Annual Review of Astronomy and Astrophysics - Volume 49, 2011
Volume 49, 2011
- Preface
-
-
-
An Interesting Voyage
Vol. 49 (2011), pp. 1–28More LessMy life has been an interesting voyage. I became an astronomer because I could not imagine living on Earth and not trying to understand how the Universe works. My scientific career has revolved around observing the motions of stars within galaxies and the motions of galaxies within the Universe. In 1965, if you were very lucky and interested in using telescopes, you could walk into a research laboratory that was building instruments that reduced exposure times by a factor of 10 and end up making remarkable discoveries. Women generally required more luck and perseverance than men did. It helped to have supportive parents and a supportive husband.
-
-
-
Laboratory Astrochemistry: Gas-Phase Processes
Vol. 49 (2011), pp. 29–66More LessA major aim of astrochemistry is to explain the nature and abundance of the molecules observed in the interstellar medium (ISM). Three kinds of activity are involved: (a) the spectroscopic identification of the species that are present in the ISM; (b) the construction of large chemical models that attempt to explain the syntheses of the observed molecules; and (c) efforts to measure or predict crucial information, such as rate coefficients for the chemical reactions that are included in the models. Models can also be employed to identify the processes that exert a major influence on the predicted abundances of observed species. Clearly, it is important that the fundamental aspects of these processes—for example, the chemical rate coefficients—are quantified as accurately as possible. This is the role of laboratory experiments, aided by theory, and this review provides a critical examination of the experimental methods that provide these data and summarizes both the results that have been obtained for gas-phase processes and their reliability.
-
-
-
Protoplanetary Disks and Their Evolution
Vol. 49 (2011), pp. 67–117More LessFlattened, rotating disks of cool dust and gas extending for tens to hundreds of astronomical units are found around almost all low-mass stars shortly after their birth. These disks generally persist for several million years, during which time some material accretes onto the star, some is lost through outflows and photoevaporation, and some condenses into centimeter- and larger-sized bodies or planetesimals. Through observations mainly at IR through millimeter wavelengths, we can determine how common disks are at different ages; measure basic properties including mass, size, structure, and composition; and follow their varied evolutionary pathways. In this way, we see the first steps toward exoplanet formation and learn about the origins of the Solar System. This review addresses observations of the outer parts, beyond 1 AU, of protoplanetary disks with a focus on recent IR and (sub)millimeter results and an eye to the promise of new facilities in the immediate future.
-
-
-
The Astrophysics of Ultrahigh-Energy Cosmic Rays
Vol. 49 (2011), pp. 119–153More LessThe origin of the highest energy cosmic rays is still unknown. The discovery of their sources is expected to reveal the workings of the most energetic astrophysical accelerators in the Universe. Current observations show a spectrum consistent with an origin in extragalactic astrophysical sources. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or to events in active galaxies. We discuss the main effects of propagation from cosmologically distant sources, including interactions with cosmic background radiation and magnetic fields. We examine possible acceleration mechanisms leading to a survey of candidate sources and their signatures. New questions arise from an observed hint of sky anisotropies and an unexpected evolution of composition indicators. Future observations may reach the necessary sensitivity to achieve charged particle astronomy and to observe ultrahigh-energy photons and neutrinos, which may further illuminate the workings of the Universe at these extreme energies. In addition to fostering a new understanding of high-energy astrophysical phenomena, the study of ultrahigh-energy cosmic rays can constrain the structure of the Galactic and extragalactic magnetic fields as well as probe particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
-
-
-
Dark Matter Searches with Astroparticle Data
Vol. 49 (2011), pp. 155–194More LessThe existence of dark matter (DM) was first noticed by Zwicky in the 1930s, but its nature remains one of the great unsolved problems of physics. A variety of observations indicate that it is nonbaryonic and nonrelativistic. One of the preferred candidates for nonbaryonic DM is a weakly interacting massive particle (WIMP) that in most models is stable. WIMP self-annihilation can produce cosmic rays, gamma rays, and other particles with signatures that may be detectable. Hints of anomalous cosmic-ray spectra found by recent experiments, such as PAMELA, have motivated interesting interpretations in terms of DM annihilation and/or decay. However, these signatures also have standard astrophysical interpretations, so additional evidence is needed in order to make a case for detection of DM annihilation or decay. Searches by the Fermi-LAT for gamma-ray signals from clumps, nearby dwarf spheroidal galaxies, and galaxy clusters have also been performed, along with measurements of the diffuse Galactic and extragalactic gamma-ray emission. In addition, Imaging Air Cherenkov Telescopes like HESS, MAGIC, and VERITAS have reported on searches for gamma-ray emission from dwarf galaxies. In this review, we examine the status of searches for particle DM by these instruments and discuss the interpretations and resulting DM limits.
-
-
-
Dynamics of Protoplanetary Disks
Vol. 49 (2011), pp. 195–236More LessProtoplanetary disks are quasi-steady structures whose evolution and dispersal determine the environment for planet formation. I review the theory of protoplanetary disk evolution and its connection to observations. Substantial progress has been made in elucidating the physics of potential angular momentum transport processes—including self-gravity, magnetorotational instability, baroclinic instabilities, and magnetic braking—and in developing testable models for disk dispersal via photoevaporation. The relative importance of these processes depends upon the initial mass, size, and magnetization of the disk, and subsequently on its opacity, ionization state, and external irradiation. Disk dynamics is therefore coupled to star formation, pre-main-sequence stellar evolution, and dust coagulation during the early stages of planet formation and may vary dramatically from star to star. The importance of validating theoretical models is emphasized, with the key observations being those that probe disk structure on the scales between 1 AU and 10 AU, where theory is most uncertain.
-
-
-
The Interstellar Medium Surrounding the Sun
Vol. 49 (2011), pp. 237–279More LessThe Solar System is embedded in a flow of low-density, warm, and partially ionized interstellar material that has been sampled directly by in situ measurements of interstellar neutral gas and dust in the heliosphere. Absorption line data reveal that this interstellar gas is part of a larger cluster of local interstellar clouds, which is spatially and kinematically divided into additional small-scale structures indicating ongoing interactions. An origin for the clouds that is related to star formation in the Scorpius-Centaurus OB association is suggested by the dynamic characteristics of the flow. Variable depletions observed within the local interstellar medium (ISM) suggest an inhomogeneous Galactic environment, with shocks that destroy grains in some regions. Although photoionization models of the circumheliospheric ISM do an excellent job of reproducing the observed properties of the surrounding ISM, the unknown characteristics of the very low-density hot plasma filling the Local Bubble introduces uncertainty about the source of ionization and nature of cloud boundaries. Recent observations of small cold clouds provide new insight into the processes affecting the local ISM. A fuller understanding of the local ISM can provide insights into the past and future Galactic environment of the Sun, and deeper knowledge of the astrospheres of nearby stars.
-
-
-
Comets as Building Blocks
Vol. 49 (2011), pp. 281–299More LessRecent results, many but not all from flybys of comets by spacecraft, particularly the results from Deep Impact, have dramatically improved our understanding of the physical properties of cometary nuclei. Characteristic features are modest size (R<20 km), high porosity, low strength, and heterogeneity. There is also evidence that can be interpreted as showing the original cometesimals in a cometary nucleus and suggesting radial migration of macroscopic cometesimals during the aggregation of nuclei, which in turn aggregated into the cores of the giant planets.
-
-
-
Galaxy Disks
Vol. 49 (2011), pp. 301–371More LessThe disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The formation and evolution of galactic disks are therefore particularly important for understanding how galaxies form and evolve and the cause of the variety in which they appear to us. Ongoing large surveys, made possible by new instrumentation at wavelengths from the UV (Galaxy Evolution Explorer), via optical (Hubble Space Telescope and large groundbased telescopes) and IR (Spitzer Space Telescope), to the radio are providing much new information about disk galaxies over a wide range of redshift. Although progress has been made, the dynamics and structure of stellar disks, including their truncations, are still not well understood. We do now have plausible estimates of disk mass-to-light ratios, and estimates of Toomre's Q parameter show that they are just locally stable. Disks are mostly very flat and sometimes very thin, and they have a range in surface brightness from canonical disks with a central surface brightness of about 21.5 B-mag arcsec−2 down to very low surface brightnesses. It appears that galaxy disks are not maximal, except possibly in the largest systems. Their Hi layers display warps whenever Hi can be detected beyond the stellar disk, with low-level star formation going on out to large radii. Stellar disks display abundance gradients that flatten at larger radii and sometimes even reverse. The existence of a well-defined baryonic (stellar + Hi) Tully-Fisher relation hints at an approximately uniform baryonic to dark matter ratio. Thick disks are common in disk galaxies, and their existence appears unrelated to the presence of a bulge component; they are old, but their formation is not yet understood. Disk formation was already advanced at redshifts of ∼2, but at that epoch disks were not yet quiescent and in full rotational equilibrium. Downsizing (the gradual reduction with time in the mass of the most actively star-forming galaxies) is now well-established. The formation and history of star formation in S0s are still not fully understood.
-
-
-
The First Galaxies
Vol. 49 (2011), pp. 373–407More LessWe review our current understanding of how the first galaxies formed at the end of the cosmic dark ages a few 100 million years after the Big Bang. Modern large telescopes discovered galaxies at redshifts greater than seven, whereas theoretical studies have just reached the degree of sophistication necessary to make meaningful predictions. A crucial ingredient is the feedback exerted by the first generation of stars, through UV radiation, supernova blast waves, and chemical enrichment. The key goal is to derive the signature of the first galaxies to be observed with upcoming or planned next-generation facilities, such as the James Webb Space Telescope or Atacama Large Millimeter Array. From the observational side, ongoing deep-field searches for very high-redshift galaxies begin to provide us with empirical constraints on the nature of the first galaxies.
-
-
-
Cosmological Parameters from Observations of Galaxy Clusters
Vol. 49 (2011), pp. 409–470More LessStudies of galaxy clusters have proved crucial in helping to establish the standard model of cosmology, with a Universe dominated by dark matter and dark energy. A theoretical basis that describes clusters as massive, multicomponent, quasi-equilibrium systems is growing in its capability to interpret multiwavelength observations of expanding scope and sensitivity. We review current cosmological results, including contributions to fundamental physics, obtained from observations of galaxy clusters. These results are consistent with and complementary to those from other methods. We highlight several areas of opportunity for the next few years, and emphasize the need for accurate modeling of survey selection and sources of systematic error. Capitalizing on these opportunities will require a multiwavelength approach and the application of rigorous statistical frameworks, utilizing the combined strengths of observers, simulators, and theorists.
-
-
-
The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage
Vol. 49 (2011), pp. 471–524More LessCometary nuclei contain the least modified material from the formative epoch of our planetary system, and their compositions reflect a range of processes experienced by material prior to its incorporation in the cometary nucleus. Dynamical models suggest that icy bodies in the main cometary reservoirs (Kuiper Belt, Oort Cloud) formed in a range of environments in the protoplanetary disk, and (for the Oort Cloud) even in disks surrounding neighboring stars of the Sun's birth cluster. Photometric and spectroscopic surveys of more than 100 comets have enabled taxonomic groupings based on free radical species and on crystallinity of rocky grains. Since 1985, new surveys have provided emerging taxonomies based on the abundance ratios of primary volatiles. More than 20 primary chemical species are now detected in bright comets. Measurements of nuclear spin ratios (in water, ammonia, and methane) and of isotopic ratios (D/H in water and HCN; 14N/15N in CN and HCN) have provided critical insights on factors affecting formation of the primary species. The identification of an abundant product species (HNC) has provided clear evidence of chemical production in the inner coma. Parallel advances have occurred in astrochemistry of hot corinos, circumstellar disks, and dense cloud cores. In this review, we address the current state of cometary taxonomy and compare it with current astrochemical insights.
-
-
-
Physical Properties of Galaxies from z = 2–4
Vol. 49 (2011), pp. 525–580More LessThe epoch of galaxy assembly from 2⩽z⩽4 marks a critical stage during the evolution of today's galaxy population. During this period, the star-formation activity in the Universe was at its peak level, and the structural patterns observed among galaxies in the local Universe were not yet in place. A variety of novel techniques have been employed over the past decade to assemble multiwavelength observations of galaxies during this important epoch. In this primarily observational review, I present a census of the methods used to find distant galaxies and the empirical constraints on their multiwavelength luminosities and colors. I then discuss what is known about the stellar content and past histories of star formation in high-redshift galaxies; their interstellar contents including dust, gas, and heavy elements; and their structural and dynamical properties. I conclude by considering some of the most pressing and open questions regarding the physics of high-redshift galaxies, which are to be addressed with future facilities.
-
Previous Volumes
-
Volume 62 (2024)
-
Volume 61 (2023)
-
Volume 60 (2022)
-
Volume 59 (2021)
-
Volume 58 (2020)
-
Volume 57 (2019)
-
Volume 56 (2018)
-
Volume 55 (2017)
-
Volume 54 (2016)
-
Volume 53 (2015)
-
Volume 52 (2014)
-
Volume 51 (2013)
-
Volume 50 (2012)
-
Volume 49 (2011)
-
Volume 48 (2010)
-
Volume 47 (2009)
-
Volume 46 (2008)
-
Volume 45 (2007)
-
Volume 44 (2006)
-
Volume 43 (2005)
-
Volume 42 (2004)
-
Volume 41 (2003)
-
Volume 40 (2002)
-
Volume 39 (2001)
-
Volume 38 (2000)
-
Volume 37 (1999)
-
Volume 36 (1998)
-
Volume 35 (1997)
-
Volume 34 (1996)
-
Volume 33 (1995)
-
Volume 32 (1994)
-
Volume 31 (1993)
-
Volume 30 (1992)
-
Volume 29 (1991)
-
Volume 28 (1990)
-
Volume 27 (1989)
-
Volume 26 (1988)
-
Volume 25 (1987)
-
Volume 24 (1986)
-
Volume 23 (1985)
-
Volume 22 (1984)
-
Volume 21 (1983)
-
Volume 20 (1982)
-
Volume 19 (1981)
-
Volume 18 (1980)
-
Volume 17 (1979)
-
Volume 16 (1978)
-
Volume 15 (1977)
-
Volume 14 (1976)
-
Volume 13 (1975)
-
Volume 12 (1974)
-
Volume 11 (1973)
-
Volume 10 (1972)
-
Volume 9 (1971)
-
Volume 8 (1970)
-
Volume 7 (1969)
-
Volume 6 (1968)
-
Volume 5 (1967)
-
Volume 4 (1966)
-
Volume 3 (1965)
-
Volume 2 (1964)
-
Volume 1 (1963)
-
Volume 0 (1932)