1932

Abstract

The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080720-081920
2021-06-17
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080720-081920.html?itemId=/content/journals/10.1146/annurev-arplant-080720-081920&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Altartouri B, Bidhendi AJ, Tani T, Suzuki J, Conrad C et al. 2019. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant Physiol 181:127–41Demonstrates that enrichment of demethylesterified homogalacturonan precedes that of cortical microtubules at periclinal wall necks during early pavement cell lobing.
    [Google Scholar]
  2. 2. 
    Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO. 2011. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 2:430
    [Google Scholar]
  3. 3. 
    Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO. 2007. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–75
    [Google Scholar]
  4. 4. 
    Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M et al. 2016. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr. Biol. 26:2899–906
    [Google Scholar]
  5. 5. 
    Anderson CT, Carroll A, Akhmetova L, Somerville C. 2010. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–96
    [Google Scholar]
  6. 6. 
    Armour WJ, Barton DA, Law AM, Overall RL. 2015. Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27:2484–500
    [Google Scholar]
  7. 7. 
    Askenasy E. 1870. Über den Einfluss des Wachstumsmediums auf die Gestalt der Pflanzen. Bot. Ztg. 28:193–201
    [Google Scholar]
  8. 8. 
    Asl LK, Dhondt S, Boudolf V, Beemster GT, Beeckman T et al. 2011. Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells. Plant Physiol 156:2172–83
    [Google Scholar]
  9. 9. 
    Augustine SM, Cherian AV, Syamaladevi DP, Subramonian N 2015. Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in the formation of anisotropic interdigitation in sugarcane (Saccharum spp. hybrid) in response to drought stress. Plant Cell Physiol 56:2368–80
    [Google Scholar]
  10. 10. 
    Barone Lumaga M, Coiro M, Truernit E, Erdei B, De Luca P. 2015. Epidermal micromorphology in Dioon: Did volcanism constrain Dioon evolution?. Bot. J. Linnean Soc. 179:236–54
    [Google Scholar]
  11. 11. 
    Baskin TI. 2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22
    [Google Scholar]
  12. 12. 
    Basu D, El-Assal SED, Le J, Mallery EL, Szymanski DB 2004. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131:4345–55
    [Google Scholar]
  13. 13. 
    Basu D, Le J, El-Din El-Essal S, Huang S, Zhang C et al. 2005. DISTORTED3/SCAR2 is a putative Arabidopsis WAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis. Plant Cell 17:502–24
    [Google Scholar]
  14. 14. 
    Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB 2008. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. PNAS 105:4044–49
    [Google Scholar]
  15. 15. 
    Beauzamy L, Louveaux M, Hamant O, Boudaoud A. 2015. Mechanically, the shoot apical meristem of Arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front. Plant Sci. 6:1038
    [Google Scholar]
  16. 16. 
    Bellinger MA, Sidhu SK, Rasmussen CG. 2019. Staining maize epidermal leaf peels with toluidine blue O. Bio-101e3214 https://doi.org/10.21769/BioProtoc.3214
    [Crossref] [Google Scholar]
  17. 17. 
    Belteton SA, Sawchuk MG, Donohoe BS, Scarpella E, Szymanski DB. 2018. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol 176:432–49
    [Google Scholar]
  18. 18. 
    Bidhendi AJ, Altartouri B, Gosselin FP, Geitmann A. 2019. Mechanical stress initiates and sustains the morphogenesis of wavy leaf epidermal cells. Cell Rep 28:1237–50.e6
    [Google Scholar]
  19. 19. 
    Bidhendi AJ, Geitmann A. 2018. Finite element modeling of shape changes in plant cells. Plant Physiol 176:41–56
    [Google Scholar]
  20. 20. 
    Bidhendi AJ, Geitmann A. 2019. Geometrical details matter for mechanical modeling of cell morphogenesis. Dev. Cell 50:117–25.e2
    [Google Scholar]
  21. 21. 
    Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. 2018. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 7:e38161
    [Google Scholar]
  22. 22. 
    Boudaoud A. 2010. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–60
    [Google Scholar]
  23. 23. 
    Braybrook SA, Peaucelle A. 2013. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLOS ONE 8:e57813
    [Google Scholar]
  24. 24. 
    Brembu T, Winge P, Seem M, Bones AM. 2004. NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16:2335–49
    [Google Scholar]
  25. 25. 
    Brenner W. 1900. Untersuchungen an einigen Fettpflanzen. Flora Oder Allg. Bot. Ztg. 87:387–439
    [Google Scholar]
  26. 26. 
    Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH. 2001. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–27
    [Google Scholar]
  27. 27. 
    Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE. 2002. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129:797–807
    [Google Scholar]
  28. 28. 
    Burton RA, Gidley MJ, Fincher GB. 2010. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6:724–32
    [Google Scholar]
  29. 29. 
    Cao M, Chen R, Li P, Yu Y, Zheng R et al. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568:240–43
    [Google Scholar]
  30. 30. 
    Chakrabortty B, Blilou I, Scheres B, Mulder BM. 2018. A computational framework for cortical microtubule dynamics in realistically shaped plant cells. PLOS Comp. Biol. 14:e1005959
    [Google Scholar]
  31. 31. 
    Cosgrove DJ. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–61
    [Google Scholar]
  32. 32. 
    Cosgrove DJ. 2016. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67:463–76
    [Google Scholar]
  33. 33. 
    Cosgrove DJ. 2018. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant Biol. 46:77–86
    [Google Scholar]
  34. 34. 
    Cosgrove DJ, Anderson CT. 2020. Plant cell growth: Do pectins drive lobe formation in Arabidopsis pavement cells?. Curr. Biol. 30:R660–62
    [Google Scholar]
  35. 35. 
    Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR 2000. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. PNAS 97:3718–23
    [Google Scholar]
  36. 36. 
    Dixit R, Cyr R. 2004. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–84
    [Google Scholar]
  37. 37. 
    Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG. 2006. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133:1091–100
    [Google Scholar]
  38. 38. 
    Durand-Smet P, Spelman TA, Meyerowitz EM, Jönsson H 2020. Cytoskeletal organization in isolated plant cells under geometry control. PNAS 117:17399–408
    [Google Scholar]
  39. 39. 
    Elsner J, Lipowczan M, Kwiatkowska D. 2018. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling. Am. J. Bot. 105:257–65
    [Google Scholar]
  40. 40. 
    Elsner J, Michalski M, Kwiatkowska D. 2012. Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Ann. Bot. 109:897–910
    [Google Scholar]
  41. 41. 
    Eng RC, Sampathkumar A. 2018. Getting into shape: the mechanics behind plant morphogenesis. Curr. Opin. Plant Biol. 46:25–31
    [Google Scholar]
  42. 42. 
    Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G et al. 2011. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21:338–43
    [Google Scholar]
  43. 43. 
    Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M et al. 2004. Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. PNAS 101:16379–84
    [Google Scholar]
  44. 44. 
    Frank MJ, Smith LG. 2002. A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr. Biol. 12:849–53
    [Google Scholar]
  45. 45. 
    Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z 2005. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700Suggests that ROP-RIC signaling pathways regulate pavement cell lobe and neck formation in an antagonistic manner.
    [Google Scholar]
  46. 46. 
    Fu Y, Li H, Yang Z 2002. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–94
    [Google Scholar]
  47. 47. 
    Fu Y, Xu T, Zhu L, Wen M, Yang Z 2009. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol. 19:1827–32
    [Google Scholar]
  48. 48. 
    Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N et al. 2013. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85
    [Google Scholar]
  49. 49. 
    Galletti R, Ingram GC. 2015. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status. Commun. Integr. Biol. 8:e1059979
    [Google Scholar]
  50. 50. 
    Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. PNAS 112:2275–80
    [Google Scholar]
  51. 51. 
    Geisler M, Nadeau J, Sack FD. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12:2075–86
    [Google Scholar]
  52. 52. 
    Glover BJ. 2000. Differentiation in plant epidermal cells. J. Exp. Bot. 51:497–505
    [Google Scholar]
  53. 53. 
    Gonzalez N, Vanhaeren H, Inzé D. 2012. Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 17:332–40
    [Google Scholar]
  54. 54. 
    Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R et al. 2015. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J. Exp. Bot. 66:5055–65
    [Google Scholar]
  55. 55. 
    Grones P, Majda M, Doyle SM, Van Damme D, Robert S 2020. Fluctuating auxin response gradients determine pavement cell-shape acquisition. PNAS 117:16027–34Reveals the importance of fluctuating auxin response gradients for lobe formation in pavement cells within spiral stomatal complexes.
    [Google Scholar]
  56. 56. 
    Guimil S, Dunand C. 2007. Cell growth and differentiation in Arabidopsis epidermal cells. J. Exp. Bot. 58:3829–40
    [Google Scholar]
  57. 57. 
    Guo X, Qin Q, Yan J, Niu Y, Huang B et al. 2015. TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in Arabidopsis. Plant Physiol 167:1058–75
    [Google Scholar]
  58. 58. 
    Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. 2020. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367:1003–7Presents a new theory of demethylesterification-driven expansion of local anticlinal homogalacturonan nanofilaments inducing pavement cell lobing, supported by computational modeling.
    [Google Scholar]
  59. 59. 
    Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–55
    [Google Scholar]
  60. 60. 
    Hamant O, Inoue D, Bouchez D, Dumais J, Mjolsness E. 2019. Are microtubules tension sensors?. Nat. Commun. 10:2360
    [Google Scholar]
  61. 61. 
    Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J et al. 2010. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLOS Biol 8:e1000282
    [Google Scholar]
  62. 62. 
    Hazak O, Obolski U, Prat T, Friml J, Hadany L, Yalovsky S 2014. Bimodal regulation of ICR1 levels generates self-organizing auxin distribution. PNAS 111:E5471–79
    [Google Scholar]
  63. 63. 
    Hejnowicz Z, Rusin A, Rusin T. 2000. Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J. Plant Growth Regul. 19:31–44
    [Google Scholar]
  64. 64. 
    Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D et al. 2016. A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr. Biol 26:1019–28
    [Google Scholar]
  65. 65. 
    Higaki T, Kutsuna N, Akita K, Takigawa-Imamura H, Yoshimura K, Miura T. 2016. A theoretical model of jigsaw-puzzle pattern formation by plant leaf epidermal cells. PLOS Comput. Biol. 12:e1004833
    [Google Scholar]
  66. 66. 
    Higaki T, Takigawa-Imamura H, Akita K, Kutsuna N, Kobayashi R et al. 2017. Exogenous cellulase switches cell interdigitation to cell elongation in an RIC1-dependent manner in Arabidopsis thaliana cotyledon pavement cells. Plant Cell Physiol 58:106–19
    [Google Scholar]
  67. 67. 
    Ivakov A, Persson S. 2013. Plant cell shape: modulators and measurements. Front. Plant Sci. 4:439
    [Google Scholar]
  68. 68. 
    Jacques E, Verbelen J-P, Vissenberg K. 2013. Mechanical stress in Arabidopsis leaves orients microtubules in a ‘continuous’ supracellular pattern. BMC Plant Biol 13:163
    [Google Scholar]
  69. 69. 
    Jacques E, Verbelen J-P, Vissenberg K. 2014. Review on shape formation in epidermal pavement cells of the Arabidopsis leaf. Funct. Plant Biol. 41:914–21
    [Google Scholar]
  70. 70. 
    Javelle M, Vernoud V, Rogowsky PM, Ingram GC. 2011. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol 189:17–39
    [Google Scholar]
  71. 71. 
    Jooste M, Dreyer LL, Oberlander KC. 2016. The phylogenetic significance of leaf anatomical traits of southern African Oxalis. BMC Evol. Biol. 16:225
    [Google Scholar]
  72. 72. 
    Kerstens S, Decraemer WF, Verbelen JP. 2001. Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–85
    [Google Scholar]
  73. 73. 
    Landrein B, Hamant O. 2013. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J 75:324–38
    [Google Scholar]
  74. 74. 
    Lavy M, Bloch D, Hazak O, Gutman I, Poraty L et al. 2007. A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr. Biol. 17:947–52
    [Google Scholar]
  75. 75. 
    Le J, El-Assal SED, Basu D, Saad ME, Szymanski DB 2003. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr. Biol. 13:1341–47
    [Google Scholar]
  76. 76. 
    Le J, Liu XG, Yang KZ, Chen XL, Zou JJ et al. 2014. Auxin transport and activity regulate stomatal patterning and development. Nat. Commun. 5:3090
    [Google Scholar]
  77. 77. 
    Li H, Lin D, Dhonukshe P, Nagawa S, Chen D et al. 2011. Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis. Cell Res 21:970–78
    [Google Scholar]
  78. 78. 
    Li H, Xu T, Lin D, Wen M, Xie M et al. 2013. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Res 23:290–99
    [Google Scholar]
  79. 79. 
    Li J, Kim T, Szymanski DB. 2019. Multi-scale regulation of cell branching: modeling morphogenesis. Dev. Biol. 451:40–52
    [Google Scholar]
  80. 80. 
    Li S, Blanchoin L, Yang Z, Lord EM 2003. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–44
    [Google Scholar]
  81. 81. 
    Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D et al. 2013. Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr. Biol. 23:290–97
    [Google Scholar]
  82. 82. 
    Lin D, Ren H, Fu Y. 2015. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. J. Integr. Plant Biol. 57:31–39
    [Google Scholar]
  83. 83. 
    Liu X, Yang Q, Wang Y, Wang L, Fu Y, Wang X. 2018. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization. J. Exp. Bot. 69:1037–49
    [Google Scholar]
  84. 84. 
    Majda M, Grones P, Sintorn IM, Vain T, Milani P et al. 2017. Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev. Cell 43:290–304.e4Suggests roles for anticlinal wall mechanical and chemical gradients in pavement cell interdigitation, supported by a finite-element-model-based simulation.
    [Google Scholar]
  85. 85. 
    Majda M, Krupinski P, Jönsson H, Hamant O, Robert S 2019. Mechanical asymmetry of the cell wall predicts changes in pavement cell geometry. Dev. Cell 50:9–10
    [Google Scholar]
  86. 86. 
    Majda M, Robert S 2018. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 19:951
    [Google Scholar]
  87. 87. 
    Malinowski R. 2013. Understanding of leaf development—the science of complexity. Plants 2:396–415
    [Google Scholar]
  88. 88. 
    Mathur J. 2004. Cell shape development in plants. Trends Plant Sci 9:583–90
    [Google Scholar]
  89. 89. 
    Mathur J, Mathur N, Kernebeck B, Hülskamp M. 2003. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–45
    [Google Scholar]
  90. 90. 
    McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW et al. 2019. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. PNAS 116:12857–62
    [Google Scholar]
  91. 91. 
    Mirabet V, Krupinski P, Hamant O, Meyerowitz EM, Jönsson H, Boudaoud A. 2018. The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. PLOS Comp. Biol. 14:e1006011
    [Google Scholar]
  92. 92. 
    Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X et al. 2012. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLOS Biol 10:e1001299
    [Google Scholar]
  93. 93. 
    Onoda Y, Schieving F, Anten NP. 2015. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species. J. Exp. Bot. 66:2487–99
    [Google Scholar]
  94. 94. 
    Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y-D et al. 2005. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–56
    [Google Scholar]
  95. 95. 
    Pan X, Fang L, Liu J, Senay-Aras B, Lin W et al. 2020. Auxin-induced signal protein nanoclustering contributes to cell polarity formation. Nat. Commun. 11:3914Demonstrates that auxin reorganizes cortical microtubules to establish pavement cell polarity by promoting TMK1 and ROP6 nanocluster formation across the plasma membrane.
    [Google Scholar]
  96. 96. 
    Panikashvili D, Shi JX, Schreiber L, Aharoni A. 2009. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151:1773–89
    [Google Scholar]
  97. 97. 
    Panteris E, Apostolakos P, Galatis B. 1993. Microtubule organization and cell morphogenesis in two semi-lobed cell types of Adiantum capillus-veneris L. leaflets. New Phytol 125:509–20
    [Google Scholar]
  98. 98. 
    Panteris E, Apostolakos P, Galatis B. 1994. Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytol 127:771–80Reveals the presence of cortical microtubule arrays at anticlinal and periclinal wall neck regions in lobed pavement cells of several species.
    [Google Scholar]
  99. 99. 
    Panteris E, Galatis B. 2005. The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 167:721–32
    [Google Scholar]
  100. 100. 
    Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–95
    [Google Scholar]
  101. 101. 
    Park YB, Cosgrove DJ. 2015. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 56:180–94
    [Google Scholar]
  102. 102. 
    Parre E, Geitmann A. 2005. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–92
    [Google Scholar]
  103. 103. 
    Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H 2011. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21:1720–26
    [Google Scholar]
  104. 104. 
    Peaucelle A, Wightman R, Höfte H. 2015. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25:1746–52
    [Google Scholar]
  105. 105. 
    Pigg K. 1990. Anatomically preserved Glossopteris foliage from the central Transantarctic Mountains. Rev. Palaeobot. Palynol. 66:105–27
    [Google Scholar]
  106. 106. 
    Pillitteri LJ, Dong J 2013. Stomatal development in Arabidopsis. Arabidopsis Book 11:e0162
    [Google Scholar]
  107. 107. 
    Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG et al. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567–90
    [Google Scholar]
  108. 108. 
    Poulson M, Vogelmann T. 1990. Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of Oxalis. Plant Cell Environ 13:803–11
    [Google Scholar]
  109. 109. 
    Pyke K, Marrison J, Leech R. 1991. Temporal and spatial development of the cells of the expanding first leaf of Arabidopsis thaliana (L.) Heynh. J. Exp. Bot. 42:1407–16
    [Google Scholar]
  110. 110. 
    Qiu JL, Jilk R, Marks MD, Szymanski DB. 2002. The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14:101–18
    [Google Scholar]
  111. 111. 
    Ren H, Dang X, Yang Y, Huang D, Liu M et al. 2016. SPIKE1 activates ROP GTPase to modulate petal growth and shape. Plant Phys 172:358–71
    [Google Scholar]
  112. 112. 
    Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T et al. 2010. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–21
    [Google Scholar]
  113. 113. 
    Rongpipi S, Ye D, Gomez ED, Gomez EW. 2019. Progress and opportunities in the characterization of cellulose—an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9:1894
    [Google Scholar]
  114. 114. 
    Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A et al. 2014. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967Reveals periclinal neck stiffness patterns matching cortical microtubule arrays and shows microtubule alignment with predicted stress patterns under compression, in pavement cells.
    [Google Scholar]
  115. 115. 
    Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM. 2014. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24:R475–83
    [Google Scholar]
  116. 116. 
    Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59:683–707
    [Google Scholar]
  117. 117. 
    Sapala A, Runions A, Routier-Kierzkowska AL, Das Gupta M, Hong L et al. 2018. Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794Proposes that cell interdigitation serves to reduce cell wall mechanical stress in the epidermis of isotropically growing organs.
    [Google Scholar]
  118. 118. 
    Sapala A, Runions A, Smith RS. 2019. Mechanics, geometry and genetics of epidermal cell shape regulation: different pieces of the same puzzle. Curr. Opin. Plant Biol. 47:1–8
    [Google Scholar]
  119. 119. 
    Schnurr J, Shockey J, Browse J. 2004. The Acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–42
    [Google Scholar]
  120. 120. 
    Shpak ED, McAbee JM, Pillitteri LJ, Torii KU. 2005. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–93
    [Google Scholar]
  121. 121. 
    Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M et al. 2019. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant J 97:805–24
    [Google Scholar]
  122. 122. 
    Smith LG. 2003. Cytoskeletal control of plant cell shape: getting the fine points. Curr. Opin. Plant Biol. 6:63–73
    [Google Scholar]
  123. 123. 
    Sotiriou P, Giannoutsou E, Panteris E, Galatis B, Apostolakos P. 2018. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape. Plant Biol 20:223–37
    [Google Scholar]
  124. 124. 
    Staff L, Hurd P, Reale L, Seoighe C, Rockwood A, Gehring C. 2012. The hidden geometries of the Arabidopsis thaliana epidermis. PLOS ONE 7:e43546
    [Google Scholar]
  125. 125. 
    Szymanski DB. 2014. The kinematics and mechanics of leaf expansion: new pieces to the Arabidopsis puzzle. Curr. Opin. Plant Biol. 22:141–48
    [Google Scholar]
  126. 126. 
    Tao LZ, Cheung AY, Wu HM. 2002. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–60
    [Google Scholar]
  127. 127. 
    Vőfély RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA. 2019. Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. New Phytol 221:540–52Presents extensive quantitative analyses of pavement cell shape at phylogenetic scales and suggests that no single common reason underlies puzzle shape evolution.
    [Google Scholar]
  128. 128. 
    Vogelmann TC, Bornman JF, Yates DJ. 1996. Focusing of light by leaf epidermal cells. Physiol. Plant 98:43–56
    [Google Scholar]
  129. 129. 
    Wang G, Wang C, Liu W, Ma Y, Dong L et al. 2018. Augmin antagonizes katanin at microtubule crossovers to control the dynamic organization of plant cortical arrays. Curr. Biol. 28:1311–17.e3
    [Google Scholar]
  130. 130. 
    Watson R. 1942. The effect of cuticular hardening on the form of epidermal cells. New Phytol 41:223–29
    [Google Scholar]
  131. 131. 
    Wightman R, Chomicki G, Kumar M, Carr P, Turner SR. 2013. SPIRAL2 determines plant microtubule organization by modulating microtubule severing. Curr. Biol. 23:1902–7
    [Google Scholar]
  132. 132. 
    Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G et al. 2005. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–30
    [Google Scholar]
  133. 133. 
    Wong JH, Kato T, Belteton SA, Shimizu R, Kinoshita N et al. 2019. Basic proline-rich protein-mediated microtubules are essential for lobe growth and flattened cell geometry. Plant Physiol 181:1535–51
    [Google Scholar]
  134. 134. 
    Xu T, Dai N, Chen J, Nagawa S, Cao M et al. 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–28Shows that auxin regulates pavement cell shape via TMK1-mediated activation of ROPs at the plasma membrane.
    [Google Scholar]
  135. 135. 
    Xu T, Wen M, Nagawa S, Fu Y, Chen J-G et al. 2010. Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110
    [Google Scholar]
  136. 136. 
    Zhang C, Halsey LE, Szymanski DB. 2011. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells. BMC Plant Biol 11:27
    [Google Scholar]
  137. 137. 
    Zhang C, Kotchoni SO, Samuels AL, Szymanski DB. 2010. SPIKE1 signals originate from and assemble specialized domains of the endoplasmic reticulum. Curr. Biol. 20:2144–49
    [Google Scholar]
  138. 138. 
    Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. 2013. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiol 162:689–706
    [Google Scholar]
  139. 139. 
    Zhang C, Mallery EL, Schlueter J, Huang S, Fan Y et al. 2008. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. Plant Cell 20:995–1011
    [Google Scholar]
  140. 140. 
    Zhang C, Mallery EL, Szymanski DB. 2013. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front. Plant Sci. 4:238
    [Google Scholar]
  141. 141. 
    Zhou W, Wang Y, Wu Z, Luo L, Liu P et al. 2016. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice. J. Exp. Bot. 67:4311–23
    [Google Scholar]
  142. 142. 
    Zienkiewicz OC, Taylor RL. 2005. The Finite Element Method for Solid and Structural Mechanics Oxford, UK: Elsevier
/content/journals/10.1146/annurev-arplant-080720-081920
Loading
/content/journals/10.1146/annurev-arplant-080720-081920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error