1932

Abstract

Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091522-122334
2023-06-14
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091522-122334.html?itemId=/content/journals/10.1146/annurev-anchem-091522-122334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Loterie D, Delrot P, Moser C. 2020. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11:852
    [Google Scholar]
  2. 2.
    Gibson I, Rosen D, Stucker B. 2015. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing New York: Springer
  3. 3.
    Aejmelaeus-Lindström P, Rusenova G, Mirjan A, Medina Ibáñez J, Gramazio F, Kohler M. 2020. Rock print pavilion: robotically fabricating architecture from rock and string. Constr. Robot. 4:97–113
    [Google Scholar]
  4. 4.
    Sturmer J. 2015. 3D printing: Australian researchers create jet engine, breakthrough captures attention of Airbus and Boeing. ABC News Feb. 25. https://www.abc.net.au/news/2015-02-26/australian-researchers-create-first-3d-jet-engine/6262462
    [Google Scholar]
  5. 5.
    LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA. 2007. Multiphoton fabrication. Angew. Chem. Int. Ed. 46:6238–58
    [Google Scholar]
  6. 6.
    Fischer J, Wegener M. 2013. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7:22–44
    [Google Scholar]
  7. 7.
    Stampfl J, Liska R, Ovsianikov A. 2016. Multiphoton Lithography: Techniques, Materials, and Applications Weinheim, Ger: Wiley-VCH Verlag
  8. 8.
    Lamont AC, Restaino MA, Kim MJ, Sochol RD. 2019. A facile multi-material direct laser writing strategy. Lab Chip 19:2340–45
    [Google Scholar]
  9. 9.
    Pearre BW, Michas C, Tsang JM, Gardner TJ, Otchy TM. 2019. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit. Manuf. 30:100887
    [Google Scholar]
  10. 10.
    Hahn V, Messer T, Bojanowski NM, Curticean ER, Wacker I et al. 2021. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15:932–38
    [Google Scholar]
  11. 11.
    Geng Q, Wang D, Chen P, Chen SC. 2019. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10:2179
    [Google Scholar]
  12. 12.
    Yang L, Hu H, Scholz A, Feist F, Cadilha Marques G et al. 2023. Laser printed microelectronics. Nat. Commun. 14:1103
    [Google Scholar]
  13. 13.
    Gamburg YD, Zangari G. 2011. Theory and Practice of Metal Electrodeposition New York: Springer
  14. 14.
    Ansari R. 2006. Polypyrrole conducting electroactive polymers: synthesis and stability studies. E-J. Chem. 3:860413
    [Google Scholar]
  15. 15.
    Kim S, Jang LK, Park HS, Lee JY. 2016. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci. Rep. 6:30475
    [Google Scholar]
  16. 16.
    Akbulut H, Yavuz M, Guler E, Demirkol DO, Endo T et al. 2014. Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polym. Chem. 5:3929–36
    [Google Scholar]
  17. 17.
    Ammam M. 2014. Electrochemical and electrophoretic deposition of enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosensors Bioelectron. 58:121–31
    [Google Scholar]
  18. 18.
    Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D. 2005. Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. Int. Ed. 44:6854–59
    [Google Scholar]
  19. 19.
    Zhang Z, Kitada A, Fukami K, Yao Z, Murase K. 2020. Electrodeposition of an iron thin film with compact and smooth morphology using an ethereal electrolyte. Electrochim. Acta 348:136289
    [Google Scholar]
  20. 20.
    Luo B, Yang D, Liang M, Zhi L. 2010. Large-scale fabrication of single crystalline tin nanowire arrays. Nanoscale 2:1661–64
    [Google Scholar]
  21. 21.
    Tonelli D, Scavetta E, Gualandi I. 2019. Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19:1186
    [Google Scholar]
  22. 22.
    Jabbar A, Yasin G, Khan WQ, Anwar MY, Korai RM et al. 2017. Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv. 7:31100–9
    [Google Scholar]
  23. 23.
    Liu A, Li C, Bai H, Shi G. 2010. Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J. Phys. Chem. C 114:22783–89
    [Google Scholar]
  24. 24.
    Hengsteler J, Mandal B, van Nisselroy C, Lau GPS, Schlotter T et al. 2021. Bringing electrochemical three-dimensional printing to the nanoscale. Nano Lett. 21:9093–101
    [Google Scholar]
  25. 25.
    Ercolano G, Zambelli T, van Nisselroy C, Momotenko D, Vörös J et al. 2020. Multiscale additive manufacturing of metal microstructures. Adv. Eng. Mater. 22:1900961
    [Google Scholar]
  26. 26.
    Reiser A, Linden M, Rohner P, Marchand A, Galinski H et al. 2019. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun. 10:1853
    [Google Scholar]
  27. 27.
    Ercolano G, van Nisselroy C, Merle T, Vörös J, Momotenko D et al. 2020. Additive manufacturing of sub-micron to sub-mm metal structures with hollow AFM cantilevers. Micromachines 11:11010006
    [Google Scholar]
  28. 28.
    Park Y-G, Yun I, Chung WG, Park W, Lee DH, Park J-U 2022. High-resolution 3D printing for electronics. Adv. Sci. 9:2104623
    [Google Scholar]
  29. 29.
    Hengsteler J, Lau GPS, Zambelli T, Momotenko D. 2021. Electrochemical 3D micro- and nanoprinting: current state and future perspective. Electrochem. Sci. Adv. 2:e2100123
    [Google Scholar]
  30. 30.
    Hirt L, Reiser A, Spolenak R, Zambelli T. 2017. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29:1604211
    [Google Scholar]
  31. 31.
    Je JH, Kim JM, Jaworski J. 2017. Progression in the fountain pen approach: from 2D writing to 3D free-form micro/nanofabrication. Small 13:1600137
    [Google Scholar]
  32. 32.
    Hirt L, Grüter RR, Berthelot T, Cornut R, Vörös J, Zambelli T. 2015. Local surface modification via confined electrochemical deposition with FluidFM. RSC Adv. 5:84517–22
    [Google Scholar]
  33. 33.
    Hirt L, Ihle S, Pan Z, Dorwling-Carter L, Reiser A et al. 2016. Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition. Adv. Mater. 28:2311–15
    [Google Scholar]
  34. 34.
    Meister A, Gabi M, Behr P, Studer P, Vörös J et al. 2009. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9:2501–7
    [Google Scholar]
  35. 35.
    Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. 1989. The scanning ion-conductance microscope. Science 243:641–43
    [Google Scholar]
  36. 36.
    Momotenko D, Page A, Adobes-Vidal M, Unwin PR. 2016. Write–read 3D patterning with a dual-channel nanopipette. ACS Nano 10:8871–78
    [Google Scholar]
  37. 37.
    Nakazawa K, Yoshioka M, Mizutani Y, Ushiki T, Iwata F. 2020. Local electroplating deposition for free-standing micropillars using a bias-modulated scanning ion conductance microscope. Microsyst. Technol. 26:1333–42
    [Google Scholar]
  38. 38.
    Hu J, Yu M-F. 2010. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329:313–16
    [Google Scholar]
  39. 39.
    Daryadel S, Behroozfar A, Morsali SR, Moreno S, Baniasadi M et al. 2018. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano Lett. 18:208–14
    [Google Scholar]
  40. 40.
    Chen X, Liu X, Ouyang M, Chen J, Taiwo O et al. 2019. Multi-metal 4D printing with a desktop electrochemical 3D printer. Sci. Rep. 9:3973
    [Google Scholar]
  41. 41.
    Ejjigu N, Abdelgadir K, Flaten Z, Hoff C, Li C-Z, Sun D. 2022. Environmental noise reduction for tunable resistive pulse sensing of extracellular vesicles. Sens. Actuators A 346:113832
    [Google Scholar]
  42. 42.
    Gao R, Edwards MA, Harris JM, White HS. 2020. Shot noise sets the limit of quantification in electrochemical measurements. Curr. Opin. Electrochem. 22:170–77
    [Google Scholar]
  43. 43.
    Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA. 2014. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32:381–88
    [Google Scholar]
  44. 44.
    Aramesh M, Forró C, Dorwling-Carter L, Lüchtefeld I, Schlotter T et al. 2019. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14:791–98
    [Google Scholar]
  45. 45.
    Chen M, Xu Z, Kim JH, Seol SK, Kim JT. 2018. Meniscus-on-demand parallel 3D nanoprinting. ACS Nano 12:4172–77
    [Google Scholar]
  46. 46.
    Nadappuram BP, McKelvey K, Byers JC, Güell AG, Colburn AW et al. 2015. Quad-barrel multifunctional electrochemical and ion conductance probe for voltammetric analysis and imaging. Anal. Chem. 87:3566–73
    [Google Scholar]
  47. 47.
    Yeshua T, Layani M, Dekhter R, Huebner U, Magdassi S, Lewis A. 2018. Micrometer to 15 nm printing of metallic inks with fountain pen nanolithography. Small 14:1702324
    [Google Scholar]
  48. 48.
    Liao H-S, Werner C, Slipets R, Larsen PE, Hwang I-S et al. 2022. Low-cost, open-source XYZ nanopositioner for high-precision analytical applications. HardwareX 11:e00317
    [Google Scholar]
  49. 49.
    Minase J, Lu TF, Cazzolato B, Grainger S. 2010. A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis. Eng. 34:692–700
    [Google Scholar]
  50. 50.
    Ronkanen P, Kallio P, Vilkko M, Koivo HN. 2011. Displacement control of piezoelectric actuators using current and voltage. IEEE/ASME Trans. Mechatron. 16:160–66
    [Google Scholar]
  51. 51.
    McKelvey K, Perry D, Byers JC, Colburn AW, Unwin PR. 2014. Bias modulated scanning ion conductance microscopy. Anal. Chem. 86:3639–46
    [Google Scholar]
  52. 52.
    Zhu C, Huang K, Siepser NP, Baker LA. 2021. Scanning ion conductance microscopy. Chem. Rev. 121:11726–68
    [Google Scholar]
  53. 53.
    Eliyahu D, Gileadi E, Galun E, Eliaz N. 2020. Atomic force microscope-based meniscus-confined three-dimensional electrodeposition. Adv. Mater. Technol. 5:1900827
    [Google Scholar]
  54. 54.
    Lin Y-P, Zhang Y, Yu M-F. 2019. Parallel process 3D metal microprinting. Adv. Mater. Technol. 4:1800393
    [Google Scholar]
  55. 55.
    Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D. 2012. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3:890
    [Google Scholar]
  56. 56.
    Reiser A. 2019. Additive manufacturing of metals at small length scales—microstructure, properties and novel multi-metal electrochemical concepts Doctoral Thesis ETH Zurich, Switz:.
  57. 57.
    Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Carter L, Martinez V et al. 2016. Tunable single-cell extraction for molecular analyses. Cell 166:506–16
    [Google Scholar]
  58. 58.
    Tritton DJ. 1988. Physical Fluid Dynamics New York: Oxford Univ. Press. , 2nd ed..
  59. 59.
    Yamada J, Matsuda H. 1973. Limiting diffusion currents in hydrodynamic voltammetry: III. Wall jet electrodes. J. Electroanal. Chem. Interfacial Electrochem. 44:189–98
    [Google Scholar]
  60. 60.
    Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR. 2015. High-speed electrochemical imaging. ACS Nano 9:8942–52
    [Google Scholar]
  61. 61.
    Lomax DJ, Kant P, Williams AT, Patten HV, Zou Y et al. 2016. Ultra-low voltage electrowetting using graphite surfaces. Soft Matter 12:8798–804
    [Google Scholar]
  62. 62.
    Lei Y, Zhang X, Xu D, Yu M, Yi Z et al. 2018. Dynamic “scanning-mode” meniscus confined electrodepositing and micropatterning of individually addressable ultraconductive copper line arrays. J. Phys. Chem. Lett. 9:2380–87
    [Google Scholar]
  63. 63.
    Lei Y, Zhang X, Nie W, Zhang Y, Gao Q et al. 2021. The composition and magnetic property of Co/Cu alloy microwires prepared using meniscus-confined electrodeposition: effect of [Co2+], [Cu2+] concentration at the tip of the meniscus. J. Electrochem. Soc. 168:112507
    [Google Scholar]
  64. 64.
    Seol SK, Kim D, Lee S, Kim JH, Chang WS, Kim JT. 2015. Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small 11:3896–902
    [Google Scholar]
  65. 65.
    Persad AH, Ward CA. 2016. Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem. Rev. 116:7727–67
    [Google Scholar]
  66. 66.
    Morsali S, Daryadel S, Zhou Z, Behroozfar A, Baniasadi M et al. 2017. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: effect of nozzle speed and diameter. J. Appl. Phys. 121:214305
    [Google Scholar]
  67. 67.
    Morsali S, Daryadel S, Zhou Z, Behroozfar A, Qian D, Minary-Jolandan M. 2017. Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: effect of environmental humidity. J. Appl. Phys. 121:024903
    [Google Scholar]
  68. 68.
    Li Y, Chen H, Xiao S, Alibakhshi MA, Lo C-W et al. 2019. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 13:3363–72
    [Google Scholar]
  69. 69.
    Mkhize N, Bhaskaran H. 2022. Electrohydrodynamic jet printing: Introductory concepts and considerations. Small Sci. 2:2100073
    [Google Scholar]
  70. 70.
    Chen CH, Saville DA, Aksay IA. 2006. Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett. 89:124103
    [Google Scholar]
  71. 71.
    Lindén M. 2017. Merging electrohydrodynamic printing and electrochemistry: sub-micronscale 3D-printing of metals Master's Thesis Uppsala Univ. Sweden:
  72. 72.
    Reiser A, Koch L, Dunn KA, Matsuura T, Iwata F et al. 2020. Metals by micro-scale additive manufacturing: comparison of microstructure and mechanical properties. Adv. Funct. Mater. 30:1910491
    [Google Scholar]
  73. 73.
    van Nisselroy C, Shen C, Zambelli T, Momotenko D. 2022. Electrochemical 3D printing of silver and nickel microstructures with FluidFM. Addit. Manuf. 53:102718
    [Google Scholar]
  74. 74.
    Menetrey M, Koch L, Sologubenko A, Gerstl S, Spolenak R, Reiser A. 2022. Targeted additive micromodulation of grain size in nanocrystalline copper nanostructures by electrohydrodynamic redox 3D printing. Small 18:2205302
    [Google Scholar]
  75. 75.
    Behroozfar A, Daryadel S, Morsali SR, Moreno S, Baniasadi M et al. 2018. Microscale 3D printing of nanotwinned copper. Adv. Mater. 30:1705107
    [Google Scholar]
  76. 76.
    Zhang X, Yuan L, Lei Y, Zhang Y, Li Y et al. 2021. Electrochemical gradients driven 3D printing of nano-twinned copper structures by direct current dynamic meniscus confined electrodeposition. Appl. Mater. Today 24:101138
    [Google Scholar]
  77. 77.
    Ramachandramoorthy R, Kalácska S, Poras G, Schwiedrzik J, Edwards TEJ et al. 2022. Anomalous high strain rate compressive behavior of additively manufactured copper micropillars. Appl. Mater. Today 27:101415
    [Google Scholar]
  78. 78.
    Suryavanshi AP, Yu M-F. 2007. Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires. Nanotechnology 18:105305
    [Google Scholar]
  79. 79.
    Wang C, Hossain Bhuiyan ME, Moreno S, Minary-Jolandan M 2020. Direct-write printing copper–nickel (Cu/Ni) alloy with controlled composition from a single electrolyte using co-electrodeposition. ACS Appl. Mater. Interfaces 12:18683–91
    [Google Scholar]
  80. 80.
    Shen C, Zhu Z, Zhu D, van Nisselroy C, Zambelli T, Momotenko D. 2022. Electrochemical 3D printing of Ni–Mn and Ni–Co alloy with FluidFM. Nanotechnology 33:265301
    [Google Scholar]
  81. 81.
    McKelvey K, O'Connell MA, Unwin PR 2013. Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM). Chem. Commun. 49:2986–88
    [Google Scholar]
  82. 82.
    Kim JT, Seol SK, Pyo J, Lee JS, Je JH, Margaritondo G. 2011. Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Adv. Mater. 23:1968–70
    [Google Scholar]
  83. 83.
    Zhang P, Aydemir N, Alkaisi M, Williams DE, Travas-Sejdic J. 2018. Direct writing and characterization of three-dimensional conducting polymer PEDOT arrays. ACS Appl. Mater. Interfaces 10:11888–95
    [Google Scholar]
  84. 84.
    Tomaskovic-Crook E, Zhang P, Ahtiainen A, Kaisvuo H, Lee CY et al. 2019. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv. Healthc. Mater. 8:1900425
    [Google Scholar]
  85. 85.
    Won KH, Weon BM, Je JH. 2013. Polymer composite microtube array produced by meniscus-guided approach. AIP Adv. 3:092127
    [Google Scholar]
  86. 86.
    Ventrici de Souza J, Liu Y, Wang S, Dorig P, Kuhl TL et al. 2018. Three-dimensional nanoprinting via direct delivery. J. Phys. Chem. B 122:956–62
    [Google Scholar]
  87. 87.
    Pattison TG, Wang S, Miller RD, Liu GY, Qiao GG. 2022. 3D nanoprinting via spatially controlled assembly and polymerization. Nat. Commun. 13:1941
    [Google Scholar]
  88. 88.
    Liu Y, Yang J, Tao C, Lee H, Chen M et al. 2022. Meniscus-guided 3D microprinting of pure metal-organic frameworks with high gas-uptake performance. ACS Appl. Mater. Interfaces 14:7184–91
    [Google Scholar]
  89. 89.
    Chen M, Hu S, Zhou Z, Huang N, Lee S et al. 2021. Three-dimensional perovskite nanopixels for ultrahigh-resolution color displays and multilevel anticounterfeiting. Nano Lett. 21:5186–94
    [Google Scholar]
  90. 90.
    Chen M, Yang J, Wang Z, Xu Z, Lee H et al. 2019. 3D nanoprinting of perovskites. Adv. Mater. 31:e1904073
    [Google Scholar]
  91. 91.
    Lee J, Oh S, Pyo J, Kim JM, Je JH. 2015. A light-driven supramolecular nanowire actuator. Nanoscale 7:6457–61
    [Google Scholar]
  92. 92.
    Oh S, Kwak EA, Jeon S, Ahn S, Kim JM, Jaworski J. 2014. Responsive 3D microstructures from virus building blocks. Adv. Mater. 26:5217–22
    [Google Scholar]
  93. 93.
    Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA. 2015. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11:4237–66
    [Google Scholar]
  94. 94.
    Meng Z, Li J, Chen Y, Gao T, Yu K et al. 2022. Micro/nanoscale electrohydrodynamic printing for functional metallic structures. Mater. Today Nano 20:100254
    [Google Scholar]
  95. 95.
    Klein F, Richter B, Striebel T, Franz CM, von Freymann G et al. 2011. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv. Mater. 23:1341–45
    [Google Scholar]
  96. 96.
    Doherty RP, Varkevisser T, Teunisse M, Hoecht J, Ketzetzi S et al. 2020. Catalytically propelled 3D printed colloidal microswimmers. Soft Matter 16:10463–69
    [Google Scholar]
  97. 97.
    Bunea A-I, del Castillo Iniesta N, Droumpali A, Wetzel AE, Engay E, Taboryski R. 2021. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro 1:164–80
    [Google Scholar]
  98. 98.
    Bae J, Lee S, Ahn J, Kim JH, Wajahat M et al. 2020. 3D-printed quantum dot nanopixels. ACS Nano 14:10993–1001
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091522-122334
Loading
/content/journals/10.1146/annurev-anchem-091522-122334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error