1932

Abstract

The simulation of biological membranes over length and time scales relevant to cellular biology is not currently feasible using conventional (fully atomic or molecularly detailed) simulation strategies. Given the wide disparity between what is possible on today's computers and the problems one might like to study, it seems unlikely this situation will change for several decades. An appealing alternative to traditional computational approaches is to employ simpler, continuum-based models developed within the frameworks of elasticity theory, fluid dynamics, and statistical mechanics. Although such models have seen wide use in analytical descriptions of membrane behavior, the extension of these methods to more general situations and numerical analysis is just beginning to be explored. This article reviews continuum models for membrane behavior with an emphasis on the use of such models in computational studies. Two applications are explored to demonstrate the utility of this level of coarse-grained modeling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.59.032607.093550
2008-05-05
2024-06-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.59.032607.093550
Loading
/content/journals/10.1146/annurev.physchem.59.032607.093550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error