1932

Abstract

This article seeks to be a handy document for the academy and the industry to get quickly up to speed on the current status and prospects of biomass pretreatment for biorefineries. It is divided into two biomass sources: vegetal and animal. Vegetal biomass is the material produced by plants on land or in water (algae), consuming sunlight, CO, water, and soil nutrients. This includes residues or main products from, for example, intensive grass crops, forestry, and industrial and agricultural activities. Animal biomass is the residual biomass generated from the production of food from animals (e.g., manure and whey). This review does not mean to include every technology in the area, but it does evaluate physical pretreatments, microwave-assisted extraction, and water treatments for vegetal biomass. A general review is given for animal biomass based in physical, chemical, and biological pretreatments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030354
2019-06-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030354.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030354&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264:370–81
    [Google Scholar]
  2. 2.
    Zandi Atashbar N, Labadie N, Prins C 2018. Modelling and optimisation of biomass supply chains: a review. Int. J. Prod. Res. 56:103482–506
    [Google Scholar]
  3. 3.
    Cocero MJ, Cabeza Á, Abad N, Adamovic T, Vaquerizo L et al. 2018. Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids 133:550–65
    [Google Scholar]
  4. 4.
    Philp J. 2018. The bioeconomy, the challenge of the century for policy makers. N. Biotechnol. 40:11–19
    [Google Scholar]
  5. 5.
    Hassan SS, Williams GA, Jaiswal AK 2018. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 262:310–18
    [Google Scholar]
  6. 6.
    Sun S, Sun S, Cao X, Sun R 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 199:49–58
    [Google Scholar]
  7. 7.
    Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T et al. 2017. Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–45
    [Google Scholar]
  8. 8.
    Singh R, Krishna BB, Kumar J, Bhaskar T 2016. Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. Technol. 199:398–407
    [Google Scholar]
  9. 9.
    Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB 2011. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29:6675–85
    [Google Scholar]
  10. 10.
    Liu Y, Wang J, Wolcott MP 2016. Assessing the specific energy consumption and physical properties of comminuted Douglas-fir chips for bioconversion. Ind. Crops Prod. 94:394–400
    [Google Scholar]
  11. 11.
    Rooni V, Raud M, Kikas T 2017. Technical solutions used in different pretreatments of lignocellulosic biomass: a review. Agron. Res. 15:3848–58
    [Google Scholar]
  12. 12.
    Pujol D, Liu C, Fiol N, Olivella , Gominho J et al. 2013. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crops Prod. 50:494–500
    [Google Scholar]
  13. 13.
    Bajwa DS, Peterson T, Sharma N, Shojaeiarani J, Bajwa SG 2018. A review of densified solid biomass for energy production. Renew. Sustain. Energy Rev. 96:296–305
    [Google Scholar]
  14. 14.
    Easson MW, Condon B, Dien BS, Iten L, Slopek R et al. 2011. The application of ultrasound in the enzymatic hydrolysis of switchgrass. Appl. Biochem. Biotechnol. 165:5–61322–31
    [Google Scholar]
  15. 15.
    Luo J, Fang Z, Smith RL 2014. Ultrasound-enhanced conversion of biomass to biofuels. Prog. Energy Combust. Sci. 41:56–93
    [Google Scholar]
  16. 16.
    Benito-Román Ó, Alonso E, Palacio L, Prádanos P, Cocero MJ 2014. Purification and isolation of β-glucans from barley: downstream process intensification. Chem. Eng. Process. Process Intensif. 84:90–97
    [Google Scholar]
  17. 17.
    Subhedar PB, Gogate PR. 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. Sonochem. 21:1216–25
    [Google Scholar]
  18. 18.
    Nakashima K, Ebi Y, Kubo M, Shibasaki-Kitakawa N, Yonemoto T 2016. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover. Ultrason. Sonochem. 29:455–60
    [Google Scholar]
  19. 19.
    Yang C, Shen Z, Yu G, Wang J 2008. Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99:146240–45
    [Google Scholar]
  20. 20.
    Chung BY, Lee JT, Bai H-W, Kim U-J, Bae H-J et al. 2012. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiat. Phys. Chem. 81:81003–7
    [Google Scholar]
  21. 21.
    Karthika K, Arun AB, Rekha PD 2012. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr. Polym. 90:21038–45
    [Google Scholar]
  22. 22.
    Devappa RK, Rakshit SK, Dekker RFH 2015. Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol. Adv. 33:6681–716
    [Google Scholar]
  23. 23.
    Muniz Kubota A, Kalnins R, Overton TW 2018. A biorefinery approach for fractionation of Miscanthus lignocellulose using subcritical water extraction and a modified organosolv process. Biomass Bioenergy 111:52–59
    [Google Scholar]
  24. 24.
    Attard TM, Bukhanko N, Eriksson D, Arshadi M, Geladi P et al. 2018. Supercritical extraction of waxes and lipids from biomass: a valuable first step towards an integrated biorefinery. J. Clean. Prod. 177:684–98
    [Google Scholar]
  25. 25.
    Alonso E. 2018. The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery. J. Supercrit. Fluids 133:603–14
    [Google Scholar]
  26. 26.
    Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ 2012. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 109:198–103
    [Google Scholar]
  27. 27.
    Xiao C, Anderson CT. 2013. Roles of pectin in biomass yield and processing for biofuels. Front. Plant Sci. 4:67
    [Google Scholar]
  28. 28.
    Bagherian H, Zokaee Ashtiani F, Fouladitajar A, Mohtashamy M 2011. Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem. Eng. Process. Process Intensif. 50:11–121237–43
    [Google Scholar]
  29. 29.
    Chiesa S, Gnansounou E. 2011. Protein extraction from biomass in a bioethanol refinery—possible dietary applications: use as animal feed and potential extension to human consumption. Bioresour. Technol. 102:2427–36
    [Google Scholar]
  30. 30.
    Kamm B, Hille C, Schönicke P 2010. Green biorefinery demonstration plant in Havelland (Germany). Biofuels Bioprod. Biorefining 4:253–62
    [Google Scholar]
  31. 31.
    Phongthai S, Lim ST, Rawdkuen S 2016. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 70:146–54
    [Google Scholar]
  32. 32.
    Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ 2017. Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J. Food Eng. 206:1–12
    [Google Scholar]
  33. 33.
    Kostas ET, Beneroso D, Robinson JP 2017. The application of microwave heating in bioenergy: a review on the microwave pre-treatment and upgrading technologies for biomass. Renew. Sustain. Energy Rev. 77:12–27
    [Google Scholar]
  34. 34.
    Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA 2017. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers. Manag. 136:50–65
    [Google Scholar]
  35. 35.
    Du J, Liu P, Liu Z, Sun D, Tao C 2010. Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. J. Fuel Chem. Technol. 38:5554–59
    [Google Scholar]
  36. 36.
    Li H, Qu Y, Yang Y, Chang S, Xu J 2016. Microwave irradiation—a green and efficient way to pretreat biomass. Bioresour. Technol. 199:34–41
    [Google Scholar]
  37. 37.
    Regier M, Schubert H. 1999. Microwave processing. Thermal Technologies in Food Processing P Richardson, pp. 178–207 Cambridge, UK: Woodhead
    [Google Scholar]
  38. 38.
    Stefanidis GD, Navarrete Muñoz A, Sturm GS, Andrzej S 2014. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Rev. Chem. Eng. 30: https://doi.org/10.1515/revce-2013-0033
    [Crossref] [Google Scholar]
  39. 39.
    Niu Y, Rogiewicz A, Wan C, Guo M, Huang F, Slominski BA 2015. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. J. Agric. Food Chem. 63:123078–84
    [Google Scholar]
  40. 40.
    Yin C. 2012. Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour. Technol. 120:273–84
    [Google Scholar]
  41. 41.
    Iriti M, Colnaghi G, Chemat F, Smadja J, Faoro F, Visinoni FA 2006. Histo-cytochemistry and scanning electron microscopy of lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: a comparative study. Flavour Fragr. J. 21:4704–12
    [Google Scholar]
  42. 42.
    Navarrete A, Wallraf S, Mato RB, Cocero MJ 2011. Improvement of essential oil steam distillation by microwave pretreatment. Ind. Eng. Chem. Res. 50:84667–71
    [Google Scholar]
  43. 43.
    Macquarrie DJ, Clark JH, Fitzpatrick E 2012. The microwave pyrolysis of biomass. Biofuels Bioprod. Biorefining 6:5549–60
    [Google Scholar]
  44. 44.
    Palav T, Seetharaman K. 2007. Impact of microwave heating on the physico-chemical properties of a starch-water model system. Carbohydr. Polym. 67:4596–604
    [Google Scholar]
  45. 45.
    Chen C, Boldor D, Aita G, Walker M 2012. Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour. Technol. 110:190–97
    [Google Scholar]
  46. 46.
    Duan D, Ruan R, Wang Y, Liu Y, Dai L et al. 2018. Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresour. Technol. 251:57–62
    [Google Scholar]
  47. 47.
    Agu OS, Tabil LG, Dumonceaux T 2017. Microwave-assisted alkali pre-treatment, densification and enzymatic saccharification of canola straw and oat hull. Bioengineering 4:25
    [Google Scholar]
  48. 48.
    Lyu W-K, Pang Z-Q, Chen J-C, Yang G-H 2017. Influence of microwave heating assisted ionic liquid pretreatment on pulp properties. Advanced Materials and Energy Sustainability JI-Z Chen, Q Li 220–25 Hackensack, NJ: World Sci.
    [Google Scholar]
  49. 49.
    Claudet G. 2001. Thermochemical biomass conversion for clean hydrogen production. Actual. Chim. 12:29–33
    [Google Scholar]
  50. 50.
    Navarrete A, Mato RB, Cocero MJ 2012. A predictive approach in modeling and simulation of heat and mass transfer during microwave heating: application to SFME of essential oil of Lavandin Super. Chem. Eng. Sci. 68:1192–201
    [Google Scholar]
  51. 51.
    Rakesh V, Seo Y, Datta AK, McCarthy KL, McCarthy MJ 2010. Heat transfer during microwave combination heating: computational modeling and MRI experiments. AIChE J 56:92468–78
    [Google Scholar]
  52. 52.
    Navarrete A, Mato RB, Dimitrakis G, Lester E, Robinson JR et al. 2011. Measurement and estimation of aromatic plant dielectric properties: application to low moisture rosemary. Ind. Crops Prod. 33:3697–703
    [Google Scholar]
  53. 53.
    McMillan JD. 1993. Pretreatment of lignocellulosic biomass. Enzymatic Conversion of Biomass for Fuel Production ME Himmel, JO Baker, RP Overend 292–324 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  54. 54.
    Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:11–11
    [Google Scholar]
  55. 55.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:6673–86
    [Google Scholar]
  56. 56.
    Ruiz Leza HA, Thomsen MH, Trajano HL, eds. 2017. Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass Cham, Switz.: Springer Int. Pub.
  57. 57.
    Chua MGS, Wayman M. 1979. Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 3. Infrared and ultraviolet studies of extracted autohydrolysis lignin. Can. J. Chem. 57:192603–11
    [Google Scholar]
  58. 58.
    Ibrahim M, Glasser WG. 1999. Steam-assisted biomass fractionation. Part III: a quantitative evaluation of the “clean fractionation” concept. Bioresour. Technol. 70:2181–92
    [Google Scholar]
  59. 59.
    Hongzhang C, Liying L. 2007. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour. Technol. 98:3666–76
    [Google Scholar]
  60. 60.
    Wayman M, Parekh SR. 1988. SO2 prehydrolysis for high yield ethanol production from biomass. Appl. Biochem. Biotechnol. 17:1–333–43
    [Google Scholar]
  61. 61.
    Wayman M, Parekh S, Chornet E, Overend RP 1986. SO2-catalysed prehydrolysis of coniferous wood for ethanol production. Biotechnol. Lett. 8:10749–52
    [Google Scholar]
  62. 62.
    Morjanoff PJ, Gray PP. 1987. Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol. Bioeng. 29:6733–41
    [Google Scholar]
  63. 63.
    Puri VP, Mamers H. 1983. Explosive pretreatment of lignocellulosic residues with high‐pressure carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 25:123149–61
    [Google Scholar]
  64. 64.
    Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74:125–33
    [Google Scholar]
  65. 65.
    Garrote G, Cruz JM, Domínguez H, Parajó JC 2003. Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 78:4392–98
    [Google Scholar]
  66. 66.
    Garrote G, Domínguez H, Parajó JC 2004. Production of substituted oligosaccharides by hydrolytic processing of barley husks. Ind. Eng. Chem. Res. 43:71608–14
    [Google Scholar]
  67. 67.
    Nabarlatz D, Farriol X, Montané D 2005. Autohydrolysis of almond shells for the production of xylo-oligosaccharides: product characteristics and reaction kinetics. Ind. Eng. Chem. Res. 44:207746–55
    [Google Scholar]
  68. 68.
    van Heiningen A. 2006. Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Can. 107:638–43
    [Google Scholar]
  69. 69.
    Sixta H. 2006. Pulp properties and applications. Handbook of Pulp1009–67 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  70. 70.
    Casebier RL. 1973. Chemistry and mechanism of water prehydrolysis on black gumwood [effect of time at constant temperature]. TAPPI/Tech. Assoc. Pulp Pap. Ind. 56:11150–52
    [Google Scholar]
  71. 71.
    Garrote G, Domínguez H, Parajó JC 2002. Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochem 37:101067–73
    [Google Scholar]
  72. 72.
    Abatzoglou N, Chornet E, Belkacemi K, Overend RP 1992. Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem. Eng. Sci. 47:51109–22
    [Google Scholar]
  73. 73.
    Garrote G, Parajó JC. 2002. Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci. Technol. 36:2111–23
    [Google Scholar]
  74. 74.
    Yoon S-H, MacEwan K, van Heiningen A 2006. Pre-extraction of southern pine chips with hot water followed by kraft pulping Presented at the Engineering, Pulping & Environmental Conference, Atlanta, GA, Nov. 5–8
  75. 75.
    Vila C, Romero J, Francisco JL, Santos V, Parajó JC 2012. On the recovery of hemicellulose before kraft pulping. BioResources 7:34179–89
    [Google Scholar]
  76. 76.
    Leschinsky M, Patt R, Sixta H 2007. Water prehydrolysis of E. globulus with the main emphasis on the formation of insoluble components Presented at Pulpaper Conference Helsinki:
  77. 77.
    Leschinsky M, Weber HK, Patt R, Sixta H 2009. Formation of insoluble components during autohydrolysis of Eucalyptus globulus. Lenzinger Berichte 87:16–25
    [Google Scholar]
  78. 78.
    Gütsch JS, Nousiainen T, Sixta H 2012. Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour. Technol. 109:77–85
    [Google Scholar]
  79. 79.
    van Heiningen A, Yasukawa Y, Dido K, Francis R 2017. Minimizing precipitated lignin formation and maximizing monosugar concentration by formic acid reinforced hydrolysis of hardwood chips. Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass HA Ruiz, MH Thomsen, HL Trajano 421–41 Cham, Switz.: Springer Int. Pub.
    [Google Scholar]
  80. 80.
    Conner A. 1984. Kinetic modeling of hardwood prehydrolysis. Part I. Xylan removal by water prehydrolysis. Wood Fiber Sci 16:2268–77
    [Google Scholar]
  81. 81.
    Liu C, Wyman CE. 2003. The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind. Eng. Chem. Res. 42:215409–16
    [Google Scholar]
  82. 82.
    Chen X, Lawoko M, van Heiningen A 2010. Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour. Technol. 101:207812–19
    [Google Scholar]
  83. 83.
    Song T, Pranovich A, Holmbom B 2012. Hot-water extraction of ground spruce wood of different particle size. BioResources 7:34214–25
    [Google Scholar]
  84. 84.
    Hrnčič MK, Kravanja G, Knez Ž 2016. Hydrothermal treatment of biomass for energy and chemicals. Energy 116:1312–22
    [Google Scholar]
  85. 85.
    Libra JA, Ro KS, Kammann C, Funke A, Berge ND et al. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:171–106
    [Google Scholar]
  86. 86.
    Wang T, Zhai Y, Zhu Y, Li C, Zeng G 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90:223–47
    [Google Scholar]
  87. 87.
    Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B 2013. Chemical modification of biomass residues during hydrothermal carbonization—What makes the difference, temperature or feedstock. Org. Geochem. 54:91–100
    [Google Scholar]
  88. 88.
    Gao P, Zhou Y, Meng F, Zhang Y, Liu Z et al. 2016. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 97:238–45
    [Google Scholar]
  89. 89.
    Gascó G, Paz-Ferreiro J, Álvarez ML, Saa A, Méndez A 2018. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag 79:395–403
    [Google Scholar]
  90. 90.
    Fang J, Zhan L, Ok YS, Gao B 2017. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 57:15–21
    [Google Scholar]
  91. 91.
    Lee J, Lee K, Sohn D, Kim YM, Park KY 2018. Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel. Energy 153:913–20
    [Google Scholar]
  92. 92.
    Tradler SB, Mayr S, Himmelsbach M, Priewasser R, Baumgartner W, Stadler AT 2018. Hydrothermal carbonization as an all-inclusive process for food-waste conversion. Bioresour. Technol. Rep. 2:77–83
    [Google Scholar]
  93. 93.
    Hitzl M, Corma A, Pomares F, Renz M 2015. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal. Today 257:154–59
    [Google Scholar]
  94. 94.
    Brunner G. 2014. Processing of biomass with hydrothermal and supercritical water. Supercrit. Fluid Sci. Technol. 5:395–509
    [Google Scholar]
  95. 95.
    Toor SS, Rosendahl L, Rudolf A 2011. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:52328–42
    [Google Scholar]
  96. 96.
    Kruse A, Dahmen N. 2015. Water—a magic solvent for biomass conversion. J. Supercrit. Fluids 96:36–45
    [Google Scholar]
  97. 97.
    Zhu Y, Biddy MJ, Jones SB, Elliott DC, Schmidt AJ 2014. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy 129:384–94
    [Google Scholar]
  98. 98.
    Cao L, Zhang C, Chen H, Tsang DCW, Luo G et al. 2017. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol. 245:1184–93
    [Google Scholar]
  99. 99.
    Xu D, Lin G, Guo S, Wang S, Guo Y, Jing Z 2018. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review. Renew. Sustain. Energy Rev. 97:103–18
    [Google Scholar]
  100. 100.
    Déniel M, Haarlemmer G, Roubaud A, Weiss-Hortala E, Fages J 2016. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew. Sustain. Energy Rev. 54:1632–52
    [Google Scholar]
  101. 101.
    Prestigiacomo C, Costa P, Pinto F, Schiavo B, Siragusa A et al. 2019. Sewage sludge as cheap alternative to microalgae as feedstock of catalytic hydrothermal liquefaction processes. J. Supercrit. Fluids 143:251–58
    [Google Scholar]
  102. 102.
    Baloch HA, Nizamuddin S, Siddiqui MTH, Riaz S, Jatoi AS et al. 2018. Recent advances in production and upgrading of bio-oil from biomass: a critical overview. J. Environ. Chem. Eng. 6:45101–18
    [Google Scholar]
  103. 103.
    Kang S, Li X, Fan J, Chang J 2013. Hydrothermal conversion of lignin: a review. Renew. Sustain. Energy Rev. 27:546–58
    [Google Scholar]
  104. 104.
    Saka S, Ueno T. 1999. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose 6:177–91
    [Google Scholar]
  105. 105.
    Bobleter O. 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19:797–841
    [Google Scholar]
  106. 106.
    Uematsu M, Frank EU. 1980. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 9:1291–306
    [Google Scholar]
  107. 107.
    Cantero DA, Bermejo MD, Cocero MJ 2015. Governing chemistry of cellulose hydrolysis in supercritical water. ChemSusChem 8:61026–33
    [Google Scholar]
  108. 108.
    Klein MT, Torry LA, Wu BC, Townsend SH, Paspek SC 1990. Hydrolysis in supercritical water: solvent effects as a probe of the reaction mechanism. J. Supercrit. Fluids 3:222–27
    [Google Scholar]
  109. 109.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N et al. 1998. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluids 13:1–3261–68
    [Google Scholar]
  110. 110.
    Loppinet-Serani A, Aymonier C, Cansell F 2010. Supercritical water for environmental technologies. J. Chem. Technol. Biotechnol. 85:5583–89
    [Google Scholar]
  111. 111.
    Cantero DA, Martínez C, Bermejo MD, Cocero MJ 2015. Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17:1610–18
    [Google Scholar]
  112. 112.
    Sasaki M, Adschiri T, Arai K 2004. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE J 50:1192–202
    [Google Scholar]
  113. 113.
    Cantero DA, Bermejo MD, Cocero MJ 2013. High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors. Bioresour. Technol. 135:697–703
    [Google Scholar]
  114. 114.
    Tolonen LK, Juvonen M, Niemelä K, Mikkelson A, Tenkanen M, Sixta H 2015. Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose. Carbohydr. Res. 401:16–23
    [Google Scholar]
  115. 115.
    Tolonen LK, Penttil PA, Serimaa R, Kruse A, Sixta H 2013. The swelling and dissolution of cellulose crystallites in subcritical and supercritical water. Cellulose 20:62731–44
    [Google Scholar]
  116. 116.
    Cantero DA, Bermejo MD, Cocero MJ 2013. Kinetic analysis of cellulose depolymerization reactions in near critical water. J. Supercrit. Fluids 75:48–57
    [Google Scholar]
  117. 117.
    Cantero DA, Sánchez Tapia Á, Bermejo MD, Cocero MJ 2015. Pressure and temperature effect on cellulose hydrolysis in pressurized water. Chem. Eng. J. 276:145–54
    [Google Scholar]
  118. 118.
    Cantero DA, Vaquerizo L, Mato F, Bermejo MD, Cocero MJ 2015. Energetic approach of biomass hydrolysis in supercritical water. Bioresour. Technol. 179:136–43
    [Google Scholar]
  119. 119.
    Cocero MJ. 2018. Supercritical water processes: future prospects. J. Supercrit. Fluids 134:124–32
    [Google Scholar]
  120. 120.
    Jeong H, Park Y, Seong Y, Min S 2017. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst. Bioresour. Technol. 245:351–57
    [Google Scholar]
  121. 121.
    Pi H, Wolak P, Złoci A 2012. Hydrothermal decomposition of alkali lignin in sub- and supercritical water. Chem. Eng. J. 187:410–14
    [Google Scholar]
  122. 122.
    Okuda K, Umetsu M, Takami S, Adschiri T 2004. Disassembly of lignin and chemical recovery: rapid depolymerization of lignin without char formation in water-phenol mixtures. Fuel Process. Technol. 85:8–10803–13
    [Google Scholar]
  123. 123.
    Abad-Fernandez N, Perez-Velilla E, Cocero MJ 2019. Aromatics from lignin through ultrafast reactions in water. Green Chem In press. https://doi.org/10.1039/C8GC03989E
    [Crossref] [Google Scholar]
  124. 124.
    Torry A, Kaminsky R, Klotz R 1992. The effect of salts on hydrolysis in supercritical and near-critical water: reactivity and availability. J. Supercrit. Fluids 5:163–68
    [Google Scholar]
  125. 125.
    Jia J, Shu L, Zang G, Xu L, Abudula A, Ge K 2018. Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy 149:750–61
    [Google Scholar]
  126. 126.
    Pratt C, Redding M, Hill J, Jensen PD 2015. Does manure management affect the latent greenhouse gas emitting potential of livestock manures. Waste Manag 46:568–76
    [Google Scholar]
  127. 127.
    Abdeshahian P, Lim JS, Ho WS, Hashim H, Lee CT 2016. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 60:714–23
    [Google Scholar]
  128. 128.
    Tańczuk M, Junga R, Werle S, Chabiński M, Ziółkowski Ł 2017. Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renew. Energy 136:1055–63
    [Google Scholar]
  129. 129.
    Kuruti K, Nakkasunchi S, Begum S, Juntupally S, Arelli V, Anupoju GR 2017. Rapid generation of volatile fatty acids (VFA) through anaerobic acidification of livestock organic waste at low hydraulic residence time (HRT). Bioresour. Technol. 238:188–93
    [Google Scholar]
  130. 130.
    Dalólio FS, da Silva JN, de Oliveira ACC, de Fátima Ferreira Tinôco I, Barbosa RC et al. 2017. Poultry litter as biomass energy: a review and future perspectives. Renew. Sustain. Energy Rev. 76:941–49
    [Google Scholar]
  131. 131.
    Agomoh IV. 2012. Chemically enhanced gravitational solid-liquid separation for the management of phosphorus in liquid swine manure Master's Thesis, Dep. Soil Sci., Univ. Manitoba Winnepeg, Can:.
  132. 132.
    Bennamoun L. 2012. Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16:11061–73
    [Google Scholar]
  133. 133.
    Belén F, Sánchez J, Hernández E, Auleda JM, Raventós M 2012. One option for the management of wastewater from tofu production: freeze concentration in a falling-film system. J. Food Eng. 110:3364–73
    [Google Scholar]
  134. 134.
    Environ. Prot. Agency 2001. Alternative Technologies/Uses for Manure Oxford, UK: Environ. Prot. Agency
  135. 135.
    Pelaz L, Gómez A, Garralón G, Letona A, Fdz-Polanco M 2018. Recirculation of gas emissions to achieve advanced denitrification of the effluent from the anaerobic treatment of domestic wastewater. Bioresour. Technol. 250:758–63
    [Google Scholar]
  136. 136.
    Flotats Ripoll X, Foged H, Bonmatí Blasi A, Palatsi Civit J, Magrí Aloy A, Schelde KM 2012. Manure processing technologies Tech. Rep., Dir.-Gen. Environ., Eur. Comm. Brussels, Belg:.
  137. 137.
    Ileleji KE, Martin C, Jones D 2015. Basics of energy production through anaerobic digestion of livestock manure. Bioenergy 2015:287–95
    [Google Scholar]
  138. 138.
    Colón J, Forbis-Stokes AA, Deshusses MA 2015. Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy Sustain. Dev. 29:57–64
    [Google Scholar]
  139. 139.
    Bernet N, Béline F. 2009. Challenges and innovations on biological treatment of livestock effluents. Bioresour. Technol. 100:225431–36
    [Google Scholar]
  140. 140.
    Rajendran K, Aslanzadeh S, Taherzadeh MJ 2012. Household biogas digesters—a review. Energies 5:82911–42
    [Google Scholar]
  141. 141.
    Page LH, Ni J-Q, Heber AJ, Mosier NS, Liu X et al. 2014. Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosyst. Eng. 118:16–28
    [Google Scholar]
  142. 142.
    Colón J, Martínez‐Blanco J, Gabarrell X, Rieradevall J, Font X et al. 2009. Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement. J. Chem. Technol. Biotechnol. 84:81111–17
    [Google Scholar]
  143. 143.
    He P, Zhao L, Zheng W, Wu D, Shao L 2013. Energy balance of a biodrying process for organic wastes of high moisture content: a review. Dry. Technol. 31:2132–45
    [Google Scholar]
  144. 144.
    Wise DL. 1987. First international workshop on biogasification and biorefining of Texas lignite. Resour. Conserv. 15:3229–47
    [Google Scholar]
  145. 145.
    Carus M, Ravenstijn J, Baltus W, Carrez D, Kaeb H, Zepnik S 2013. Bio-based polymers in the world: capacities, production and applications: status quo and trends towards 2020 Market Study 65 Nova Inst.
  146. 146.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F et al. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344:61851246843
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030354
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error