A blink in history's eye has brought us an understanding of electricity, and with it a revolution in human life. From the frog leg twitch experiments of Galvani and the batteries of Volta, we have progressed to telegraphs, motors, telephones, computers, and the Internet. In the same period, the ubiquitous role of electricity in animal and plant life has become clear. A great milestone in this journey was the elucidation of electrical signaling by Hodgkin & Huxley in 1952. This chapter gives a personal account of a small part of this story, the transformation of the rather abstract electrical conductances of Hodgkin & Huxley into the more tangible gated ion channel.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117:500–44The foundation of ion conduction. Difficult to read because of older conventions but rewarding. [Google Scholar]
  2. Armstrong CM. 1968. Monosynaptic activation of pyramidal cells in area 18 by optic radiation fibers. Exp. Neurol. 21:413–28 [Google Scholar]
  3. Armstrong CM. 1968. The inhibitory path from the lateral geniculate body to the optic cortex in the cat. Exp. Neurol. 21:429–41 [Google Scholar]
  4. Noble D. 1962. A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pace-maker potentials. J. Physiol. (Lond.) 160:317–52 [Google Scholar]
  5. Katz B. 1949. Les constants électriques de la membrane du muscle. Arch. Sci. Physiol. 2:285–99 [Google Scholar]
  6. Tasaki I, Hagiwara S. 1957. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. Gen. Physiol. 40:859–85 [Google Scholar]
  7. Armstrong CM, Binstock L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48:859–72 [Google Scholar]
  8. Armstrong CM. 1968. Time course of TEA+-induced anomalous rectification in squid giant axons. J. Gen. Physiol. 21:413–503 [Google Scholar]
  9. Armstrong CM. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 59:413–37Elucidates the gross architecture of K channels. Among my papers, this is my favorite. [Google Scholar]
  10. Hille B. 2001. Ion Channels of Excitable Membranes. Sunderland, MA: Sinauer.722 pp. , 3rd ed..Unrivaled as an instructional and reference book on channels. [Google Scholar]
  11. Armstrong CM, Hille B. 1972. The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59:388–400 [Google Scholar]
  12. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. 1999. Advanced Inorganic Chemistry. New York: John Wiley [Google Scholar]
  13. Bezanilla F, Armstrong CM. 1972. Negative conductance caused by the entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60:588–608An awful title, but the selectivity theory is good. [Google Scholar]
  14. Mullins LJ. 1960. An analysis of pore size in excitable membranes. J. Gen. Physiol. 43:105–17 [Google Scholar]
  15. Robinson RA, Stokes RH. 1965. Electrolyte Solutions. London: Buttersworth [Google Scholar]
  16. Armstrong CM. 1975. Ionic pores, gates and gating currents. Quart. Rev. Biophys. 7:179–210 [Google Scholar]
  17. Gomez-Lagunas F. 1997. Shaker B K+ conductance in Na+ solutions lacking K+ ions: a remarkably stable nonconducting state produced by membrane depolarizations. J. Physiol. (Lond.) 499:3–15 [Google Scholar]
  18. Rojas E, Atwater I. 1967. Blocking of potassium currents by pronase in perfused giant axons. Nature 215:850–52 [Google Scholar]
  19. Armstrong CM, Bezanilla FM, Rojas F. 1973. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62:375–91 [Google Scholar]
  20. Armstrong CM, Bezanilla F. 1973. Currents related to movement of the gating particles of the sodium channels. Nature 242:459–61 [Google Scholar]
  21. Hille B. 1975. The receptor for tetrodotoxin and saxitoxin. A structural hypothesis.. Biophys. J. 15:615–19 [Google Scholar]
  22. Bezanilla F, Armstrong CM. 1977. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70:549–6622, 23. These papers provide a still-useful theory of coupled activation-inactivation. [Google Scholar]
  23. Armstrong CM, Bezanilla F. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567–9022, 23. These papers provide a still-useful theory of coupled activation-inactivation. [Google Scholar]
  24. Armstrong CM. 1981. Sodium channels and gating currents. Physiol. Rev. 61:645–83 [Google Scholar]
  25. Noda M, Shimuzu S, Tanabe T, Takai T, Kayano T. et al. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–17The Holy Grail, part one: the amino-acid sequence of a Na channel. [Google Scholar]
  26. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–75 [Google Scholar]
  27. Pongs O, Kecskemethy N, Muller R, Krah-Jentgens I, Baumann A. et al. 1988. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 7:1087–96 [Google Scholar]
  28. Guy HR, Seetharamulu P. 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83:508–12 [Google Scholar]
  29. Miller C, Moczydlowski E, LaTorre R, Phillips M. 1985. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313:316–18 [Google Scholar]
  30. Yellen G, Jurman ME, Abramson T, MacKinnon R. 1991. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251:939–42 [Google Scholar]
  31. Hartmann HA, Kirsch GE, Drewe JA, Tagliatella M, Joho RH, Brown AM. 1991. Exchange of conduction pathways between two related K+ channels. Science 251:942–44 [Google Scholar]
  32. Heginbotham L, Lu Z, Abramson T. MacKinnon R. 1994. Mutations in the K+ channel signature sequence. Biophys. J. 66:1061–67 [Google Scholar]
  33. Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D. et al. 1995. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14:5170–78 [Google Scholar]
  34. Doyle DA, Carbal JM, Pfuetzner RA, Kuo A, Gullbis JM. et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77The Holy Grail, part two: the structure of a simple K channel. [Google Scholar]
  35. Yellen G. 2002. The voltage-gated potassium channels and their relatives. Nature 419:35–42 [Google Scholar]
  36. del Camino D, Yellen G. 2001. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32:649–56 [Google Scholar]
  37. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. 2002. The open pore conformation of potassium channels. Nature 417:523–26 [Google Scholar]
  38. Morais-Cabral JH, Zhou Y, MacKinnon R. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42 [Google Scholar]
  39. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43-48Unbelievable! You can see K+ ions disrobing. [Google Scholar]
  40. Bean BP. 1980. Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating. Biophys. J. 35:595–614 [Google Scholar]
  41. Demo SD, Yellen G. 1991. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7:743–53 [Google Scholar]
  42. Hoshi T, Zagotta WN, Aldrich RW. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–38 [Google Scholar]
  43. MacKinnon R, Aldrich RW, Lee AW. 1993. Functional stoichiometry of Shaker potassium channel inactivation. Science 262:757–59 [Google Scholar]
  44. Gomez-Lagunas F, Armstrong CM. 1995. Inactivation in Shaker K+ channels: a test for the number of inactivating particles on each channel. Biophys. J. 68:89–95 [Google Scholar]
  45. Zhou M, Morais-Cabral JH, Mann S, MacKinnon R. 2001. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–61 [Google Scholar]
  46. Hoshi T, Zagotta WN, Aldrich RW. 1991. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–56 [Google Scholar]
  47. Yellen G, Sodickson D, Chen TY, Jurman ME. 1994. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66:1068–75 [Google Scholar]
  48. Stühmer W, Conti F, Suzuki H, Wang XD, Noda M. et al. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603 [Google Scholar]
  49. Yang N, Horn R. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–18 [Google Scholar]
  50. Hirschberg B, Rovner A, Lieberman M, Patlak J. 1995. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106:1053–68 [Google Scholar]
  51. Islas L, Sigworth F. 1999. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels. J. Gen. Physiol. 114:723–41 [Google Scholar]
  52. Catterall WA. 1995. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64:493–531 [Google Scholar]
  53. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R. 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48 [Google Scholar]
  54. Radzicka A, Wolfenden R. 1988. Comparing the polarities of the amino-acids: side-chain distribution coefficients between the vapor phase, cyclohexaon, 1-octanol, and neutral aqueous solution. Biochemistry 27:1670–77 [Google Scholar]
  55. Ahern CA, Horn R. 2004. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123:205–16 [Google Scholar]
  56. Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–56 [Google Scholar]
  57. Long SB, Campbell EB, MacKinnon R. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903 [Google Scholar]
  58. Holmgren M, Shin KS, Yellen G. 1998. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron 21:617–21 [Google Scholar]
  59. Armstrong CM, Loboda A. 2001. A model for 4-aminopyridine action on K channels. Similarities to TEA+ action. Biophys. J. 81:895–904 [Google Scholar]
  60. Del Camino D, Kanevsky M, Yellen G. 2005. Status of the intracellular gate in the activated-not-open state of shaker K+ channels. J. Gen. Physiol. 126:419–28 [Google Scholar]
  61. Loboda A, Armstrong CM. 2001. Resolving the gating charge movement associated with late transitions in K channel activation. Biophys. J. 81:905–16 [Google Scholar]
  62. Perozo E, Papazian DM, Stefani E, Bezanilla F. 1992. Gating currents in Shaker K+ channels. Implications for activation and inactivation models. Biophys. J. 62:160–68 [Google Scholar]
  63. Howard J, Hudspeth AJ. 1987. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl. Acad. Sci. USA 84:3064–68 [Google Scholar]
  64. Armstrong CM. 2003. Voltage-gated K channels. Sci. STKE 2003:(188)RE10 [Google Scholar]
  65. Long B, Campbell EB, MacKinnon R. 2005. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–8 [Google Scholar]
  66. Lu Z, Klem AM, Ramu Y. 2002. Mechanism of rectification in inward-rectifier K+ channels. J. Gen. Physiol. 120:663–76 [Google Scholar]
  67. Hackos DH, Chang TH, Swartz KJ. 2002. Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. 119:521–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error