
Full text loading...
Inorganic phosphate (Pi) is required for energy metabolism, nucleic acid synthesis, bone mineralization, and cell signaling. The activity of cell-surface sodium-phosphate (Na+-Pi) cotransporters mediates the uptake of Pi from the extracellular environment. Na+-Pi cotransporters and organ-specific Pi absorptive processes are regulated by peptide and sterol hormones, such as parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D (1α,25(OH)2D3), which interact in a coordinated fashion to regulate Pi homeostasis. Recently, several phosphaturic peptides such as fibroblast growth factor-23 (FGF-23), secreted frizzled related protein-4 (sFRP-4), matrix extracellular phosphoglycoprotein, and fibroblast growth factor-7 have been demonstrated to play a pathogenic role in several hypophosphatemic disorders. By inhibiting Na+-Pi transporters in renal epithelial cells, these proteins increase renal Pi excretion, resulting in hypophosphatemia. FGF-23 and sFRP-4 inhibit 25-hydroxyvitamin D 1α-hydroxylase activity, reducing 1α,25(OH)2D3 synthesis and thus intestinal Pi absorption. This review examines the role of these factors in Pi homeostasis in health and disease.
Article metrics loading...
Full text loading...
Data & Media loading...