1932

Abstract

Ongoing global warming due to anthropogenic climate change has long been recognized, yet uncertainties regarding how seasonal extremes will change in the future persist. Paleoseasonal proxy data from intervals when global climate differed from today can help constrain how and why the annual temperature cycle has varied through space and time. Records of past seasonal variation in marine temperatures are available in the oxygen isotope values of serially sampled accretionary organisms. The most useful data sets come from carefully designed and computationally robust studies that enable characterization of paleoseasonal parameters and seamless integration with mean annual temperature data sets and climate models. Seasonal data sharpen interpretations of—and quantify overlooked or unconstrained seasonal biases in—the more voluminous mean temperature data and aid in the evaluation of climate model performance. Methodologies to rigorously analyze seasonal data are now available, and the promise of paleoseasonal proxy data for the next generation of paleoclimate research is significant.

  • ▪  The seasonal cycle defines climate and its constraints on biology, both today and in the deep past.
  • ▪  Paleoseasonal data improve proxy-based estimates of mean annual temperature and validate Earth System Model simulations.
  • ▪  Large, internally consistent data sets can reveal robust spatiotemporal climate patterns on the ancient Earth and how they change with CO.
  • ▪  Computational tools enable rigorous numerical analysis of paleoseasonal data for comparison with other paleoclimate data and model output.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-095156
2022-05-31
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-095156.html?itemId=/content/journals/10.1146/annurev-earth-032320-095156&mimeType=html&fmt=ahah

Literature Cited

  1. Addino MS, Alvarez MF, Brey T, Iribarne O, Lomovasky BJ. 2019. Growth changes of the stout razor clam Tagelus plebeius (Lightfoot, 1786) under different salinities in SW Atlantic estuaries. J. Sea Res. 146:14–23
    [Google Scholar]
  2. Affek H. 2012. Clumped isotope paleothermometry: principles, applications, and challenges. See Ivany & Huber 2012 101–14
  3. Arthur MA, Williams DF, Jones DS 1983. Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11:655–59
    [Google Scholar]
  4. Austin WEN, Cage AG, Scourse JD. 2006. Mid-latitude shelf seas: a NW European perspective on the seasonal dynamics of temperature, salinity and oxygen isotopes. Holocene 16:937–47
    [Google Scholar]
  5. Baldini JUL, Lechleitner FA, Breitenbach SFM, van Hunen J, Baldini LM et al. 2021. Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches. Quat. Sci. Rev. 254:106784
    [Google Scholar]
  6. Beard JA, Ivany LC, Runnegar B. 2015. Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia. Earth Planet. Sci. Lett. 425:219–31
    [Google Scholar]
  7. Beelaerts V, De Ridder F, Schmitz N, Bauwens M, Pintelon R. 2010. Time-series reconstruction from natural archive data with the averaging effect taken into account. Math. Geosci. 42:705–22
    [Google Scholar]
  8. Bergmann KD, Finnegan S, Creel R, Eiler JM, Hughes NC et al. 2018. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition. Geochim. Cosmochim. Acta 224:18–41
    [Google Scholar]
  9. Berry WB, Barker RM. 1968. Fossil bivalve shells indicate longer month and year in Cretaceous than present. Nature 217:938–39
    [Google Scholar]
  10. Botsyun S, Ehlers TA. 2021. How can climate models be used in paleoelevation reconstructions?. Front. Earth Sci. 9:28
    [Google Scholar]
  11. Bougeois L, Dupont-Nivet G, de Rafélis M, Tindall JC, Proust J-N et al. 2018. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth Planet. Sci. Lett. 485:99–110
    [Google Scholar]
  12. Brady E, Stevenson S, Bailey D, Liu Z, Noone D et al. 2019. The connected isotopic water cycle in the Community Earth System Model version 1. J. Adv. Model. Earth Syst. 11:2547–66
    [Google Scholar]
  13. Brand U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chem. Geol. 204:23–44
    [Google Scholar]
  14. Brand U, Azmy K, Bitner M, Logan A, Zuschin M et al. 2013. Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation. Chem. Geol. 359:23–31
    [Google Scholar]
  15. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M. 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–33
    [Google Scholar]
  16. Buick DP, Ivany LC. 2004. 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology 32:921–24
    [Google Scholar]
  17. Burke K, Williams J, Chandler M, Haywood A, Lunt D, Otto-Bliesner B. 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:13288–93
    [Google Scholar]
  18. Caldarescu DE, Sadatzki H, Andersson C, Schäfer P, Fortunato H, Meckler AN. 2021. Clumped isotope thermometry in bivalve shells: a tool for reconstructing seasonal upwelling. Geochim. Cosmochim. Acta 294:174–91
    [Google Scholar]
  19. Campana SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188:263–97
    [Google Scholar]
  20. Carré M, Cheddadi R. 2017. Seasonality in long-term climate change. Quaternaire 28:173–77
    [Google Scholar]
  21. Carré M, Sachs J, Wallace J, Favier C 2012. Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry. Clim. Past 8:433–50
    [Google Scholar]
  22. Cartwright JH, Checa AG, Sainz-Díaz CI. 2020. Nacre is a liquid-crystal thermometer of the oceans. ACS Nano 14:9277–81
    [Google Scholar]
  23. Chen S, Gagnon AC, Adkins JF. 2018. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochim. Cosmochim. Acta 236:179–97
    [Google Scholar]
  24. CLIMAP 1981. Seasonal reconstructions of the Earth's surface at the last glacial maximum Tech. Rep. MC-36 Geol. Soc. Am. Boulder, CO:
  25. Conroy JL, Thompson DM, Cobb KM, Noone D, Rea S, Legrande AN 2017. Spatiotemporal variability in the δ18O-salinity relationship of seawater across the tropical Pacific Ocean. Paleoceanography 32:484–97
    [Google Scholar]
  26. Crowley TJ, Short DA, Mengel JG, North GR. 1986. Role of seasonality in the evolution of climate during the last 100 million years. Science 231:579–84
    [Google Scholar]
  27. Darnaude AM, Sturrock A, Trueman CN, Mouillot D, Campana SE, Hunter E. 2014. Listening in on the past: What can otolith δ18O values really tell us about the environmental history of fishes?. PLOS ONE 9:e108539
    [Google Scholar]
  28. Davies A, Hunter SJ, Gréselle B, Haywood AM, Robson C 2019. Evidence for seasonality in early Eocene high latitude sea-surface temperatures. Earth Planet. Sci. Lett. 519:274–83
    [Google Scholar]
  29. de Brauwere A, De Ridder F, Pintelon R, Schoukens J, Dehairs F. 2009. A comparative study of methods to reconstruct a periodic time series from an environmental proxy record. Earth-Sci. Rev. 95:97–118
    [Google Scholar]
  30. De Ridder F, de Brauwere A, Pintelon R, Schoukens J, Dehairs F et al. 2007. Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—a quantitative approach to the evaluation of incomplete data, by BH Wilkinson, LC Ivany. 2002. Palaeogeogr. Palaeocl. Palaeoecol. 185, 95–114. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248:473–76
    [Google Scholar]
  31. de Winter NJ, Müller IA, Kocken IJ, Thibault N, Ullmann CV et al. 2021. Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate. Commun. Earth Environ. 2:121
    [Google Scholar]
  32. de Winter NJ, Sinnesael M, Makarona C, Vansteenberge S, Claeys P. 2017. Trace element analyses of carbonates using portable and micro-X-ray fluorescence: performance and optimization of measurement parameters and strategies. J. Anal. At. Spectrom. 32:1211–23
    [Google Scholar]
  33. Defliese WF. 2021. The impact of Snowball Earth glaciation on ocean water δ18O values. Earth Planet. Sci. Lett. 554:116661
    [Google Scholar]
  34. DeLong KL, Quinn TM, Taylor FW, Shen C-C, Lin K 2013. Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373:6–24
    [Google Scholar]
  35. Disspain MC, Ulm S, Gillanders BM 2016. Otoliths in archaeology: methods, applications and future prospects. J. Archaeol. Sci. Rep. 6:623–32
    [Google Scholar]
  36. Dolman AM, Kunz T, Groeneveld J, Laepple T 2021. Estimating the timescale-dependent uncertainty of paleoclimate records—a spectral approach. Part II: application and interpretation. Clim. Past 17:825–41
    [Google Scholar]
  37. Douglas PMJ, Affek HP, Ivany LC, Houben AJP, Sijp WP et al. 2014. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. PNAS 111:6582–87
    [Google Scholar]
  38. Duan Q, Sorooshian S, Gupta V 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28:1015–31
    [Google Scholar]
  39. Edwards CT, Jones CM, Quinton PC, Fike DA 2022. Oxygen isotope (δ18O) trends measured from Ordovician conodont apatite using secondary ion mass spectrometry (SIMS): implications for paleo-thermometry studies. GSA Bull. 134:261–74
    [Google Scholar]
  40. Eiler JM. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30:3575–88
    [Google Scholar]
  41. Evans D, Müller W, Oron S, Renema W. 2013. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera. Earth Planet. Sci. Lett. 381:104–15
    [Google Scholar]
  42. Fraile I, Mulitza S, Schulz M 2009. Modeling planktonic foraminiferal seasonality: implications for sea-surface temperature reconstructions. Mar. Micropaleontol. 72:1–9
    [Google Scholar]
  43. Galili N, Shemesh A, Yam R, Brailovsky I, Sela-Adler M et al. 2019. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365:469–73
    [Google Scholar]
  44. Gasson E, Lunt DJ, DeConto R, Goldner A, Heinemann M et al. 2014. Uncertainties in the modelled CO2 threshold for Antarctic glaciation. Clim. Past 10:451–66
    [Google Scholar]
  45. Gilbert PU, Bergmann KD, Myers CE, Marcus MA, DeVol RT et al. 2017. Nacre tablet thickness records formation temperature in modern and fossil shells. Earth Planet. Sci. Lett. 460:281–92
    [Google Scholar]
  46. Gillikin DP, Lorrain A, Navez J, Taylor JW, Andre L et al. 2005. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem. Geophys. Geosyst. 6:Q05009
    [Google Scholar]
  47. Goodwin DH, Schone BR, Dettman DL. 2003. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–25
    [Google Scholar]
  48. Groeneveld J, Ho SL, Mackensen A, Mohtadi M, Laepple T. 2019. Deciphering the variability in Mg/Ca and stable oxygen isotopes of individual foraminifera. Paleoceanogr. Paleoclimatol. 34:755–73
    [Google Scholar]
  49. Grossman EL. 2012. Applying oxygen isotope paleothermometry in deep time. See Ivany & Huber 2012 39–67
  50. Grossman EL, Ku T-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59:59–74
    [Google Scholar]
  51. Hallmann N, Burchell M, Schöne BR, Irvine GV, Maxwell D 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. J. Archaeolog. Sci. 36:2353–64
    [Google Scholar]
  52. Helser TE, Kastelle CR, McKay JL, Orland IJ, Kozdon R, Valley JW 2018. Evaluation of micromilling/conventional isotope ratio mass spectrometry and secondary ion mass spectrometry of δ18O values in fish otoliths for sclerochronology. Rapid Commun. Mass Spectrom. 32:1781–90
    [Google Scholar]
  53. Hemingway J, Henkes G. 2021. A distributed activation energy model for clumped isotope bond reordering in carbonates. Earth Space Sci. Open Arch. 41: https://www.essoar.org/doi/10.1002/essoar.10504096.2
    [Google Scholar]
  54. Henkes GA, Passey BH, Grossman EL, Shenton BJ, Yancey TE, Pérez-Huerta A. 2018. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry. Earth Planet. Sci. Lett. 490:40–50
    [Google Scholar]
  55. Herbert TD 2014. Alkenone paleotemperature determinations. Treatise on Geochemistry HD Holland, KK Turekian 399–433 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  56. Hirahara S, Ishii M, Fukuda Y. 2014. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27:57–75
    [Google Scholar]
  57. Hollis CJ, Taylor KWR, Handley L, Pancost RD, Huber M et al. 2012. Early Paleogene temperature history of the Southwest Pacific Ocean: reconciling proxies and models. Earth Planet. Sci. Lett. 349–350:53–66
    [Google Scholar]
  58. Hughes M, Ammann C. 2009. The future of the past—an earth system framework for high resolution paleoclimatology: editorial essay. Clim. Change 94:247–59
    [Google Scholar]
  59. Immenhauser A, Schoene BR, Hoffmann R, Niedermayr A. 2016. Mollusc and brachiopod skeletal hard parts: intricate archives of their marine environment. Sedimentology 63:1–59
    [Google Scholar]
  60. Inglis GN, Tierney JE. 2020. The TEX86 Paleotemperature Proxy Cambridge, UK: Cambridge Univ. Press
  61. Ingram BL, Conrad ME, Ingle JC 1996. Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay. Geochim. Cosmochim. Acta 60:455–67
    [Google Scholar]
  62. Ivany LC. 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates: challenges and opportunities. See Ivany & Huber 2012 133–65
  63. Ivany LC, Huber BT, eds. 2012. Reconstructing Earth's Deep-Time Climate: The State of the Art in 2012, Vol. 18 Boulder, CO: Paleontol. Soc.
  64. Ivany LC, Lohmann KC, Blake DB, Hasiuk F, Aronson RB et al. 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol. Soc. Am. Bull. 120:659–78
    [Google Scholar]
  65. Ivany LC, Patterson WP, Lohmann KC. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407:887–90
    [Google Scholar]
  66. Ivany LC, Peters SE, Wilkinson BH, Lohmann KC, Reimer BA. 2004a. Composition of the early Oligocene ocean from coral stable isotope and elemental chemistry. Geobiology 2:97–106
    [Google Scholar]
  67. Ivany LC, Wilkinson BH, Lohmann KC, Johnson ER, McElroy BJ, Cohen GJ. 2004b. Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperature, seasonality, and salinity on the US Gulf Coast. J. Sediment. Res. 74:7–19
    [Google Scholar]
  68. Jaffrés JBD, Shields GA, Wallmann K. 2007. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Sci. Rev. 83:83–122
    [Google Scholar]
  69. Jain S, Lall U, Mann ME. 1999. Seasonality and interannual variations of Northern Hemisphere temperature: equator-to-pole gradient and ocean–land contrast. J. Clim. 12:1086–100
    [Google Scholar]
  70. Jones DS. 1983. Sclerochronology: reading the record of the molluscan shell. Am. Sci. 71:384–91
    [Google Scholar]
  71. Jones DS, Gould SJ. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158–87
    [Google Scholar]
  72. Jones DS, Quitmyer IR. 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–46
    [Google Scholar]
  73. Jones PD, New M, Parker DE, Martin S, Rigor IG 1999. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37:173–99
    [Google Scholar]
  74. Jonkers L, Kučera M. 2017. Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies. Clim. Past 13:573–86
    [Google Scholar]
  75. Judd EJ, Bhattacharya T, Ivany LC. 2020. A dynamical framework for interpreting ancient sea surface temperatures. Geophys. Res. Lett. 47:e2020GL089044
    [Google Scholar]
  76. Judd EJ, Ivany LC, DeConto RM, Halberstadt ARW, Miklus NM et al. 2019. Seasonally resolved proxy data from the Antarctic Peninsula support a heterogeneous middle Eocene Southern Ocean. Paleoceanogr. Paleoclimatol. 34:787–99
    [Google Scholar]
  77. Judd EJ, Wilkinson BH, Ivany LC. 2018. The life and time of clams: derivation of intra-annual growth rates from high-resolution oxygen isotope profiles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490:70–83
    [Google Scholar]
  78. Keating-Bitonti CR, Ivany LC, Affek HP, Douglas P, Samson SD 2011. Warm, not super-hot, temperatures in the early Eocene subtropics. Geology 39:771–74
    [Google Scholar]
  79. Kelson JR, Huntington KW, Breecker DO, Burgener LK, Gallagher TM et al. 2020. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quat. Sci. Rev. 234:106259
    [Google Scholar]
  80. Kennish MJ. 1980. Shell microgrowth analysis: Mercenaria mercenaria as a type example for research in population dynamics. See Rhoads & Lutz 1980 255–94
  81. Killam DE, Clapham ME. 2018. Identifying the ticks of bivalve shell clocks: seasonal growth in relation to temperature and food supply. Palaios 33:228–36
    [Google Scholar]
  82. Kobashi T, Grossman EL, Dockery DT, Ivany LC. 2004. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA). Paleoceanography 19:PA1022
    [Google Scholar]
  83. Kung EC, Bryson RA, Lenschow DH. 1964. Study of a continental surface albedo on the basis of flight measurements and structure of the earth's surface cover over North America. Mon. Weather Rev. 92:543–64
    [Google Scholar]
  84. Lea DW 2014. 8.14 Elemental and isotopic proxies of past ocean temperatures. Treatise on Geochemistry HD Holland, KK Turekian 373–97 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  85. Lea DW, Mashiotta TA, Spero HJ. 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta 63:2369–79
    [Google Scholar]
  86. Lear CH, Elderfield H, Wilson PA. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–72
    [Google Scholar]
  87. LeGrande AN, Schmidt GA. 2006. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33:L12604
    [Google Scholar]
  88. Linzmeier BJ. 2019. Refining the interpretation of oxygen isotope variability in free-swimming organisms. Swiss J. Palaeontol. 138:109–21
    [Google Scholar]
  89. Ljungström G, Langbehn TJ, Jørgensen C. 2021. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Change 11:530–36
    [Google Scholar]
  90. Lowenstein TK, Hönisch B. 2012. The use of Mg/Ca as a seawater temperature proxy. See Ivany & Huber 2012 85–100
  91. Lutz RA, Rhoads DC. 1980. Growth patterns within the molluscan shell. See Rhoads & Lutz 1980 203–54
  92. Maggiano CM, White CD, Stern RA, Peralta JS, Longstaffe FJ. 2019. Focus: oxygen isotope microanalysis across incremental layers of human bone: exploring archaeological reconstruction of short term mobility and seasonal climate change. J. Archaeolog. Sci. 111:105028
    [Google Scholar]
  93. Markwick PJ. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates; implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137:205–71
    [Google Scholar]
  94. Marshall JF, McCulloch MT. 2002. An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim. Cosmochim. Acta 66:3263–80
    [Google Scholar]
  95. Martinson DG, Menke W, Stoffa P. 1982. An inverse approach to signal correlation. J. Geophys. Res. 87:B64807–18
    [Google Scholar]
  96. Matsuoka J, Kano A, Oba T, Watanabe T, Sakai S, Seto K 2001. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth Planet. Sci. Lett. 192:31–44
    [Google Scholar]
  97. Matthews T, Mullan D, Wilby RL, Broderick C, Murphy C 2016. Past and future climate change in the context of memorable seasonal extremes. Clim. Risk Manag. 11:37–52
    [Google Scholar]
  98. McConnaughey T. 1989. 13C and 18O isotopic disequilibrium in biological carbonates II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53:163–71
    [Google Scholar]
  99. McConnell MC, Thunell RC, Lorenzoni L, Astor Y, Wright JD, Fairbanks R 2009. Seasonal variability in the salinity and oxygen isotopic composition of seawater from the Cariaco Basin, Venezuela: implications for paleosalinity reconstructions. Geochem. Geophys. Geosyst. 10:Q06019
    [Google Scholar]
  100. Meckler AN, Ziegler M, Millán MI, Breitenbach SF, Bernasconi SM. 2014. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28:1705–15
    [Google Scholar]
  101. Meehl GA, Richter JH, Teng H, Capotondi A, Cobb K et al. 2021. Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2:340–57
    [Google Scholar]
  102. Metcalfe B, Feldmeijer W, Ganssen GM. 2019. Oxygen isotope variability of planktonic foraminifera provide clues to past upper ocean seasonal variability. Paleoceanogr. Paleoclimatol. 34:374–93
    [Google Scholar]
  103. Miyaji T, Tanabe K, Matsushima Y, Sato Si, Yokoyama Y, Matsuzaki H 2010. Response of daily and annual shell growth patterns of the intertidal bivalve Phacosoma japonicum to Holocene coastal climate change in Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286:107–20
    [Google Scholar]
  104. Moon LR, Judd EJ, Thomas J, Ivany LC 2021. Out of the oven and into the fire: unexpected preservation of the seasonal δ18O cycle following heating experiments on shell carbonate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562:110115
    [Google Scholar]
  105. Moss DK, Ivany LC, Jones DS. 2021. Fossil bivalves and the sclerochronological reawakening. Paleobiology 2021:1–23
    [Google Scholar]
  106. Müller P, Taylor MH, Klicpera A, Wu HC, Michel J, Westphal H 2015. Food for thought: mathematical approaches for the conversion of high-resolution sclerochronological oxygen isotope records into sub-annually resolved time series. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440:763–76
    [Google Scholar]
  107. Olson IC, Kozdon R, Valley JW, Gilbert PU. 2012. Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. J. Am. Chem. Soc. 134:7351–58
    [Google Scholar]
  108. Pannella G, MacClintock C. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Paleobiological Aspects of Growth and Development DB Macurda Jr. 64–81 Menasha, WI: Banta
    [Google Scholar]
  109. Passey BH, Henkes GA. 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett. 351–352:223–36
    [Google Scholar]
  110. Pearson PN. 2012. Oxygen isotopes in foraminifera: overview and historical review. See Ivany & Huber 2012 1–38
  111. Pérez-Huerta A, Cusack M, Jeffries TE, Williams CT. 2008. High resolution distribution of magnesium and strontium and the evaluation of Mg/Ca thermometry in Recent brachiopod shells. Chem. Geol. 247:229–41
    [Google Scholar]
  112. Peters SE, Loss DP. 2012. Storm and fair-weather wave base: a relevant distinction?. Geology 40:511–14
    [Google Scholar]
  113. Pisias NG, Roelofs A, Weber M. 1997. Radiolarian-based transfer functions for estimating mean surface ocean temperatures and seasonal range. Paleoceanography 12:365–79
    [Google Scholar]
  114. Poulain C, Gillikin DP, Thébault J, Munaron JM, Bohn M et al. 2015. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chem. Geol. 396:42–50
    [Google Scholar]
  115. Prandle D, Lane A 1995. The annual temperature cycle in shelf seas. Cont. Shelf Res. 15:681–704
    [Google Scholar]
  116. Purton LMA, Brasier MD. 1999. Giant protist Nummulites and its Eocene environment: life span and habitat insights from δ18O and δ13C data from Nummulites and Venericardia, Hampshire basin, UK. Geology 27:711–14
    [Google Scholar]
  117. Radtke R, Showers W, Moksness E, Lenz P 1996. Environmental information stored in otoliths: insights from stable isotopes. Mar. Biol. 127:161–70
    [Google Scholar]
  118. Rayner NA. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108:D144407
    [Google Scholar]
  119. Rhoads DC, Lutz RA, eds. 1980. Skeletal Growth of Aquatic Organisms New York: Plenum
  120. Roy T, He X, Lin P, Beck HE, Castro C, Wood EF. 2020. Global evaluation of seasonal precipitation and temperature forecasts from NMME. J. Hydrometeorol. 21:2473–86
    [Google Scholar]
  121. Rye DM, Sommer MAI. 1980. Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes. See Rhoads & Lutz 1980 169–202
  122. Sato S. 1995. Spawning periodicity and shell microgrowth patterns of the venerid bivalve Phacosoma japonicum (Reeve, 1850). Veliger 38:61–72
    [Google Scholar]
  123. Schöne BR, Fiebig J, Pfeiffer M, Gleß R, Hickson J et al. 2005a. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 228:130–48
    [Google Scholar]
  124. Schöne BR, Lega J, Flessa KW, Goodwin DH, Dettman DL. 2002. Reconstructing daily temperatures from growth rates of the intertidal bivalve mollusk Chione cortezi (northern Gulf of California, Mexico). Palaeogeogr. Palaeoclimatol. Palaeoecol. 184:131–46
    [Google Scholar]
  125. Schöne BR, Pfeiffer M, Pohlmann T, Siegismund F. 2005b. A seasonally resolved bottom-water temperature record for the period AD 1866–2002 based on shells of Arctica islandica (Mollusca, North Sea). Int. J. Climatol. 25:947–62
    [Google Scholar]
  126. Schöne BR, Surge D. 2012. Part N, Revised, Volume 1, Chapter 14: Bivalve sclerochronology and geochemistry. Treatise Online 46:1–24
    [Google Scholar]
  127. Schöne BR, Zhang Z, Radermacher P, Thébault J, Jacob DE et al. 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302:52–64
    [Google Scholar]
  128. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damste JS. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204:265–74
    [Google Scholar]
  129. Schrag DP, Adkins JF, McIntyre K, Alexander JL, Hodell DA et al. 2002. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21:331–42
    [Google Scholar]
  130. Seager R, Murtugudde R, Naik N, Clement A, Gordon N, Miller J. 2003. Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Clim. 16:1948–66
    [Google Scholar]
  131. Sessa JA, Ivany LC, Schlossnagle T, Samson SD, Schellenberg SA 2012. The fidelity of oxygen and strontium isotope values from shallow shelf settings: implications for temperature and age reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol.342–34327–39
    [Google Scholar]
  132. Shackleton NJ, Kennett JP. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Rep. Deep Sea Drill. Proj. 74:743–55
    [Google Scholar]
  133. Strauss J, Grossman EL, DiMarco SF. 2012. Stable isotope characterization of hypoxia-susceptible waters on the Louisiana shelf: tracing freshwater discharge and benthic respiration. Cont. Shelf Res. 47:7–15
    [Google Scholar]
  134. Sunday JM, Bates AE, Dulvy NK. 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2:686–90
    [Google Scholar]
  135. Swart PK. 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Sci. Rev. 19:51–80
    [Google Scholar]
  136. Thirumalai K, Partin JW, Jackson CS, Quinn TM 2013. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28:401–12
    [Google Scholar]
  137. Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R et al. 2020a. Past climates inform our future. Science 370:eaay3701
    [Google Scholar]
  138. Tierney JE, Tingley MP. 2014. A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim. Cosmochim. Acta 127:83–106
    [Google Scholar]
  139. Tierney JE, Zhu J, King J, Malevich SB, Hakim GJ, Poulsen CJ. 2020b. Glacial cooling and climate sensitivity revisited. Nature 584:569–73
    [Google Scholar]
  140. Tindall J, Flecker R, Valdes P, Schmidt DN, Markwick P, Harris J 2010. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: implications for reconstructing early Eocene climate. Earth Planet. Sci. Lett. 292:265–73
    [Google Scholar]
  141. Titschack J, Zuschin M, Spötl C, Baal C. 2010. The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats. Coral Reefs 29:1061–75
    [Google Scholar]
  142. Urey HC. 1948. Oxygen isotopes in nature and in the laboratory. Science 108:489–96
    [Google Scholar]
  143. Urey HC, Lowenstam HA, Epstein S, McKinney CR. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 62:399–416
    [Google Scholar]
  144. Valentine JW 1983. Seasonality: effects in marine benthic communities. Biotic Interactions in Recent and Fossil Communities MJS Tevesz, PL McCall 121–56 New York: Plenum
    [Google Scholar]
  145. Veizer J, Fritz P, Jones BG 1986. Geochemistry of brachiopods: oxygen and carbon isotopic records of Phanerozoic oceans. Geochim. Cosmochim. Acta 50:1679–96
    [Google Scholar]
  146. Veizer J, Prokoph A. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146:92–104
    [Google Scholar]
  147. Vérard C, Veizer J. 2019. On plate tectonics and ocean temperatures. Geology 47:881–85
    [Google Scholar]
  148. Wefer G, Berger WH. 1980. Stable isotopes in benthic foraminifera: seasonal variation in large tropical species. Science 209:803–5
    [Google Scholar]
  149. Wefer G, Berger WH. 1991. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100:207–48
    [Google Scholar]
  150. Wells JW. 1963. Coral growth and geochronometry. Nature 197:948–50
    [Google Scholar]
  151. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C et al. 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369:1383–87
    [Google Scholar]
  152. Wilkinson BH, Ivany LC. 2002. Paleoclimatic inference from stable isotopic compositions of accretionary biogenic hardparts—a quantitative approach to the evaluation of incomplete data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 185:95–114
    [Google Scholar]
  153. Williams DF, Arthur MA, Jones DS, Healy-Williams N. 1982. Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature 296:432–34
    [Google Scholar]
  154. Wit JC, Reichart G-J, Jung SJA, Kroon D 2010. Approaches to unravel seasonality in sea surface temperatures using paired single-specimen foraminiferal δ18O and Mg/Ca analyses. Paleoceanography 25:PA4220
    [Google Scholar]
  155. Witbaard R, Duineveld GC, Bergman M. 2001. The effect of tidal resuspension on benthic food quality in the southern North Sea. Senckenberg. Marit. 31:225–34
    [Google Scholar]
  156. Woelders L, Vellekoop J, Weltje GJ, de Nooijer L, Reichart G-J et al. 2018. Robust multi-proxy data integration, using late Cretaceous paleotemperature records as a case study. Earth Planet. Sci. Lett. 500:215–24
    [Google Scholar]
  157. Wycech JB, Kelly DC, Kozdon R, Orland IJ, Spero HJ, Valley JW. 2018. Comparison of δ18O analyses on individual planktic foraminifer (Orbulina universa) shells by SIMS and gas-source mass spectrometry. Chem. Geol. 483:119–30
    [Google Scholar]
  158. Zachos JC, Stott LD, Lohmann KC. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9:353–87
    [Google Scholar]
  159. Zander PD, Żarczyński M, Tylmann W, Rainford S-k, Grosjean M. 2021. Seasonal climate signals preserved in biochemical varves: insights from novel high-resolution sediment scanning techniques. Clim. Past 17:2055–71
    [Google Scholar]
  160. Zhou J, Poulsen C, Pollard D, White T. 2008. Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model. Paleoceanography 23:PA3223
    [Google Scholar]
  161. Zhu J, Poulsen CJ, Otto-Bliesner BL, Liu Z, Brady EC, Noone DC 2020. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. Earth Planet. Sci. Lett. 537:116164
    [Google Scholar]
  162. Zhu J, Poulsen CJ, Tierney JE. 2019. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv. 5:eaax1874
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-095156
Loading
/content/journals/10.1146/annurev-earth-032320-095156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error