- Home
- A-Z Publications
- Annual Review of Vision Science
- Previous Issues
- Volume 4, 2018
Annual Review of Vision Science - Volume 4, 2018
Volume 4, 2018
-
-
Color Perception: Objects, Constancy, and Categories
Vol. 4 (2018), pp. 475–499More LessColor has been scientifically investigated by linking color appearance to colorimetric measurements of the light that enters the eye. However, the main purpose of color perception is not to determine the properties of incident light, but to aid the visual perception of objects and materials in our environment. We review the state of the art on object colors, color constancy, and color categories to gain insight into the functional aspects of color perception. The common ground between these areas of research is that color appearance is tightly linked to the identification of objects and materials and the communication across observers. In conclusion, we argue that research should focus on how color processing is adapted to the surface properties of objects in the natural environment in order to bridge the gap between the known early stages of color perception and the subjective appearance of color.
-
-
-
Motion Perception: From Detection to Interpretation
Vol. 4 (2018), pp. 501–523More LessVisual motion processing can be conceptually divided into two levels. In the lower level, local motion signals are detected by spatiotemporal-frequency-selective sensors and then integrated into a motion vector flow. Although the model based on V1-MT physiology provides a good computational framework for this level of processing, it needs to be updated to fully explain psychophysical findings about motion perception, including complex motion signal interactions in the spatiotemporal-frequency and space domains. In the higher level, the velocity map is interpreted. Although there are many motion interpretation processes, we highlight the recent progress in research on the perception of material (e.g., specular reflection, liquid viscosity) and on animacy perception. We then consider possible linking mechanisms of the two levels and propose intrinsic flow decomposition as the key problem. To provide insights into computational mechanisms of motion perception, in addition to psychophysics and neurosciences, we review machine vision studies seeking to solve similar problems.
-