]
  65. Jortner J, Rosenblit M. 2005. Dynamics of ultracold finite systems. Adv. Chem. Phys. 132:247–43 [Google Scholar]
  66. Rosen N. 1933. Lifetimes of unstable molecules. J. Chem. Phys. 1:319–26 [Google Scholar]
  67. Beswick JA, Jortner J. 1978. Vibrational predissociation of triatomic van der Waals molecules. J. Chem. Phys. 68:2277–97 [Google Scholar]
  68. Jortner J. 1998. Ultrafast processes in chemistry and biology. Philos. Trans. R. Soc. London Ser. A 356:477–86 [Google Scholar]
  69. Kistiakowski GB, Parmenter CS. 1965. Effects of pressure on fluorescence and intersystem crossing in benzene vapor. J. Chem. Phys. 42:2942–48 [Google Scholar]
  70. Bixon M, Jortner J. 1968. Intramolecular radiationless transitions. J. Chem. Phys. 48:715–26 [Google Scholar]
  71. Jortner J, Bixon M. 1969. Comments on electronic relaxation processes in molecular crystals. Mol. Cryst. 9:213–37 [Google Scholar]
  72. Bixon M, Jortner J. 1969. Electronic relaxation in large molecules. J. Chem. Phys. 50:4061–70 [Google Scholar]
  73. Bixon M, Jortner J. 1969. Long radiative lifetimes of small molecules. J. Chem. Phys. 50:3284–90 [Google Scholar]
  74. Jortner J, Bixon M. 1969. Radiationless transitions in polyatomic molecules. Isr. J. Chem. 7:189–220 [Google Scholar]
  75. Jortner J. 1970. Theoretical studies of ratiationless transitions in polyatomic molecules. J. Chim. Phys. Spec. Issue Transitions Non-Radiatives Molecules pp. 9–26
  76. Nitzan A, Jortner J, Rentzepis PM. 1972. Intermediate level structure in highly excited electronic states of large molecules. Proc. R. Soc. London Ser. A 327:367–91 [Google Scholar]
  77. Nitzan A, Jortner J. 1972. Resonance fluorescence from large molecules. J. Chem. Phys. 57:2870–89 [Google Scholar]
  78. Jortner J, Mukamel S. 1974. Preparation and decay of excited molecular states. In The World of Quantum Chemistry ed. R Daudel, B Pullman pp. 145–209 Proc. 1st Int. Congr. Quantum Chem., Menton, Fr., July 1973. Dordrecht: Reidel [Google Scholar]
  79. Jortner J, Mukamel S. 1976. Radiationless transitions. In MTP International Review of Science ed. AD Buckingham, CA Coulson 13327–88 London: Butterworth [Google Scholar]
  80. Mukamel S, Jortner J. 1977. Time evolution of excited molecular states. In Excited States ed. EC Lim 357–107 New York: Academic [Google Scholar]
  81. Even U, Jortner J. 1982. Isolated ultracold porphyrins in supersonic expansions: III. Free-base porphine. J. Chem. Phys. 77:4391–99 [Google Scholar]
  82. Amirav A, Jortner J. 1984. Spectroscopic manifestation of intramolecular relaxation of azulene in supersonic jets. J. Chem. Phys. 81:4200–5 [Google Scholar]
  83. Amirav A, Jortner J. 1985. Vacuum UV absorption spectroscopy in supersonic expansions. J. Chem. Phys. 82:3278–79 [Google Scholar]
  84. Jortner J, Berry RS. 1968. Radiationless transitions and molecular quantum beats. J. Chem. Phys. 48:2757–66 [Google Scholar]
  85. Bixon M, Jortner J, Dothan Y. 1969. Interference effects in the radiative decay of closely spaced levels. Mol. Phys. 17:109–26 [Google Scholar]
  86. Manz J. 1997. Molecular wavepacket dynamics: Theory for experiments in femtochemistry and femtobiology. See Ref. 146 pp. 80–318
  87. Englman R, Jortner J. 1970. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18:145–64 [Google Scholar]
  88. Jortner J. 1979. Dynamic multiphonon processes. Philos. Mag. B 40:317–30 [Google Scholar]
  89. Jortner J, Levine RD. 1981. Photoselective chemistry. In Advances in Chemical Physics ed. J Jortner, RD Levine, SA Rice 471–114 New York: Wiley Intersci. [Google Scholar]
  90. Amirav A, Even U, Jortner J. 1980. Spectroscopic identification of the onset of the vibrational quasi-continuum in large molecules. Opt. Commun. 32:266–68 [Google Scholar]
  91. Amirav A, Horowitz C, Jortner J. 1988. Optical selection studies of electronic relaxation from the S1 state of jet-cooled anthracene derivatives. J. Chem. Phys. 88:3092–110 [Google Scholar]
  92. Bonaĉić-Koutecký V, Mitrić R, Bernhardt TM, Wöste L, Jortner J. 2005. Analysis and control of ultrafast dynamics in clusters: Theory and experiment. Adv. Chem. Phys. 132:179–246 [Google Scholar]
  93. Amirav A, Jortner J. 1983. Dynamics of trans-cis isomerization of stilbene in supersonic jets. Chem. Phys. Lett. 95:295–300 [Google Scholar]
  94. Bixon M, Jortner J. 1999. Electron transfer. From isolated molecules to biomolecules. Adv. Chem. Phys. 106:35–202 [Google Scholar]
  95. Kestner NR, Logan J, Jortner J. 1974. Thermal electron transfer reactions in polar solvents. J. Phys. Chem. 78:2148–66 [Google Scholar]
  96. Ulstrup J, Jortner J. 1975. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J. Chem. Phys. 63:4358–68 [Google Scholar]
  97. Bixon M, Jortner J. 1982. Quantum effects on electron transfer processes. Faraday Discuss. Chem. Soc. 74:1–13 [Google Scholar]
  98. Ratner MA, Jortner J. 1997. Molecular electronics: Some directions. In Molecular Electronics ed. MA Ratner, J Jortner pp. 5–72 Oxford: Blackwell Sci. [Google Scholar]
  99. Jortner J. 1976. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64:4860–67 [Google Scholar]
  100. Jortner J. 1980. Dynamics of the primary events in bacterial photosynthesis. J. Am. Chem. Soc. 102:6676–86 [Google Scholar]
  101. Michel-Beyerle ME, Plato M, Deisenhofer J, Michel H, Bixon M, Jortner J. 1988. Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta 932:52–70 [Google Scholar]
  102. Bixon M, Jortner J. 1989. Activationless and pseudoactivationless primary electron transfer in photosynthetic bacterial reaction centers. Chem. Phys. Lett. 159:17–20 [Google Scholar]
  103. Bixon M, Jortner J. 1992. Primary electron transfer events in bacterial photosynthesis. In Dynamics and Mechanism of Photoinduced Electron Transfer and Related Phenomena ed. N Mataga, T Okada, H Masuhara pp. 513–24 Amsterdam: Elsevier Sci. [Google Scholar]
  104. Bixon M, Jortner J, Michel-Beyerle ME. 1995. A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem. Phys. 197:389–404 [Google Scholar]
  105. Bixon M, Jortner J. 2002. Long-range and very long-range charge transport in DNA. Chem. Phys. 281:393–408 [Google Scholar]
  106. Jortner J, Rao CNR. 2002. Nanostructured advanced materials: Perspectives and directions. Pure Appl. Chem. 74:1491–506 [Google Scholar]
  107. Amirav A, Even U, Jortner J. 1980. Spectrocsopy of large molecules in inert-gas clusters. Chem. Phys. Lett. 72:16–20 [Google Scholar]
  108. Ondrechen MJ, Berkovitch-Yellin Z, Jortner J. 1981. Model calculations of potential surfaces of van der Waals complexes containing large aromatic molecules. J. Am. Chem. Soc. 103:6586–92 [Google Scholar]
  109. Amirav A, Even U, Jortner J. 1981. Microscopic solvation effects on excited-state energetics and dynamics of aromatic molecules in large van der Waals complexes. J. Chem. Phys. 75:2489–512 [Google Scholar]
  110. Kestner NR, Jortner J. 1984. Studies of the stability of negatively charged water clusters. J. Phys. Chem. 88:3818–20 [Google Scholar]
  111. Jortner J. 1984. Level structure and dynamics of clusters. Ber. Bunsenges. Phys. Chem. 88:188–201 [Google Scholar]
  112. Landman U, Scharf D, Jortner J. 1985. Electron localization in alkali-halide clusters. Phys. Rev. Lett. 54:1860–63 [Google Scholar]
  113. Bixon M, Jortner J. 1989. Energetic and thermodynamic size effects in molecular clusters. J. Chem. Phys. 91:1631–42 [Google Scholar]
  114. Shalev E, Ben-Horin N, Jortner J. 1991. Radiative lifetimes of van der Waals heteroclusters. J. Chem. Phys. 94:7757–68 [Google Scholar]
  115. Shalev E, Ben-Horin N, Even U, Jortner J. 1991. Electronic spectral shifts of aromatic molecule-rare-gas heteroclusters. J. Chem. Phys. 95:3147–66 [Google Scholar]
  116. Bahatt D, Even U, Shalev E, Ben-Horin N, Jortner J. 1991. Isomer-specific radiative lifetimes of molecular heteroclusters. Chem. Phys. 156:223–30 [Google Scholar]
  117. Jortner J. 1992. Cluster size effects. Z. Phys. D 24:247–75 [Google Scholar]
  118. Jortner J, Ben-Horin H. 1993. Spectroscopic cluster size effects. J. Chem. Phys. 98:9346–51 [Google Scholar]
  119. Jortner J. 1994. Dimensionality scaling of cluster size effects. Z. Phys. Chem. 184:283–89 [Google Scholar]
  120. Jortner J. 1995. Cluster size effects revisited. J. Chim. Phys. 92:205–25 [Google Scholar]
  121. Combariza JE, Kestner NR, Jortner J. 1994. Energy-structure relationships for microscopic solvation of anion in water clusters. J. Chem. Phys. 100:2851–64 [Google Scholar]
  122. Combariza JE, Kestner NR, Jortner J. 1994. Surface and interior states of iodide-water clusters. Chem. Phys. Lett. 221:156–60 [Google Scholar]
  123. Schek I, Jortner J. 1996. Micro shock wave propagation in molecular clusters. J. Chem. Phys. 104:4337–42 [Google Scholar]
  124. Heidenreich A, Even U, Jortner J. 2001. Nonrigidity, delocalization, spatial confinement and electronic-vibrational spectroscopy of anthracene-helium clusters. J. Chem. Phys. 115:10175–85 [Google Scholar]
  125. Even U, Al-Hroub I, Jortner J. 2001. Small helium clusters with aromatic molecules. J. Chem. Phys. 115:2069–73 [Google Scholar]
  126. Heidenreich A, Jortner J. 2003. Permutational symmetry, isotope effects, side crossing and singlet-triplet splitting in anthracene·(He)N (N = 1,2) clusters. J. Chem. Phys. 118:10101–19 [Google Scholar]
  127. Heidenreich A, Last I, Even U, Jortner J. 2001. Nuclear dynamics in quantum clusters. Phys. Chem. Chem. Phys. 3:2325–30 [Google Scholar]
  128. Jortner J. 2003. The superfluid transition in helium clusters. J. Chem. Phys. 119:11335–41 [Google Scholar]
  129. Last I, Schek I, Jortner J. 1997. Energetics and dynamics of Coulomb explosion of highly charged clusters. J. Chem. Phys. 107:6685–92 [Google Scholar]
  130. Last I, Levy Y, Jortner J. 2002. Beyond the Rayleigh instability limit for multicharged finite systems. From fission to Coulomb explosion. Proc. Natl. Acad. Sci. USA 99:9107–12 [Google Scholar]
  131. Last I, Jortner J. 2004. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. I. Extreme multielectron ionization. J. Chem. Phys. 120:1336–47 [Google Scholar]
  132. Last I, Jortner J. 2004. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. II. Electron dynamics and outer ionization of the nanoplasma. J. Chem. Phys. 120:1348–60 [Google Scholar]
  133. Last I, Jortner J. 2004. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. III. Coulomb explosion of deuterium clusters J. Chem. Phys. 121:3030–43 [Google Scholar]
  134. Last I, Jortner J. 2004. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters. J. Chem. Phys. 121:8329–42 [Google Scholar]
  135. Last I, Jortner J. 2005. Regular multicharged transient soft matter in Coulomb explosion of heteroclusters. Proc. Natl. Acad. Sci. USA 102:1291–95 [Google Scholar]
  136. Last I, Jortner J. 2001. Nuclear fusion induced by Coulomb explosion of heteronuclear clusters. Phys. Rev. Lett. 87:033401 [Google Scholar]
  137. Last I, Jortner J. 2001. Nuclear fusion driven by Coulomb explosion of homonuclear and heteronuclear deuterium and tritium containing clusters. Phys. Rev. A 64:063201 [Google Scholar]
  138. Last I, Jortner J. 2002. Nuclear fusion driven by Coulomb explosion of methane clusters. J. Phys. Chem. A 106:10877–85 [Google Scholar]
  139. Jortner J, Last I. 2002. Nuclear fusion driven by Coulomb explosion of molecular clusters. ChemPhysChem 3:845–48 [Google Scholar]
  140. Zweiback J, Cowan TE, Smith RA, Hurtlay JH, Howell R. et al. 2000. Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85:3640–43 [Google Scholar]
  141. Grillon G, Balcou Ph, Chambaret JP, Hulin D, Martino J. et al. 2002. Deuterium-deuterium fusion dynamics in low-density molecular cluster jets irradiated by intense laser pulses. Phys. Rev. Lett. 89:065005 [Google Scholar]
  142. Pruvost L, Serre I, Duong HT, Jortner J. 2000. Expansion and cooling of rubidium 3D optical molasses. Phys. Rev. A 61:053408 [Google Scholar]
  143. Toennies JP, Vilesov AF. 2004. Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Ed. 43:2622–48 [Google Scholar]
  144. Liu X, Rottke H, Emerina E, Sander W, Gulielmakis E. et al. 2004. Nonsequential double ionization in single-optical-cycle limit. Phys. Rev. Lett. 93:263001 [Google Scholar]
  145. Berlin I. 1997. The hedgehog and the fox. In The Proper Study of Mankind pp. 436–98 New York: Farrar, Straus & Giroux [Google Scholar]
  146. Sundström V. ed. 1997. Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic Scale Resolution London: Imperial Coll.
  147. Sinanoglu O. ed. 1965. Modern Quantum Chemistry Part 2, 3 New York: Academic
/content/journals/10.1146/annurev.physchem.56.092503.141246
Loading
/content/journals/10.1146/annurev.physchem.56.092503.141246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error