1932

Abstract

Echolocating bats use audition to guide much of their behavior. As in all vertebrates, their lower brainstem contains a number of parallel auditory pathways that provide excitatory or inhibitory outputs differing in their temporal discharge patterns and latencies. These pathways converge in the auditory midbrain, where many neurons are tuned to biologically important parameters of sound, including signal duration, frequency-modulated sweep direction, and the rate of periodic frequency or amplitude modulations. This tuning to biologically relevant temporal patterns of sound is created through the interplay of the time-delayed excitatory and inhibitory inputs to midbrain neurons. Because the tuning process requires integration over a relatively long time period, the rate at which midbrain auditory neurons respond corresponds to the cadence of sounds rather than their fine structure and may provide an output that is closely matched to the rate at which motor systems operate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.61.1.457
1999-03-01
2024-06-22
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physiol.61.1.457
Loading
/content/journals/10.1146/annurev.physiol.61.1.457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error