1932

Abstract

Plant defense compounds play a key role in the evolution of insect–plant associations by selecting for behavioral, morphological, and physiological insect adaptations. Sequestration, the ability of herbivorous insects to accumulate plant defense compounds to gain a fitness advantage, represents a complex syndrome of adaptations that has evolved in all major lineages of herbivorous insects and involves various classes of plant defense compounds. In this article, we review progress in understanding how insects selectively accumulate plant defense metabolites and how the evolution of specific resistance mechanisms to these defense compounds enables sequestration. These mechanistic considerations are further integrated into the concept of insect–plant coevolution. Comparative genome and transcriptome analyses, combined with approaches based on analytical chemistry that are centered in phylogenetic frameworks, will help to reveal adaptations underlying the sequestration syndrome, which is essential to understanding the influence of sequestration on insect–plant coevolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-062821-062319
2022-01-07
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-062821-062319.html?itemId=/content/journals/10.1146/annurev-ento-062821-062319&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdalsamee MK, Giampa M, Niehaus K, Müller C 2014. Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases. Insect Biochem. Mol. Biol. 52:115–23
    [Google Scholar]
  2. 2. 
    Aldrich JR, Avery JW, Lee CJ, Graf JC, Harrison DJ, Bin F. 1996. Semiochemistry of cabbage bugs (Heteroptera: Pentatomidae: Eurydema and Murgantia). J. Entomol. Sci. 31:2172–82
    [Google Scholar]
  3. 3. 
    Aliabadi A, Renwick JAA, Whitman DW. 2002. Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J. Chem. Ecol. 28:91749–62
    [Google Scholar]
  4. 4. 
    Arias M, Meichanetzoglou A, Elias M, Rosser N, de-Silva DL et al. 2016. Variation in cyanogenic compounds concentration within a Heliconius butterfly community: Does mimicry explain everything?. BMC Evol. Biol. 16:272
    [Google Scholar]
  5. 5. 
    Baden CU, Franke S, Dobler S 2013. Host dependent iridoid glycoside sequestration patterns in Cionus hortulanus. J. Chem. Ecol. 39:1112–14
    [Google Scholar]
  6. 6. 
    Barbehenn RV. 1992. Digestion of uncrushed leaf tissues by leaf-snipping larval Lepidoptera. Oecologia 89:229–35
    [Google Scholar]
  7. 7. 
    Becerra JX. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–56
    [Google Scholar]
  8. 8. 
    Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N et al. 2014. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. PNAS 111:207349–54
    [Google Scholar]
  9. 9. 
    Berenbaum MR 1986. Target site sensitivity in insect-plant interactions. Molecular Aspects of Insect–Plant Associations S Ahmed, LB Brattsten 257–72 Berlin: Springer
    [Google Scholar]
  10. 10. 
    Bessie IU, Agboola FK 2013. Detoxification of cyanide in insects. I. Purification and some properties of rhodanese from the gut of the variegated grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae). Int. J. Trop. Insect Sci. 33:3153–62
    [Google Scholar]
  11. 11. 
    Boland W. 2015. Sequestration of plant-derived glycosides by leaf beetles: a model system for evolution and adaptation. Perspect. Sci. 6:38–48
    [Google Scholar]
  12. 12. 
    Boppré M. 1984. Redefining pharmacophagy. J. Chem. Ecol. 10:71151–54
    [Google Scholar]
  13. 13. 
    Bramer C, Dobler S, Deckert J, Stemmer M, Petschenka G. 2015. Na+/K+-ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae). Proc. Biol. Sci. 282:20142346
    [Google Scholar]
  14. 14. 
    Bramer C, Friedrich F, Dobler S 2017. Defence by plant toxins in milkweed bugs (Heteroptera: Lygaeinae) through the evolution of a sophisticated storage compartment. Syst. Entomol. 42:15–30
    [Google Scholar]
  15. 15. 
    Bridges M, Jones AME, Bones AM, Hodgson C, Cole R et al. 2002. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. Biol. Sci. 269:187–91
    [Google Scholar]
  16. 15a. 
    Brower LP, Van Zandt Brower J, Corvino JM 1967. Plant poisons in a terrestrial food chain. PNAS 57:4893–98
    [Google Scholar]
  17. 16. 
    Bruno P, Machado RAR, Glauser G, Kohler A, Campos-Herrera R et al. 2020. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10:8257
    [Google Scholar]
  18. 17. 
    Clark TM. 1999. Evolution and adaptive significance of larval midgut alkalinization in the insect superorder Mecopterida. J. Chem. Ecol. 25:81945–60
    [Google Scholar]
  19. 18. 
    de Castro ECP, Zagrobelny M, Zurano JP, Cardoso MZ, Feyereisen R, Bak S 2019. Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecol. Evol. 9:5079–93
    [Google Scholar]
  20. 19. 
    Dermauw W, Van Leeuwen T. 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45:89–110
    [Google Scholar]
  21. 20. 
    Després L, David JP, Gallet C 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22:298–307
    [Google Scholar]
  22. 21. 
    Detzel A, Wink M. 1995. Evidence for a cardenolide carrier in Oncopeltus fasciatus (Dallas) (Insecta, Hemiptera). Z. Naturforsch. C 50:127–34
    [Google Scholar]
  23. 22. 
    Discher S, Burse A, Tolzin-Banasch K, Heinemann SH, Pasteels JM, Boland W. 2009. A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. Chembiochem 10:132223–29
    [Google Scholar]
  24. 23. 
    Dobler S, Dalla S, Wagschal V, Agrawal AA 2012. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. PNAS 109:3213040–45
    [Google Scholar]
  25. 24. 
    Dobler S, Petschenka G, Wagschal V, Flacht L 2015. Convergent adaptive evolution: how insects master the challenge of cardiac glycoside-containing host plants. Entomol. Exp. Appl. 157:130–39
    [Google Scholar]
  26. 25. 
    Dobler S, Wagschal V, Pietsch N, Dandouli N, Meinzer F et al. 2019. New ways to acquire resistance: imperfect convergence in insect adaptations to a potent plant toxin. Proc. Biol. Sci. 286:20190883
    [Google Scholar]
  27. 26. 
    Duffey SS. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25:447–77
    [Google Scholar]
  28. 27. 
    Dyer LA. 1995. Tasty generalists and nasty specialists: antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:51483–96
    [Google Scholar]
  29. 28. 
    Edgar JA 1984. Parsonsieae: ancestral food plants of the Danainae and Ithomiinae. The Biology of Butterflies RI Vane-Wright, PR Ackery 91–96 London: Academic
    [Google Scholar]
  30. 29. 
    Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Gloeckner G et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:278362–66
    [Google Scholar]
  31. 30. 
    Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:4586–608
    [Google Scholar]
  32. 31. 
    Endara MJ, Coley PD, Ghabash G, Nicholls JA, Dexter KG et al. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system. PNAS 114:36E7499–505
    [Google Scholar]
  33. 32. 
    Engler-Chaouat HS, Gilbert LE. 2007. De novo synthesis versus sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33:125–42
    [Google Scholar]
  34. 33. 
    Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. Int. J. Mol. Sci. 14:510242–97
    [Google Scholar]
  35. 34. 
    Fürstenberg-Hägg J, Zagrobelny M, Jorgensen K, Vogel H, Møller BL, Bak S. 2014. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist. PLOS ONE 9:10e108756
    [Google Scholar]
  36. 35. 
    Fürstenberg-Hägg J, Zagrobelny M, Olsen CE, Jorgensen K, Møller BL, Bak S. 2014. Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera). Insect Biochem. Mol. Biol. 49:80–89
    [Google Scholar]
  37. 36. 
    Gentry GL, Dyer LA. 2002. On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:113108–19
    [Google Scholar]
  38. 37. 
    Haase E. 1893. Untersuchungen über die Mimikry auf der Grundlage eines natürlichen Systems der Papilioniden. 2. Untersuchungen über die Mikimry Stuttgart, Ger: Erwin Nägele
  39. 38. 
    Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM 1999. Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J. Insect Physiol. 45:121085–95
    [Google Scholar]
  40. 39. 
    Heckel DG. 2014. Insect detoxification and sequestration strategies. Annu. Plant Rev. 47:77–114
    [Google Scholar]
  41. 40. 
    Herde M, Howe GA. 2014. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem. Mol. Biol. 50:58–67
    [Google Scholar]
  42. 41. 
    Herfurth AM, van Ohlen M, Wittstock U. 2017. β-Cyanoalanine synthases and their possible role in pierid host plant adaptation. Insects 8:262
    [Google Scholar]
  43. 42. 
    Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. 2019. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 377:3397–414
    [Google Scholar]
  44. 43. 
    Karageorgi M, Groen SC, Sumbul F, Pelaez JN, Verster KI et al. 2019. Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574:7778409–12
    [Google Scholar]
  45. 44. 
    Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA et al. 2007. The cabbage aphid: a walking mustard oil bomb. Proc. Biol. Sci. 274:16232271–77
    [Google Scholar]
  46. 45. 
    Kowalski P, Baum M, Korten M, Donath A, Dobler S 2020. ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc. Biol. Sci. 287:20201311
    [Google Scholar]
  47. 46. 
    Kugelberg O, Solbreck C. 1972. Field observations on the seasonal occurrence of Lygaeus equestris (L.) (Het., Lygaeidae) with special reference to food plant phenology. Insect Syst. Evol. 3:3189–210
    [Google Scholar]
  48. 47. 
    Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A et al. 2004. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. PNAS 101:3813808–13
    [Google Scholar]
  49. 48. 
    Kuhn J, Pettersson EM, Feld BK, Nie LH, Tolzin-Banasch K et al. 2007. Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes. J. Chem. Ecol. 33:15–24
    [Google Scholar]
  50. 49. 
    Kumar P, Pandit SS, Steppuhn A, Baldwin IT 2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense. PNAS 111:41245–52
    [Google Scholar]
  51. 50. 
    Labeyrie E, Dobler S 2004. Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol. Biol. Evol. 21:2218–21
    [Google Scholar]
  52. 51. 
    Lampert EC, Bowers MD. 2010. Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J. Chem. Ecol. 36:101101–4
    [Google Scholar]
  53. 52. 
    Lampert EC, Dyer LA, Bowers MD. 2010. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae. J. Chem. Ecol. 36:9992–98
    [Google Scholar]
  54. 53. 
    Lampert EC, Dyer LA, Bowers MD. 2014. Dietary specialization and the effects of plant species on potential multitrophic interactions of three species of nymphaline caterpillars. Entomol. Exp. Appl. 153:3207–16
    [Google Scholar]
  55. 54. 
    Livshultz T, Kaltenegger E, Straub SCK, Weitemier K, Hirsch E et al. 2018. Evolution of pyrrolizidine alkaloid biosynthesis in Apocynaceae: revisiting the defence de-escalation hypothesis. New Phytol 218:2762–73
    [Google Scholar]
  56. 55. 
    Maddrell SH, Gardiner BO. 1974. Passive permeability of insect Malpighian tubules to organic solutes. J. Exp. Biol. 60:3641–52
    [Google Scholar]
  57. 56. 
    Maddrell SHP, Gardiner BOC. 1976. Excretion of alkaloids by Malpighian tubules of insects. J. Exp. Biol. 64:2267–81
    [Google Scholar]
  58. 57. 
    Malcolm SB. 1994. Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology 5:101–17
    [Google Scholar]
  59. 58. 
    Malka O, Easson MLAE, Paetz C, Gotz M, Reichelt M et al. 2020. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 16:121420–26
    [Google Scholar]
  60. 59. 
    Malka O, Shekhov A, Reichelt M, Gershenzon J, Vassao DG, Morin S. 2016. Glucosinolate desulfation by the phloem-feeding insect Bemisia tabaci. J. Chem. Ecol. 42:3230–35
    [Google Scholar]
  61. 60. 
    Maron JL, Agrawal AA, Schemske DW. 2019. Plant-herbivore coevolution and plant speciation. Ecology 100:7e02704
    [Google Scholar]
  62. 61. 
    Meredith J, Moore L, Scudder GGE 1984. Excretion of ouabain by Malpighian tubules of Oncopeltus fasciatus. Am. J. Physiol. 246:5R705–15
    [Google Scholar]
  63. 62. 
    Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63:431–50
    [Google Scholar]
  64. 63. 
    Morris CE. 1984. Electrophysiological effects of cholinergic agents on the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta). J. Exp. Zool. 229:3361–74
    [Google Scholar]
  65. 64. 
    Müller C, Wittstock U. 2005. Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem. Mol. Biol. 35:1189–98
    [Google Scholar]
  66. 65. 
    Naumann C, Hartmann T, Ober D. 2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. PNAS 99:96085–90
    [Google Scholar]
  67. 66. 
    Nishida R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47:57–92
    [Google Scholar]
  68. 67. 
    Opitz SEW, Boeve JL, Nagy ZT, Sonet G, Koch F, Müller C. 2012. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLOS ONE 7:4e33649
    [Google Scholar]
  69. 68. 
    Opitz SEW, Jensen SR, Müller C. 2010. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J. Chem. Ecol. 36:2148–57
    [Google Scholar]
  70. 69. 
    Opitz SEW, Mix A, Winde IB, Müller C. 2011. Desulfation followed by sulfation: metabolism of benzylglucosinolate in Athalia rosae (Hymenoptera: Tenthredinidae). Chembiochem 12:81252–57
    [Google Scholar]
  71. 70. 
    Opitz SEW, Müller C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:3117–54
    [Google Scholar]
  72. 71. 
    Pasteels JM, Termonia A, Windsor DM, Witte L, Theuring C, Hartmann T. 2001. Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:3113–20
    [Google Scholar]
  73. 72. 
    Pentzold S, Zagrobelny M, Khakimov B, Engelsen SB, Clausen H et al. 2016. Lepidopteran defence droplets: a composite physical and chemical weapon against potential predators. Sci. Rep. 6:22407
    [Google Scholar]
  74. 73. 
    Pentzold S, Zagrobelny M, Roelsgaard PS, Møller BL, Bak S. 2014. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. PLOS ONE 9:3e91337
    [Google Scholar]
  75. 74. 
    Pentzold S, Zagrobelny M, Rook F, Bak S. 2014. How insects overcome two-component plant chemical defence: plant beta-glucosidases as the main target for herbivore adaptation. Biol. Rev. 89:531–51
    [Google Scholar]
  76. 75. 
    Petschenka G, Agrawal AA. 2015. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc. Biol. Sci. 282:20151865
    [Google Scholar]
  77. 76. 
    Petschenka G, Agrawal AA. 2016. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14:17–24
    [Google Scholar]
  78. 77. 
    Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. 2013. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+ -ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:92753–61
    [Google Scholar]
  79. 78. 
    Petschenka G, Halitschke R, Roth A, Stiehler S, Tenbusch L et al. 2020. Predation drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). bioRxiv 2020.06.16.150730. https://doi.org/10.1101/2020.06.16.150730
    [Crossref]
  80. 79. 
    Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S 2017. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190:S1S29–43
    [Google Scholar]
  81. 80. 
    Rahfeld P, Haeger W, Kirsch R, Pauls G, Becker T et al. 2015. Glandular beta-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense. Insect Biochem. Mol. Biol. 58:28–38
    [Google Scholar]
  82. 81. 
    Rahfeld P, Kirsch R, Kugel S, Wielsch N, Stock M et al. 2014. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve. Proc. Biol. Sci. 281:178820140842
    [Google Scholar]
  83. 82. 
    Reudler JH, Biere A, Harvey JA, van Nouhuys S. 2011. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. J. Chem. Ecol. 37:7765–78
    [Google Scholar]
  84. 83. 
    Robert CAM, Zhang X, Machado RAR, Schirmer S, Lori M et al. 2017. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 6:e29307
    [Google Scholar]
  85. 84. 
    Rosenthal GA, Dahlman DL, Janzen DH. 1976. Novel means for dealing with L-canavanine, a toxic metabolite. Science 192:4236256–58
    [Google Scholar]
  86. 85. 
    Schmidt L, Wielsch N, Wang D, Boland W, Burse A 2019. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. Insect Biochem. Mol. Biol. 109:81–91
    [Google Scholar]
  87. 86. 
    Scudder GGE, Meredith J. 1982. Morphological basis of cardiac glycoside sequestration by Oncopeltus fasciatus (Dallas) (Hemiptera, Lygaeidae). Zoomorphology 99:287–101
    [Google Scholar]
  88. 87. 
    Scudder GGE, Meredith J. 1982. The permeability of the midgut of three insects to cardiac glycosides. J. Insect Physiol. 28:8689–94
    [Google Scholar]
  89. 88. 
    Sehlmeyer S, Wang LZ, Langel D, Heckel DG, Mohagheghi H et al. 2010. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the Arctiids (Lepidoptera). PLOS ONE 5:5e10435
    [Google Scholar]
  90. 89. 
    Singer MS, Bernays EA. 2009. Specialized generalists: behavioral and evolutionary ecology of polyphagous woolly bear caterpillars. Tiger Moths and Woolly Bears WE Conner Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  91. 90. 
    Smilanich AM, Dyer LA, Chambers JQ, Bowers MD. 2009. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 12:7612–21
    [Google Scholar]
  92. 91. 
    Song S, Kim S, Kwon SW, Lee SI, Jablonski PG. 2018. Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Sci. Rep. 8:16831
    [Google Scholar]
  93. 92. 
    Sorensen JS, Dearing MD. 2006. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J. Chem. Ecol. 32:61181–96
    [Google Scholar]
  94. 93. 
    Sporer T, Körnig J, Beran F. 2020. Ontogenetic differences in the chemical defence of flea beetles influence their predation risk. Funct. Ecol. 34:71370–79
    [Google Scholar]
  95. 94. 
    Sporer T, Körnig J, Wielsch N, Gebauer-Jung S, Reichelt M et al. 2021. Hijacking the mustard-oil bomb: how a glucosinolate-sequestering flea beetle copes with plant myrosinases. Front. Plant Sci. 12:645030
    [Google Scholar]
  96. 95. 
    Steiner AM, Busching C, Vogel H, Wittstock U. 2018. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci. Rep. 8:10819
    [Google Scholar]
  97. 96. 
    Stenoien CM, Meyer RA, Nail KR, Zalucki MP, Oberhauser KS. 2019. Does chemistry make a difference? Milkweed butterfly sequestered cardenolides as a defense against parasitoid wasps. Arthropod Plant Interact 13:6835–52
    [Google Scholar]
  98. 97. 
    Strauss AS, Peters S, Boland W, Burse A. 2013. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2:e01096
    [Google Scholar]
  99. 98. 
    Strauss AS, Wang D, Stock M, Gretscher RR, Groth M et al. 2014. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi. PLOS ONE 9:6e98637
    [Google Scholar]
  100. 99. 
    Sun R, Jiang XC, Reichelt M, Gershenzon J, Vassao DG 2021. The selective sequestration of gluco-sinolates by the cabbage aphid severely impacts a predatory lacewing. J. Pest. Sci. 94:1147–60
    [Google Scholar]
  101. 100. 
    Taverner AM, Yang L, Barile ZJ, Lin B, Peng J et al. 2019. Adaptive substitutions underlying cardiac glycoside insensitivity in insects exhibit epistasis in vivo. eLife 8:e48224
    [Google Scholar]
  102. 100a. 
    Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC 2001. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. PNAS 98:73909–14
    [Google Scholar]
  103. 101. 
    Termonia A, Pasteels JM, Windsor DM, Milinkovitch MC. 2002. Dual chemical sequestration: a key mechanism in transitions among ecological specialization. Proc. Biol. Sci. 269:14861–6
    [Google Scholar]
  104. 102. 
    van Geem M, Harvey JA, Gols R 2014. Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey. Naturwissenschaften 101:9707–14
    [Google Scholar]
  105. 103. 
    van Ohlen M, Herfurth AM, Kerbstadt H, Wittstock U. 2016. Cyanide detoxification in an insect herbivore: molecular identification of beta-cyanoalanine synthases from Pieris rapae. Insect Biochem. Mol. Biol. 70:99–110
    [Google Scholar]
  106. 104. 
    Wahlberg N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:3522–37
    [Google Scholar]
  107. 105. 
    Wang LZ, Beuerle T, Timbilla J, Ober D 2012. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths. PLOS ONE 7:2e31796
    [Google Scholar]
  108. 106. 
    Wink M. 2009. Mode of action and toxicology of plant toxins and poisonous plants. Julius-Kühn Arch 421:493–112
    [Google Scholar]
  109. 107. 
    Xia QS, Ma L, He XB, Cai LN, Fu PP. 2015. 7-Glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem. Res. Toxicol. 28:615–20
    [Google Scholar]
  110. 108. 
    Yang Z-L, Kunert G, Sporer T, Körnig J, Beran F 2020. Glucosinolate abundance and composition in Brassicaceae influence sequestration in a specialist flea beetle. J. Chem. Ecol. 46:2186–97
    [Google Scholar]
  111. 109. 
    Yang Z-L, Nour-Eldin HH, Haenniger S, Reichelt M, Crocoll C et al. 2021. Sugar transporters enable a leaf beetle to accumulate plant defense compounds. Nat. Commun. 12:2658
    [Google Scholar]
  112. 110. 
    Zagrobelny M, Bak S, Ekstrom CT, Olsen CE, Møller BL. 2007. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem. Mol. Biol. 37:10–18
    [Google Scholar]
  113. 111. 
    Zagrobelny M, Olsen CE, Pentzold S, Fürstenberg-Hägg J, Jorgensen K et al. 2014. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Insect Biochem. Mol. Biol. 44:44–53
    [Google Scholar]
  114. 112. 
    Zhang X, van Doan C, Arce CCM, Hu LF, Gruenig S et al. 2019. Plant defense resistance in natural enemies of a specialist insect herbivore. PNAS 116:4623174–81
    [Google Scholar]
  115. 113. 
    Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. 2012. Parallel molecular evolution in an herbivore community. Science 337:61021634–37
    [Google Scholar]
  116. 114. 
    Züst T, Agrawal AA. 2016. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30:4547–56
    [Google Scholar]
  117. 115. 
    Zvereva EL, Zverev V, Kruglova OY, Kozlov MV. 2017. Strategies of chemical anti-predator defences in leaf beetles: Is sequestration of plant toxins less costly than de novo synthesis?. Oecologia 183:193–106
    [Google Scholar]
/content/journals/10.1146/annurev-ento-062821-062319
Loading
/content/journals/10.1146/annurev-ento-062821-062319
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error