Alternative splicing is a widespread mechanism for generating transcript diversity in higher eukaryotic genomes. The alternative splices of the large-conductance calcium-activated potassium (BK) channel have been the subject of a good deal of experimental functional characterization in the Arthropoda, Chordata, and Nematoda phyla. In this review, we examine a list of splices of the BK channel by manual curation of Unigene clusters mapped to mouse, human, chicken, , and genomes. We find that BK alternative splices do not appear to be conserved across phyla. Despite this lack of conservation, splices occur in both vertebrates and invertebrates at identical regions of the channel at experimentally established domain boundaries. The fact that, across phyla, unique splices occur at experimentally established domain boundaries suggests a prominent role for the convergent evolution of alternative splices that produce functional changes via changes in interdomain communication.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error