- Home
- A-Z Publications
- Annual Review of Genetics
- Previous Issues
- Volume 32, 1998
Annual Review of Genetics - Volume 32, 1998
Volume 32, 1998
- Review Articles
-
-
-
-
THE ROLE OF THE FHIT/FRA3B LOCUS IN CANCER
Vol. 32 (1998), pp. 7–31More Less▪ AbstractCommon fragile sites form gaps at characteristic chromosome bands in metaphases from normal cells after aphidicolin induction. The distribution of common fragile sites parallels the positions of neoplasia-associated chromosomal rearrangements, prompting the proposal that fragility disposes to chromosomal rearrangements. Implicit in this hypothesis is that genes at fragile sites are altered by chromosome rearrangement and thus contribute to neoplastic growth. Chromosome band 3p14.2, encompassing the most inducible common fragile region, FRA3B, has been cloned and the FHIT gene, straddling FRA3B, characterized. The gene is inactivated by deletions in cancer-derived cell lines and primary tumors and Fhit protein is absent or reduced in lung, stomach, kidney, and cervical carcinomas, consistent with function as a tumor suppressor. FRA3B thus fulfills the prophecy that fragile site alterations contribute to the neoplastic process through inactivation of a tumor suppressor gene.
-
-
-
REGULATION OF SYMBIOTIC ROOT NODULE DEVELOPMENT
M. Schultze, and A. KondorosiVol. 32 (1998), pp. 33–57More Less▪ AbstractSymbiosis between rhizobia and leguminous plants leads to the formation of N2-fixing root nodules. The interaction of rhizobia and plants shows a high degree of host specificity based on the exchange of chemical signals between the symbiotic partners. The plant signals, flavonoids exuded by the roots, activate the expression of nodulation genes, resulting in the production of the rhizobial lipochitooligosaccharide signals (Nod factors). Nod factors act as morphogens that, under conditions of nitrogen limitation, induce cells within the root cortex to divide and to develop into nodule primordia. This review focuses on how the production of Nod factors is regulated, how these signals are perceived and transduced by the plant root, and the physiological conditions and plant factors that control the early events leading to root nodule development.
-
-
-
TARGETING AND ASSEMBLY OF PERIPLASMIC AND OUTER-MEMBRANE PROTEINS IN ESCHERICHIA COLI
Vol. 32 (1998), pp. 59–94More Less▪ AbstractEscherichia coli must actively transport many of its proteins to extracytoplasmic compartments such as the periplasm and outer membrane. To perform this duty, E. coli employs a collection of Sec (secretion) proteins that catalyze the translocation of various polypeptides through the inner membrane. After translocation across the inner membrane, periplasmic and outer-membrane proteins are folded and targeted to their appropriate destinations. Here we review our knowledge of protein translocation across the inner membrane. We also discuss the various signal transduction systems that monitor extracytoplasmic protein folding and targeting, and we consider how these signal transduction systems may ultimately control these processes.
-
-
-
THE GENETICS OF BREAST CANCER SUSCEPTIBILITY
Vol. 32 (1998), pp. 95–121More Less▪ AbstractFollowing the genomic localization and subsequent identification of the breast cancer susceptibility genes, BRCA1 and BRCA2, the basic patterns of cancer risk associated with mutations in these genes have been defined. In addition, preliminary insights into the prevalence of mutations and their contributions to cancer incidence have been acquired. Features of breast and other cancers that develop in these genetic syndromes have now been investigated and shown to differ from sporadic versions of the same neoplasms. However, several areas are complex and require further clarification. There remain discrepancies between published cancer risk estimates. Furthermore, there may be variation in cancer risk between different mutations in the same gene and there is preliminary evidence that genetic and nongenetic influences may modify risks. Finally, it is probable that the genes underlying a substantial component of susceptibility to breast cancer remain to be identified.
-
-
-
NONSEGMENTED NEGATIVE-STRAND RNA VIRUSES: Genetics and Manipulation of Viral Genomes
Vol. 32 (1998), pp. 123–162More Less▪ AbstractProtocols to recover negative-strand RNA viruses entirely from cDNA have been established in recent years, opening up this virus group to the detailed analysis of molecular genetics and virus biology. The unique gene-expression strategy of nonsegmented negative-strand RNA viruses, which involves replication of ribonucleoprotein complexes and sequential synthesis of free mRNAs, has also allowed the use of these viruses to express heterologous sequences. There are advantages in terms of easy manipulation of constructs, high capacity for foreign sequences, genetically stable expression, and the possibility of adjusting expression levels. Fascinating prospects for biomedical applications and transient gene therapy are offered by chimeric virus vectors carrying novel envelope protein genes and targeted to defined host cells.
-
-
-
THE GENETICS OF DISULFIDE BOND METABOLISM
Vol. 32 (1998), pp. 163–184More Less▪ AbstractDisulfide bonds are required for the stability and function of a large number of proteins. Genetic analysis in combination with biochemical studies have elucidated the main catalysts involved in facilitating these processes in the cell. All enzymes involved in thiol-disulfide metabolism have a conserved active site that consists of two cysteine residues, separated by two intervening amino acids, the Cys-Xaa-Xaa-Cys motif. While these enzymes are capable of catalyzing both disulfide bond formation and reduction, they have evolved to perform one or the other reaction more efficiently. In the cytoplasm, multiple pathways are involved in the reduction of disulfide bonds that occur as part of the catalytic cycle of a variety of metabolic enzymes. In the bacterial periplasm, a system for the efficient introduction as well as isomerization of disulfide bonds is in place. In eukaryotes, disulfide bonds are introduced into proteins in the endoplasmic reticulum. Genetic studies have recently begun to reveal new features of this process. While the enzyme mechanisms of thiol-disulfide oxidoreductases have been the subject of much scrutiny, questions remain regarding where and when they act in vivo, their specificities, and the maintenance of the redox environment that determines their function.
-
-
-
COMPARATIVE DNA ANALYSIS ACROSS DIVERSE GENOMES
Vol. 32 (1998), pp. 185–225More Less▪ AbstractWe review concepts and methods for comparative analysis of complete genomes including assessments of genomic compositional contrasts based on dinucleotide and tetranucleotide relative abundance values, identifications of rare and frequent oligonucleotides, evaluations and interpretations of codon biases in several large prokaryotic genomes, and characterizations of compositional asymmetry between the two DNA strands in certain bacterial genomes. The discussion also covers means for identifying alien (e.g. laterally transferred) genes and detecting potential specialization islands in bacterial genomes.
-
-
-
THE ETHYLENE GAS SIGNAL TRANSDUCTION PATHWAY: A Molecular Perspective
Vol. 32 (1998), pp. 227–254More Less▪ AbstractThe gaseous hormone ethylene induces diverse effects in plants throughout their life cycle. Ethylene response is regulated at multiple levels, from hormone synthesis and perception to signal transduction and transcriptional regulation. As more genes in the ethylene response pathway are cloned and characterized, they illustrate the precision with which signaling can be controlled. Wounding, pathogenic attack, flooding, fruit ripening, development, senescence, and ethylene treatment itself induce ethylene production. Ethylene binding to receptors with homology to two-component regulators triggers a kinase cascade that is propagated through the CTR1 Raf-like kinase and other components to the nucleus. Activation of the EIN3 family of nuclear proteins leads to induction of the relevant ethyleneresponsive genes via other transcription factors, eliciting a response appropriate to the original stimulus.
-
-
-
MOLECULAR MECHANISMS OF BACTERIOCIN EVOLUTION
Vol. 32 (1998), pp. 255–278More Less▪ AbstractMicroorganisms are engaged in a never-ending arms race. One consequence of this intense competition is the diversity of antimicrobial compounds that most species of bacteria produce. Surprisingly, little attention has been paid to the evolution of such extraordinary diversity. One class of antimicrobials, the bacteriocins, has received increasing attention because of the high levels of bacteriocin diversity observed and the use of bacteriocins as preservatives in the food industry and as antibiotics in the human health industry. However, little effort has been focused on evolutionary questions, such as what are the phylogenetic relationships among these toxins, what mechanisms are involved in their evolution, and how do microorganisms respond to such an arsenal of weapons? The focus of this review is to provide a detailed picture of our current understanding of the molecular mechanisms involved in the process of bacteriocin diversification.
-
-
-
ALTERNATIVE SPLICING OF PRE-mRNA: Developmental Consequences and Mechanisms of Regulation
Vol. 32 (1998), pp. 279–305More Less▪ AbstractAlternative splicing of pre-mRNAs is a powerful and versatile regulatory mechanism that can effect quantitative control of gene expression and functional diversification of proteins. It contributes to major developmental decisions and also to fine tuning of gene function. Genetic and biochemical approaches have identified cis-acting regulatory elements and trans-acting factors that control alternative splicing of specific pre-mRNAs. Both approaches are contributing to an understanding of their mode of action. Some alternative splicing decisions are controlled by specific factors whose expression is highly restricted during development, but others may be controlled by more modest variations in the levels of general factors acting cooperatively or antagonistically. Certain factors play active roles in both constitutive splicing and regulation of alternative splicing. Cooperative and antagonistic effects integrated at regulatory elements are likely to be important for specificity and for finely tuned differences in cell-type-specific alternative splicing patterns.
-
-
-
KINETOCHORES AND THE CHECKPOINT MECHANISM THAT MONITORS FOR DEFECTS IN THE CHROMOSOME SEGREGATION MACHINERY
Vol. 32 (1998), pp. 307–337More Less▪ AbstractWhether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
-
-
-
THE DIVERSE AND DYNAMIC STRUCTURE OF BACTERIAL GENOMES
Vol. 32 (1998), pp. 339–377More Less▪ AbstractBacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
-
-
-
RECOMBINATION AND RECOMBINATION-DEPENDENT DNA REPLICATION IN BACTERIOPHAGE T4
Vol. 32 (1998), pp. 379–413More Less▪ AbstractGeneral recombination is essential for growth of phage T4, because origin initiation of DNA replication is inactivated during development, and recombination-dependent initiation is necessary for continuing DNA replication. The requirement of recombination for T4 growth has apparently been a driving force to acquire and maintain multiple recombination mechanisms. This requirement makes this phage an excellent model to analyze several recombination mechanisms that appear redundant under optimal growth conditions but become essential under other conditions, or at different stages of the developmental program. The most important substrate for wild-type T4 recombination is single-stranded DNA generated by incomplete replication of natural or artificial chromosomal ends, or by nucleolytic degradation from induced breaks, or nicks. Recombination circumvents the further erosion of such ends. There are multiple proteins and multiple pathways to initiate formation of recombinants (by single-strand annealing or by strand invasion) and to convert recombinational intermediates into final recombinants (“cut and paste” or “cut and package”), or to initiate extensive DNA replication by “join-copy” or “join-cut-copy” mechanisms. Most T4 recombination is asymmetrical, favoring the initiation of replication. In wild-type T4 these pathways are integrated with physiological changes of other DNA transactions: mainly replication, transcription, and packaging. DNA replication and packaging enzymes participate in recombination, and recombination intermediates supply substrates for replication and packaging. The replicative recombination pathways are also important for transmission of intron DNA to intronless genomes (“homing”), and are implicated in horizontal transfer of foreign genes during evolution of the T-even phages. When horizontal transfer involves heteroduplex formation and repair, it is intrinsically mutagenic and contributes to generation of species barriers between phages.
-
-
-
NATURAL SELECTION AT MAJOR HISTOCOMPATIBILITY COMPLEX LOCI OF VERTEBRATES
Vol. 32 (1998), pp. 415–435More Less▪ AbstractThe loci of the vertebrate major histocompatibility complex encode cell-surface glycoproteins that present peptides to T cells. Certain of these loci are highly polymorphic, and the mechanisms responsible for this polymorphism have been intensely debated. Four independent lines of evidence support the hypothesis that MHC polymorphisms are selectively maintained: (a) The distribution of allelic frequencies does not fit the neutral expectation. (b) The rate of nonsynonymous nucleotide substitution significantly exceeds the rate of synonymous substitution in the codons encoding the peptide-binding region of the molecule. (c) Polymorphisms have been maintained for long periods of time (“trans-species polymorphism”). (d) Introns have been homogenized relative to exons over evolutionary time, suggesting that balancing selection acts to maintain diversity in the latter, in contrast to the former.
-
-
-
EVOLUTION AND MECHANISM OF TRANSLATION IN CHLOROPLASTS
Vol. 32 (1998), pp. 437–459More Less▪ AbstractThe entire sequence (120 ∼ 190 kb) of chloroplast genomes has been determined from a dozen plant species. The genome contains from 87 to 183 known genes, of which half encode components involved in translation. These include a complete set of rRNAs and about 30 tRNAs, which are likely to be sufficient to support translation in chloroplasts. RNA editing (mostly C to U base changes) occurs in some chloroplast transcripts, creating start and stop codons and changing codons to retain conserved amino acids. Many components that constitute the chloroplast translational machinery are similar to those of Escherichia coli, whereas only one third of the chloroplast mRNAs contain Shine-Dalgarno–like sequences at the correct positions. Analyses conducted in vivo and in vitro have revealed the existence of multiple mechanisms for translational initiation in chloroplasts.
-
-
-
ALZHEIMER'S DISEASE: Genetic Studies and Transgenic Models
Vol. 32 (1998), pp. 461–493More Less▪ AbstractRecent advances in a variety of areas of research, particularly in genetics and in transgenic (Tg)/gene targeting approaches, have had a substantial impact on our understanding of Alzheimer's disease (AD) and related disorders. After briefly reviewing the progress that has been made in diagnostic assessments of patients with senile dementia and in investigations of the neuropathology of AD, we discuss some of the genes/proteins that are causative or risk factors for this disease, including those encoding amyloid precursor protein, presenilin 1 and 2, and apolipoprotein E. In addition, we comment on several potential new candidate loci/genes. Subsequently, we review selected recent reports of analyses of a variety of lines of Tg mice that show several neuropathological features of AD, including Aβ-amyloid deposits and dystrophic neurites. Finally, we discuss the several important issues in future investigations of Tg mice, with particular emphasis on the influences of genetic strains on phenotype, especially behavior, and strategies for making new models of neurodegenerative disorders. We believe that investigations of these Tg models will (a) enhance understanding of the relationships between impaired performance on memory tasks and the pathological/biochemical abnormalities in brain, (b) help to clarify pathogenic mechanisms in vivo, (c) lead to identification of new therapeutic targets, and (d) allow testing of new treatment strategies first in mice and then, if successful, in humans with AD.
-
-
-
THE CRITICAL ROLE OF CHROMOSOME TRANSLOCATIONS IN HUMAN LEUKEMIAS
Vol. 32 (1998), pp. 495–519More Less▪ AbstractMany chromosome abnormalities, especially translocations or inversions, are closely associated with a particular morphologic or phenotypic subtype of leukemia, lymphoma, or sarcoma. Cloning the genes at the breakpoints of these rearrangements has had a major impact on our understanding of the molecular biology of cancer. One such gene is MLL (myeloid-lymphoid or mixed lineage leukemia) located at chromosome band 11q23. The target gene(s) of MLL is unknown at present, but because of its homology to the trithorax gene in Drosophila as well as experimental data from mice, it appears to be involved in maintaining the function of some of the homeobox genes. Most genes involved in translocations have homologs in other organisms. Comparison of the functions of these genes in human cells with their function in other systems has enriched our understanding of their role in cell biology.
-
-
-
EARLY PATTERNING OF THE C. ELEGANS EMBRYO
Vol. 32 (1998), pp. 521–545More Less▪ AbstractStudies of about 20 maternally expressed genes are providing an understanding of mechanisms of patterning and cell-fate determination in the early Caenorhabditis elegans embryo. The analyses have revealed that fates of the early blastomeres are specified by a combination of intrinsically asymmetric cell divisions and two types of cell-cell interactions: inductions and polarizing interactions. In this review we summarize the current level of understanding of the molecular mechanisms underlying these processes in the specification of cell fates in the pregastrulation embryo.
-
-
-
GENETIC COUNSELING: Clinical and Ethical Challenges1
Vol. 32 (1998), pp. 547–559More Less▪ AbstractAfter explaining the origin, nature, and goals of genetic counseling, we consider the impact of the Human Genome Project on its practice. In light of the availability of presymptomatic tests for late-onset disorders and the possibility of preventive behavior or treatment, we examine the apparent conflict between nondirectiveness and directiveness in genetic counseling. We discuss views of genetic counselors, medical geneticists, and counselees on specific issues, and document gender differences in attitudes toward genetic ties to offspring. Because genetic discrimination and unequal access to genetic services are likely to increase with advances in genetics, we conclude that efforts of genetic counselors to adhere to the principle of justice or equity in their practice cannot be successful without governmental and public support, as well as support from researchers and colleagues in health care.
-
Previous Volumes
-
Volume 58 (2024)
-
Volume 57 (2023)
-
Volume 56 (2022)
-
Volume 55 (2021)
-
Volume 54 (2020)
-
Volume 53 (2019)
-
Volume 52 (2018)
-
Volume 51 (2017)
-
Volume 50 (2016)
-
Volume 49 (2015)
-
Volume 48 (2014)
-
Volume 47 (2013)
-
Volume 46 (2012)
-
Volume 45 (2011)
-
Volume 44 (2010)
-
Volume 43 (2009)
-
Volume 42 (2008)
-
Volume 41 (2007)
-
Volume 40 (2006)
-
Volume 39 (2005)
-
Volume 38 (2004)
-
Volume 37 (2003)
-
Volume 36 (2002)
-
Volume 35 (2001)
-
Volume 34 (2000)
-
Volume 33 (1999)
-
Volume 32 (1998)
-
Volume 31 (1997)
-
Volume 30 (1996)
-
Volume 29 (1995)
-
Volume 28 (1994)
-
Volume 27 (1993)
-
Volume 26 (1992)
-
Volume 25 (1991)
-
Volume 24 (1990)
-
Volume 23 (1989)
-
Volume 22 (1988)
-
Volume 21 (1987)
-
Volume 20 (1986)
-
Volume 19 (1985)
-
Volume 18 (1984)
-
Volume 17 (1983)
-
Volume 16 (1982)
-
Volume 15 (1981)
-
Volume 14 (1980)
-
Volume 13 (1979)
-
Volume 12 (1978)
-
Volume 11 (1977)
-
Volume 10 (1976)
-
Volume 9 (1975)
-
Volume 8 (1974)
-
Volume 7 (1973)
-
Volume 6 (1972)
-
Volume 5 (1971)
-
Volume 4 (1970)
-
Volume 3 (1969)
-
Volume 2 (1968)
-
Volume 1 (1967)
-
Volume 0 (1932)