1932

Abstract

This article mainly presents, in sequential panels of time, an overview of my professional involvements and laboratory experiences. I became smitten with red blood cells early on, and this passion remains with me to this day. I highlight certain studies, together with those who performed the work, recognizing that it was necessary to limit the details and the topics chosen for discussion. I am uncertain of the interest a personal account has for others, but at least it's here for the record.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.70.113006.100627
2008-03-17
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/70/1/annurev.physiol.70.113006.100627.html?itemId=/content/journals/10.1146/annurev.physiol.70.113006.100627&mimeType=html&fmt=ahah

Literature Cited

  1. Davson H, Danielli JF. 1.  1943. The Permeability of Natural Membranes New York: Cambridge Univ. Press. Macmillan361pp. [Google Scholar]
  2. Heilbrunn LV. 2.  1943. An Outline of General Physiology Philadelphia/London: Saunders, 2nd.748pp. [Google Scholar]
  3. Hunter FR, Hoffman JF. 3.  1947. A method for measuring the speed of centrifuges. Science 105:529 [Google Scholar]
  4. Fisher ALS, Goble D, Henry R. 4.  1996. A Matter of Black and White Norman, OK/London: Univ. Oklahoma Press204pp. [Google Scholar]
  5. Barron ESG. 5. ed. 1952. Modern Trends in Physiology and Biochemistry New York: Academic538pp. [Google Scholar]
  6. Peat FD. 6.  1997. Infinite Potential: The Life and Times of David Bohm Reading, MA: Addison-Wesley353pp. [Google Scholar]
  7. Green JW, Hoffman JF. 7.  1951. Erythrocyte volume and urea in elasmobranchs. J. Cell. Comp. Physiol. 37:1–4 [Google Scholar]
  8. Patlak CS, Goldstein DA, Hoffman JF. 8.  1963. The flow of solute and solvent across a two-membrane system. J. Theor. Biol. 5:426–42 [Google Scholar]
  9. Parpart AK, Hoffman JF. 9.  1952. Acidity versus acetylcholine and cation permeability of red cells. Fed. Proc. 11:117 (Abstr.) [Google Scholar]
  10. Hoffman JF. 10.  1952. The action of uranyl salts on the erythrocyte surface. Biol. Bull. 103:303 (Abstr.) [Google Scholar]
  11. Hillier J, Hoffman JF. 11.  1953. On the ultrastructure of the plasma membrane as determined by the electron microscope. J. Cell. Comp. Physiol. 42:203–47 [Google Scholar]
  12. Branton D, Deamer DW. 12.  1972. Membrane structure. Protoplasmatologia 2:1–70 [Google Scholar]
  13. Hoffman JF, Hillier J. 13.  1952. Ultrastructure of the plasma membrane. Fed. Proc. 11:71–72 (Abstr.) [Google Scholar]
  14. Hoffman JF. 14.  1956. On the reproducibility in the observed ultrastructure of the normal mammalian red cell plasma membrane. J. Cell. Comp. Physiol. 47:261–87 [Google Scholar]
  15. Hoffman JF, Wolman IJ, Hillier J, Parpart AK. 15.  1956. Ultrastructure of erythrocyte membranes in thalassemia major and minor. Blood XI:946–56 [Google Scholar]
  16. Henderson LJ. 16.  1913. The Fitness of the Environment New York: Macmillan317pp. [Google Scholar]
  17. Bernard C. 17.  1949. An Introduction to the Study of Experimental Medicine New York: Henry Schuman226pp. [Google Scholar]
  18. Krogh A. 18.  1939. Osmotic Regulation in Aquatic Animals London: Cambridge Univ. Press242pp. [Google Scholar]
  19. Barcroft J. 19.  1938. Features in the Architecture of Physiological Function London: Cambridge Univ. Press368pp. [Google Scholar]
  20. Bayliss WM. 20.  1924. Principles of General Physiology London: Longman's Green and Co, 4th.882pp. [Google Scholar]
  21. Höber R, Hitchcock DI, Bateman JB, Goddard DR, Fenn WO. 21.  1946. Physical Chemistry of Cells and Tissues Philadelphia: Blakiston676pp. [Google Scholar]
  22. Hoffman JF, Eden JS, Barr JR, Bedell HS. 22.  1958. The hemolytic volume of human erythrocytes. J. Cell. Comp. Physiol. 51:405–14 [Google Scholar]
  23. Hoffman JF. 23.  1958. Physiological characteristics of human red blood cell ghosts. J. Gen. Physiol. 42:9–28 [Google Scholar]
  24. Ponder E. 24.  1955. Red cell structure and its breakdown. Protoplasmatologia 10:1–123 [Google Scholar]
  25. Parpart AK, Hoffman JF. 25.  1956. Flicker in erythrocytes. “Vibratory movements in the cytoplasm”?. J. Cell. Comp. Physiol. 47:295–304 [Google Scholar]
  26. Ponder E. 26.  1948. Hemolysis and Related Phenomena New York: Grune & Stratton398pp. [Google Scholar]
  27. Parpart AK. 27.  1935. The permeability of the mammalian erythrocyte to deuterium oxide (heavy water). J. Cell. Comp. Physiol. 7:153–62 [Google Scholar]
  28. Hoffman JF. 28.  1972. Quantitative study of factors which control shape transformations of human red blood cells of constant volume. Nouv. Rev. Fr. Hematol. 12:771–74 [Google Scholar]
  29. Hoffman JF. 29.  1987. On the mechanism and measurement of shape transformations of constant volume of human red blood cells. Blood Cells 12:565–86 [Google Scholar]
  30. Blum HF, Gilbert HW. 29a.  1940. Quantum requirements for photodynamic hemolysis. J. Cell. Comp. Physiol. 15:85–93 [Google Scholar]
  31. Hoffman JF. 30.  2004. Some red blood cell phenomena for the curious. Blood Cells Mol. Dis. 32:335–40 [Google Scholar]
  32. Tosteson DC. 31.  1955. Sodium and potassium transport in red blood cells. In Electrolytes in Biological Systems ed. AM Shanes pp. 123–56 Baltimore: Waverly [Google Scholar]
  33. Hoffman JF. 32.  1958. On the relationship of certain erythrocyte characteristics to their physiological age. J. Cell. Comp. Physiol. 51:415–23 [Google Scholar]
  34. Hoffman JF. 33.  1954. Re-hemolytic characteristics of human erythrocyte ghosts and the mechanism of hemolysis. J. Cell. Comp. Physiol. 44:335 [Google Scholar]
  35. Gárdos G. 34.  1954. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol. Hung. Acad. Sci. 6:191–98 [Google Scholar]
  36. Hoffman JF, Tosteson DC. 35.  1956. Restitution of the potassium transport system in human erythrocyte ghosts. Instr. Physiol. Congress, 20th, Brussels (Abstr.) [Google Scholar]
  37. Hoffman JF, Schulman JH, Eden M. 36.  1959. Specific Na+ carriage by cephalin in a model system. Fed. Proc. 18:273 [Google Scholar]
  38. Sidel VW, Hoffman JF. 37.  1961. Water transport across membrane analogues. Fed. Proc. 20:137 (Abstr.) [Google Scholar]
  39. Hoffman JF, Tosteson DC, Whittam R. 38.  1960. Retention of potassium by human erythrocyte ghosts. Nature 185:186–87 [Google Scholar]
  40. Hoffman JF. 39.  1992. On red blood cells, hemolysis and resealed ghosts. In The Use of Resealed Erythrocytes as Carriers and Bioreactorsed. M Magnani, JR DeLoach pp. 1–15 New York: Plenum [Google Scholar]
  41. Tosteson DC, Hoffman JF. 40.  1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44:169–94 [Google Scholar]
  42. Lee P, Kirk RG, Hoffman JF. 41.  1984. Interrelations among Na and K content, cell volume, and buoyant density in human red blood cell populations. J. Membr. Biol. 79:119–26 [Google Scholar]
  43. Milanick MA, Hoffman JF. 42.  1986. Ion transport and volume regulation in red blood cells. Ann. N.Y. Acad. Sci. 488:174–86 [Google Scholar]
  44. Hoffman JF. 43.  2001. A brief history of the Red Cell Club. Blood Cells Mol. Dis. 27:54–56 [Google Scholar]
  45. Hoffman JF. 44.  1962. The active transport of sodium by ghosts of human red blood cells. J. Gen. Physiol. 45:837–59 [Google Scholar]
  46. Hoffman JF. 45.  1962. Cation transport and structure of the red-cell plasma membrane. Circulation XXVI:1201–13 [Google Scholar]
  47. Hoffman JF. 46.  1980. The link between metabolism and active transport of sodium in human red cell ghosts. J. Membr. Biol. 57:143–61 [Google Scholar]
  48. Skou JC. 47.  1998. The influence of some cations on an adenosine triphosphatase from peripheral nerves. J. Am. Soc. Nephrol. 9:2170–77 [Google Scholar]
  49. Kregenow FM, Hoffman JF. 48.  1972. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J. Gen. Physiol. 60:406–29 [Google Scholar]
  50. Gárdos G. 49.  1958. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30:653–54 [Google Scholar]
  51. Grygorczyk R, Schwarz W, Passow H. 50.  1984. Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes. Biophys. J. 45:693–98 [Google Scholar]
  52. Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A. 51.  2003. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Proc. Natl. Acad. Sci. USA 100:7366–71 [Google Scholar]
  53. Hoffman JF, Kregenow FM. 52.  1966. The characterization of new energy dependent cation transport processes in red blood cells. Ann. N.Y. Acad. Sci. 137:566–76 [Google Scholar]
  54. Kregenow FM. 53.  1981. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu. Rev. Physiol. 43:493–505 [Google Scholar]
  55. Parker JC, Hoffman JF. 54.  1976. Influences of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433:404–8 [Google Scholar]
  56. Hoffman JF. 55.  2007. Further musings on some red blood cell problems for perspicacious physiologists. Blood Cells Mol. Dis. 39:56–62 [Google Scholar]
  57. Parker JC, Hoffman JF. 56.  1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J. Gen. Physiol. 30:893–916 [Google Scholar]
  58. Proverbio F, Hoffman JF. 57.  1977. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 69:605–32 [Google Scholar]
  59. Hoffman JF. 58.  1997. ATP compartmentation in human erythrocytes. Curr. Opin. Hematol. 4:112–15 [Google Scholar]
  60. Burg MB. 59.  1988. Origins of isolated tubule microperfusion methodology. News Physiol. Sci. 3:176–80 [Google Scholar]
  61. Lassen UV, Sten-Knudsen O. 60.  1968. Direct measurements of membrane potentials and membrane resistance of human red cells. J. Physiol. 195:681–96 [Google Scholar]
  62. Hoffman JF, Lassen UV. 61.  1971. Plasma membrane potentials in Amphiuma red cells. Int. Congr. Physiol. Sci., 25th (Abstr.) [Google Scholar]
  63. Lassen UV. 62.  1971. Membrane potential and membrane resistance of red cells. Benzon Symp. Oxygen Affin. Hemoglobin Red Cell Acid Base Status, 4thpp. 291–306 Munksgaard, Copenhagen: Academic [Google Scholar]
  64. Hoffman JF, Geibel JP. 63.  2005. Fluorescent imaging of Cl in Amphiuma red blood cells: how the nuclear exclusion of Cl affects the plasma membrane potential. Proc. Natl. Acad. Sci. USA 102:921–26 [Google Scholar]
  65. Hoffman JF, Laris PC. 64.  1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239:519–52 [Google Scholar]
  66. Hoffman JF, Kaplan JH, Callahan TJ. 65.  1979. The Na:K pump in red cells is electrogenic. Fed. Proc. 38:2440–41 [Google Scholar]
  67. Hoffman JF. 66.  1992. Estimates of the electrical conductance of the red cell membrane. In The Band 3 Proteins: Anion Transporters, Binding Proteins and Senescent Antigensed. E Bamberg, H Passow 2173–78 Amsterdam: Elsevier [Google Scholar]
  68. Hoffman JF, Laris PC. 67.  1984. Membrane electrical parameters of normal human red blood cells. In Electrogenic Transport: Fundamental Principles and Physiological Implicationsed. M. Blaustein, M. Lieberman pp. 287–93 New York: Raven Press [Google Scholar]
  69. Haley BE, Hoffman JF. 68.  1974. Interactions of a photo-affinity ATP analog with cation-stimulated adenosine triphosphatases of human red cell membranes. Proc. Natl. Acad. Sci. USA 71:3367–71 [Google Scholar]
  70. Potter RL, Haley BE. 69.  1983. Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: techniques and applications. Methods Enzymol. 19:613–33 [Google Scholar]
  71. Forbush B III, Kaplan JH, Hoffman JF. 70.  1978. Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na,K-ATPase. Biochemistry 17:3667–76 [Google Scholar]
  72. Mercer RW, Biemesderfer D, Bliss DP Jr, Collins JH, Forbush B III. 71.  1993. Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. J. Cell Biol. 121:579–86 [Google Scholar]
  73. Garty H, Karlish SJ. 72.  2006. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68:431–59 [Google Scholar]
  74. Hoffman JF, Wickrema A, Potapova O, Milanick M, Yingst DR. 73.  2002. Na pump isoforms in human erythroid progenitor cells and mature erythrocytes. Proc. Natl. Acad. Sci. USA 99:14572–77 [Google Scholar]
  75. Kaplan JH, Forbush B III, Hoffman JF. 74.  1978. Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–35 [Google Scholar]
  76. Kaplan JH, Somlyo AP. 75.  1989. Flash photolysis of caged compounds: new tools for cellular physiology. Trends Neurosci. 12:254–59 [Google Scholar]
  77. Kaplan JH. 76.  1986. Caged ATP as a tool in active transport research. Soc. Gen. Physiol. Ser. 40:385–96 [Google Scholar]
  78. Ingram CJ. 77.  1970. The binding of ouabain to human red cells PhD thesis Yale Univ. [Google Scholar]
  79. Dunham PB, Hoffman JF. 78.  1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J. Gen. Physiol. 58:94–116 [Google Scholar]
  80. Hoffman JF. 79.  1966. The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41:666–80 [Google Scholar]
  81. Hoffman JF. 80.  1969. The interaction between tritiated ouabain and the Na-K pump in red blood cells. J. Gen. Physiol. 54:343–50 [Google Scholar]
  82. Bodemann HH, Hoffman JF. 81.  1976. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J. Gen. Physiol. 67:497–525 [Google Scholar]
  83. Hoffman JF. 82.  1972. Sidedness of the red cell Na:K pump. In Role of Membranes in Secretory Processesed. L Bolis, RD Keynes, W Wilbrandt pp. 203–14 Amsterdam: North-Holland [Google Scholar]
  84. Hoffman JF. 83.  1961. Molecular mechanism of active cation transport. In Biophysics of Physiological and Pharmacological Actionsed. AM Shanes pp. 3–17 Washington, DC: Am. Assoc. Adv. Sci. [Google Scholar]
  85. Koshland DE. 84.  1963. The role of flexibility in enzyme action. Cold Spring Harb. Symp. Quant. Biol. XXVIII:473–82 [Google Scholar]
  86. Jardetzky O. 85.  1966. Simple allosteric model for membrane pumps. Nature 211:969–70 [Google Scholar]
  87. Freedman JC, Hoffman JF. 86.  1979. Ionic and osmotic equilibria of human red blood cells treated with nystatin. J. Gen. Physiol. 74:157–85 [Google Scholar]
  88. Yingst DR, Hoffman JF. 87.  1984. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump. J. Gen. Physiol. 83:19–45 [Google Scholar]
  89. Mairbäurl H, Hoffman JF. 88.  1992. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system. J. Gen. Physiol. 99:721–46 [Google Scholar]
  90. Kennedy BG, Lunn G, Hoffman JF. 89.  1986. Effects of altering the ATP/ADP ratio on pump-mediated Na/K and Na/Na exchangers in resealed human red blood cell ghosts. J. Gen. Physiol. 87:47–72 [Google Scholar]
  91. Garrahan PJ, Glynn IM. 90.  1967. The behavior of the sodium pump in red cells in the absence of external potassium. J. Physiol. 192:159–74 [Google Scholar]
  92. Dissing S, Hoffman JF. 91.  1990. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump. J. Gen. Physiol. 96:167–93 [Google Scholar]
  93. Martin WH, Richards DE, Marin R, Jack-Hays M, Hoffman JF. 92.  1994. Comparative aspects of Na+/K+ pump-mediated uncoupled Na+ efflux in red blood cells and kidney proteoliposomes. Proc. Natl. Acad. Sci. USA 91:9881–85 [Google Scholar]
  94. Stengelin MK, Hoffman JF. 93.  1997. Na,K-ATPase subunit isoforms in human reticulocytes: evidence from reverse transcription-PCR for the presence of α1, α3, β2, β3, and γ. Proc. Natl. Acad. Sci. USA 94:5943–48 [Google Scholar]
  95. Hoffman JF, Dodson A, Wickrema A, Dib-Hajj D. 94.  2004. Tetrodotoxin-sensitive Na+ channels and muscarinic and purinergic receptors identified in human erythroid progenitor cells and red blood cell ghosts. Proc. Natl. Acad. Sci. USA 101:12370–74 [Google Scholar]
  96. Hoffman JF. 95.  2001. Questions for red blood cell physiologists to ponder in this millennium. Blood Cells Mol. Dis. 27:57–61 [Google Scholar]
  97. Hoffman JF, Inoué S. 96.  2006. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells. Proc. Natl. Acad. Sci. USA 103:2971–76 [Google Scholar]
  98. Denton EJ. 97.  1963. Buoyancy mechanisms of sea creatures. Endeavour XXII:853–8 [Google Scholar]
  99. Carter L. 98.  1957. Ionic regulation in the ciliate Spirostomum ambiguum. J. Exp. Biol. 34:71–84 [Google Scholar]
/content/journals/10.1146/annurev.physiol.70.113006.100627
Loading
/content/journals/10.1146/annurev.physiol.70.113006.100627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error