1932

Abstract

This article summarizes theoretical studies of molecular state determination by wave-packet interferometry (WPI) and recounts some recent experimental applications of molecular WPI. Calculations predict that two-color nonlinear WPI data can be used to reconstruct a rovibronic target wave packet evolving under an incompletely characterized nuclear Hamiltonian. This can be accomplished by the isolation via phase cycling or wave-vector matching of an exhaustive collection of overlaps between the unknown target and the members of a family of reference wave packets whose form is known by construction. This review highlights recent experiments employing WPI to gain amplitude-level information about the photoexcited-state dynamics of small molecules in the gas phase and in rare-gas crystals. I briefly describe a new semiclassical theory for condensed-phase WPI and other coherence-spectroscopy measurements, such as time-resolved coherent anti-Stokes Raman scattering, and mention our initial studies of nonlinear WPI from electronic energy-transfer complexes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.59.032607.093753
2008-05-05
2024-06-18
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.59.032607.093753
Loading
/content/journals/10.1146/annurev.physchem.59.032607.093753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error