The key issue in analyzing brain substrates of memory is the nature of memory traces, how memories are formed, stored, and retrieved in the brain. In order to analyze mechanisms of memory formation it is first necessary to find the loci of memory storage, the classic problem of localization. Various approaches to this issue are reviewed. A particular strategy is proposed that involves a number of different techniques (electrophysiological recording, lesions, electrical stimulation, pathway tracing) to identify the essential memory trace circuit for a given form of learning and memory. The methods of reversible inactivation can be used to localize the memory traces within this circuit. Using classical conditioning of eye blink and other discrete responses as a model system, the essential memory trace circuit is identified, the basic memory trace is localized (to the cerebellum), and putative higher-order memory traces are characterized in the hippocampus.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albus JS. 1971. A theory of cerebellar function. Math Biosci. 10:25–61 [Google Scholar]
  2. Bao S, Chen L, Kim JJ, Thompson RF. 2002. Cerebellar cortical inhibition and classical eyeblink conditioning. Proc. Natl. Acad. Sci. USA 99:1592–97 [Google Scholar]
  3. Bao S, Chen L, Thompson RF. 2000. Learning-and-cerebellum-dependent neuronal activity in the lateral pontine nucleus. Behav. Neurosci. 114:254–61 [Google Scholar]
  4. Bao S, Cheng EF, Davis JD, Gobeske KT, Merzenich MM. 2003. Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. J. Neurosci. 23:10765–75 [Google Scholar]
  5. Berger TW. 1984. Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science 224:627–30 [Google Scholar]
  6. Berger TW, Alger BE, Thompson RF. 1976. Neuronal substrate of classical conditioning in the hippocampus. Science 192:483–85 [Google Scholar]
  7. Berger TW, Berry SD, Thompson RF. 1986. Role of the hippocampus in classical conditioning of aversive and appetitive behaviors. In The Hippocampus, Vols. III and IV ed. RL Isaacson, KH Pribram pp. 203–39 New York: Plenum [Google Scholar]
  8. Berger TW, Thompson RF. 1978a. Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus Brain Res. 145:323–46 [Google Scholar]
  9. Berger TW, Thompson RF. 1978b. Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proc. Natl. Acad. Sci. USA 75:1572–76 [Google Scholar]
  10. Berry SD, Thompson RF. 1978. Prediction of learning rate from the hippocampal EEG. Science 200:1298–300 [Google Scholar]
  11. Bracha V, Irwin KB, Webster ML, Wunderlich DA, Stachowiak MK, Bloedel JR. 1998. Microinjections of anisomycin into the intermediate cerebellum during learning affect the acquisition of classically conditioned responses in the rabbit. Brain Res. 788:169–78 [Google Scholar]
  12. Cegavske CF, Patterson MM, Thompson RF. 1979. Neuronal unit activity in the abducens nucleus during classical conditioning of the nictitating membrane response in the rabbit. Oryctolagus cuniculus. J. Comp. Physiol. Psychol. 93:595–609 [Google Scholar]
  13. Cegavske CF, Thompson RF, Patterson MM, Gormezano I. 1976. Mechanisms of efferent neuronal control of the reflex nictitating membrane response in the rabbit (Oryctolagus cuniculus). J. Comp. Physiol. Psychol. 90:411–23 [Google Scholar]
  14. Chapman PF, Steinmetz JE, Thompson RF. 1988. Classical conditioning does not occur when direct stimulation of the red nucleus or cerebellar nuclei is the unconditioned stimulus. Brain Res. 442:97–104 [Google Scholar]
  15. Chen C, Kano M, Abeliovich A, Chen L, Bao S. et al. 1995. Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCγ mutant mice. Cell 83:1233–42 [Google Scholar]
  16. Chen C, Thompson RF. 1995. Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice. Learn. Mem. 2:185–98 [Google Scholar]
  17. Chen G, Steinmetz JE. 2000. Microinfusion of protein kinase inhibitor H7 in the cerebellum impairs the acquisition but not retention of classical eyeblink conditioning in rabbits. Brain Res. 856:193–201 [Google Scholar]
  18. Chen L, Bao S, Lockard JM, Kim JJ, Thompson RF. 1996. Impaired classical eyeblink conditioning in cerebellar lesioned and Purkinje cell degeneration (pcd) mutant mice. J. Neurosci. 16:2829–38 [Google Scholar]
  19. Chen L, Bao S, Thompson RF. 1999. Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell degeneration mutant mice. Behav. Neurosci. 113:204–10 [Google Scholar]
  20. Christian KM, Poulos AM, Thompson RF. 2002. Purkinje cell activity during classical conditioning of the eyeblink reflex in rabbits. Soc. Neurosci. Abstr.79.9 [Google Scholar]
  21. Christian KM, Thompson RF. 2003. Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem. 11:427–55 [Google Scholar]
  22. Clark GA, McCormick DA, Lavond DG, Thompson RF. 1984. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 291:125–36 [Google Scholar]
  23. Clark RE, Lavond DG. 1993. Reversible lesions of the red nucleus during acquisition and retention of a classically conditioned behavior in rabbits. Behav. Neurosci. 107:264–70 [Google Scholar]
  24. Clark RE, Manns JR, Squire LR. 2001. Trace and delay eyeblink conditioning: contrasting phenomena of declarative and nondeclarative memory. Psychol. Sci. 12:304–8 [Google Scholar]
  25. Clark RE, Squire LR. 1998. Classical conditioning and brain systems: the role of awareness. Science 280:77–81 [Google Scholar]
  26. Clark RE, Squire LR. 1999. Human eyeblink classical conditioning: effects of manipulating awareness of the stimulus contingencies. Psychol. Sci. 10:14–18 [Google Scholar]
  27. Clark RE, Squire LR. 2000. Awareness and the conditioned eyeblink response. In Eyeblink Classical Conditioning: Applications in Humans ed. DS Woodruff-Pak, JE Steinmetz 1229–51 Boston, MA: Kluwer Acad. [Google Scholar]
  28. Clark RE, Zhang AA, Lavond DG. 1992. Reversible lesions of the cerebellar interpositus nucleus during acquisition and retention of a classically conditioned behavior. Behav. Neurosci. 106:879–88 [Google Scholar]
  29. Cook SF, Attwell PJE, Yeo CH. 2004. Temporal properties of cerebellar-dependent memory consolidation. J. Neurosci. 24:2934–41 [Google Scholar]
  30. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. 1993. Classical conditioning after cerebellar lesions in humans. Behav. Neurosci. 107:748–56 [Google Scholar]
  31. Disterhoft JF, Coulter DA, Alkon DL. 1986. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl. Acad. Sci. USA 83:2733–37 [Google Scholar]
  32. Disterhoft JF, McEchron MD. 2000. Cellular alterations in hippocampus during acquisition and consolidation of hippocampus-dependent trace eyeblink conditioning. In Eyeblink Classical Conditioning: Animal Models ed. DS Woodruff-Pak, JE Steinmetz 2313–34 Boston, MA: Kluwer Acad. [Google Scholar]
  33. Disterhoft JF, Olds J. 1972. Differential development of conditioned unit changes in thalamus and cortex of rat. J. Neurophysiol. 35:665–79 [Google Scholar]
  34. Eccles JC. 1977. An instruction-selection theory of learning in the cerebellar cortex. Brain Res. 127:327–52 [Google Scholar]
  35. Edeline JM, Weinberger NM. 1991. Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav. Neurosci. 105:154–75 [Google Scholar]
  36. Ezzeddine Y, Glanzman DL. 2003. Prolonged habituation of the gill-withdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity, and postsynaptic glutamate receptors. J. Neurosci. 23:9585–94 [Google Scholar]
  37. Farel PB, Thompson RF. 1976. Habituation of a monosynaptic response in frog spinal cord: evidence for a presynaptic mechanism. J. Neurophysiol. 39:661–66 [Google Scholar]
  38. Gabriel M. 1976. Short-latency discriminative unit response: engram or bias?. Physiol. Psychol. 4:275–80 [Google Scholar]
  39. Garcia KS, Mauk MD. 1998. Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacol. 37:471–80 [Google Scholar]
  40. Garcia KS, Steele PM, Mauk MD. 1999. Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses. J. Neurosci. 19:10940–47 [Google Scholar]
  41. Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA. 2001. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci. 21:5568–73 [Google Scholar]
  42. Gomi H, Sun W, Finch CE, Itohara S, Yoshimi K, Thompson RF. 1999. Learning induces a CDC2-related protein kinase, KKIAMRE. J. Neurosci. 19:9530–37 [Google Scholar]
  43. Gormezano I, Kehoe EJ, Marshall BS. 1983. Twenty years of classical conditioning with the rabbit. Prog. Psychobiol. Physiol. Psychol. 10:197–275 [Google Scholar]
  44. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. 1999. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2:260–65 [Google Scholar]
  45. Groves PM, Thompson RF. 1970. Habituation: a dual-process theory. Psychol. Rev. 77:419–50 [Google Scholar]
  46. Hiraoka M, Shimamura M. 1977. Neural mechanisms of the corneal blinking reflex in cats. Brain Res. 125:265–75 [Google Scholar]
  47. Ito M. 1984. The Cerebellum and Neural Control New York: Raven
  48. Ivkovich D, Thompson RF. 1997. Motor cortex lesions do not affect learning or performance of the eyeblink response in rabbits. Behav. Neurosci. 111:727–38 [Google Scholar]
  49. Kandel ER. 1975. The Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology San Francisco: Freeman
  50. Kandel ER, Spencer WA. 1968. Cellular neurophysiological approaches in the study of learning. Physiol. Rev. 48:65–134 [Google Scholar]
  51. Kim JJ, Clark RE, Thompson RF. 1995. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav.Neurosci. 109:195–203 [Google Scholar]
  52. Kim JJ, Thompson RF. 1997. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 20:177–81 [Google Scholar]
  53. Kleim JA, Freeman JH Jr, Bruneau R, Nolan BC, Cooper NR, Zook A. et al. 2002. Synapse formation is associated with memory storage in the cerebellum. Proc. Natl. Acad. Sci. USA 99:13228–31 [Google Scholar]
  54. Krupa DJ, Thompson JK, Thompson RF. 1993. Localization of a memory trace in the mammalian brain. Science 260:989–91 [Google Scholar]
  55. Krupa DJ, Thompson RF. 1995. Inactivation of the superior cerebellar peduncle blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response. Proc. Natl. Acad. Sci. USA 92:5097–101 [Google Scholar]
  56. Krupa DJ, Thompson RF. 1997. Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eyeblink response. Learn. Mem. 3:545–56 [Google Scholar]
  57. Krupa DJ, Weng J, Thompson RF. 1996. Inactivation of brainstem motor nuclei blocks expression but not acquisition of the rabbit's classically conditioned eyeblink response. Behav. Neurosci. 110:219–27 [Google Scholar]
  58. Lashley KS. 1950. In search of the engram. Soc. Exp. Biol. Symp. 4:454–82 [Google Scholar]
  59. Lavond DG, Cartford MC. 2000. Eyeblink conditioning circuitry: tracing, lesion, and reversible lesion experiments. In Eyeblink Classical Conditioning: Animal Models ed. DS Woodruff-Pak, JE Steinmetz 251–80 Boston, MA: Kluwer Acad. [Google Scholar]
  60. Lavond DG, Hembree TL, Thompson RF. 1985. Effect of kainic acid lesions of the cerebellar interpositus nucleus on eyelid conditioning in the rabbit. Brain Res. 326:179–83 [Google Scholar]
  61. Lavond DG, Kim JJ, Thompson RF. 1993. Mammalian brain substrates of aversive classical conditioning. Annu. Rev. Psychol. 44:317–42 [Google Scholar]
  62. Lavond DG, Logan CG, Sohn JH, Garner WD, Kanzawa SA. 1990. Lesions of the cerebellar interpositus nucleus abolish both nictitating membrane and eyelid EMG conditioned responses. Brain Res. 514:238–48 [Google Scholar]
  63. Logan CG, Grafton ST. 1995. Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc. Natl. Acad. Sci. USA 92:7500–4 [Google Scholar]
  64. Marr D. 1969. A theory of cerebellar cortex. J. Physiol. 202:437–70 [Google Scholar]
  65. Martin SJ, Grimwood PD, Morris RGM. 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23:649–711 [Google Scholar]
  66. Mauk MD, Steinmetz JE, Thompson RF. 1986. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl. Acad. Sci. USA 83:5349–53 [Google Scholar]
  67. McCormick DA, Clark GA, Lavond DG, Thompson RF. 1982a. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79:2731–42 [Google Scholar]
  68. McCormick DA, Lavond DG, Thompson RF. 1982b. Concomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: correlations and implications. Physiol. Behav. 28:769–75 [Google Scholar]
  69. McCormick DA, Lavond DG, Thompson RF. 1983. Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM/eyelid response). Brain Res. 271:73–88 [Google Scholar]
  70. McCormick DA, Steinmetz JE, Thompson RF. 1985. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res. 359:120–30 [Google Scholar]
  71. McCormick DA, Thompson RF. 1984a. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–99 [Google Scholar]
  72. McCormick DA, Thompson RF. 1984b. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci. 4:2811–22 [Google Scholar]
  73. McGlinchey-Berroth R, Carrillo MC, Gabrieli JD, Brawn CM, Disterhoft JF. 1997. Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav. Neurosci. 111:873–82 [Google Scholar]
  74. Moyer JR Jr, Deyo RA, Disterhoft JF. 1990. Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 104:243–52 [Google Scholar]
  75. Olds J, Anderson ML, McPhie DL, Staten LD, Alkon DL. 1989. Imaging of memory-specific changes in the distribution of protein kinase C in the hippocampus. Science 245:866–69 [Google Scholar]
  76. Olds J, Disterhoft J, Segal M, Kornblith DL, Hirsh R. 1972. Learning centers of rat brain mapped by measuring latencies of conditioned unit responses. J. Neurophysiol. 35:202–19 [Google Scholar]
  77. Patterson MM, Cegavske CF, Thompson RF. 1973. Effects of classical conditioning paradigm on hindlimb flexor nerve response in immobilized spinal cat. J. Comp. Physiol. Psychol. 84:88–97 [Google Scholar]
  78. Racine RJ, Wilson DA, Gingell R, Sunderland D. 1986. Long-term potentiation in the interpositus and vestibular nuclei in the rat. Exp. Brain Res. 63:158–62 [Google Scholar]
  79. Schacter DL. 1987. Implicit memory: history and current status. Exp. Psychol. Learn. Mem. Cogn. 13:501–18 [Google Scholar]
  80. Schmaltz LW, Theios J. 1972. Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J. Comp. Physiol. Psychol. 79:328–33 [Google Scholar]
  81. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ. et al. 1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning and normal motor coordination in GFAP mutant mice. Neuron 16:587–99 [Google Scholar]
  82. Shinkman PG, Swain RA, Thompson RF. 1996. Classical conditioning with electrical stimulation of cerebellum as both conditioned and unconditioned stimulus. Behav. Neurosci. 110:914–21 [Google Scholar]
  83. Shors TJ, Matzel LD. 1997. Long-term potentiation: What's learning got to do with it?. Behav. Brain Sci. 20:597–614 discussion 614–55 [Google Scholar]
  84. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. 2001. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–76 [Google Scholar]
  85. Solomon PR, Vander Schaaf ER, Thompson RF, Weisz DJ. 1986. Hippocampus and trace conditioning of the rabbit's classically conditioned nictitating membrane response. Behav Neurosci. 100:729–44 [Google Scholar]
  86. Squire LR. 1987. Memory and Brain New York: Oxford Univ. Press
  87. Squire LR. 1992. Declarative and non-declarative memory: multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 4:232–43 [Google Scholar]
  88. Steinmetz JE, Logan CG, Rosen DJ, Thompson JK, Lavond DG, Thompson RF. 1987. Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning. Proc. Natl. Acad. Sci. USA 84:3531–35 [Google Scholar]
  89. Steinmetz JE, Rosen DJ, Chapman PF, Lavond DG, Thompson RF. 1986. Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation CS. I. Pontine nuclei and middle cerebellar peduncle stimulation. Behav. Neurosci. 100:871–80 [Google Scholar]
  90. Thompson JK, Lavond DG, Thompson RF. 1985. Cerebellar interpositus/dentate nuclei afferent seen with retrograde fluorescent tracers in the rabbit. Neurosci. Abstr. 11:1112 [Google Scholar]
  91. Thompson RF. 1997. Classical conditioning has much to do with LTP. Behav. Brain Sci. 20:632–33 [Google Scholar]
  92. Thompson RF, Berger TW, Cegavske CF, Patterson MM, Roemer RA. et al. 1976. The search for the engram. Am. Psychol. 31:209–27 [Google Scholar]
  93. Thompson RF, Kim JJ. 1996. Memory systems in the brain and localization of a memory. Proc. Natl. Acad. Sci. USA 93:13438–44 [Google Scholar]
  94. Thompson RF, Krupa DJ. 1994. Organization of memory traces in the mammalian brain. Annu. Rev. Neurosci. 17:519–49 [Google Scholar]
  95. Thompson RF, Patterson MM, Teyler TJ. 1972. Neurophysiology of learning. Annu. Rev. Psychol. 23:73–104 [Google Scholar]
  96. Thompson RF, Spencer WA. 1966. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73:16–43 [Google Scholar]
  97. Tulving E. 1985. How many memory systems are there?. Am. Psychol. 40:385–98 [Google Scholar]
  98. Wagner AR, Donegan NH. 1989. Some relationships between a computational model (SOP) and a neural circuit for Pavlovian (rabbit eyeblink) conditioning. In The Psychology of Learning and Motivation ed. RD Hawkins, GH Bower 22157–203 San Diego: Academic [Google Scholar]
  99. Weinberger NM, Hopkins W, Diamond DM. 1984. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the papillary conditioned response: I. Primary Field (AI). Behav. Neurosci. 98:171–88 [Google Scholar]
  100. Weisz DJ, Clark GA, Thompson RF. 1984. Increased activity of dentate granule cells during nictitating membrane response conditioning in rabbits. Behav. Brain Res. 12:145–54 [Google Scholar]
  101. Wilson MA, Tonegawa S. 1997. Synaptic plasticity, place cells and spatial memory: study with second generation knockouts. Trends Neurosci. 20:102–6 [Google Scholar]
  102. Woodruff-Pak DS, Lavond DG, Thompson RF. 1985. Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348:249–60 [Google Scholar]
  103. Woody CD, Alkon DL, Hay B. 1984. Depolarization-induced effects of Ca2+-calmodulin-dependent protein kinase injection, in vivo, in single neurons of cat motor cortex. Brain Res. 321:192–97 [Google Scholar]
  104. Yeo CH, Hardiman MJ, Glickstein M. 1984. Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13:261–66 [Google Scholar]
  105. Young RA, Cegavske CF, Thompson RF. 1976. Tone-induced charges in excitability of abducens motoneurons and the reflex path of the rabbit nictitating membrane response. J. Comp. Physiol. Psychol. 90:424–34 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error