1932

Abstract

In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of . With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-070721-091828
2022-01-07
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-070721-091828.html?itemId=/content/journals/10.1146/annurev-ento-070721-091828&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Andersson MN. 2012. Mechanisms of odor coding in coniferous bark beetles: from neuron to behavior and application. Psyche 2012:149572
    [Google Scholar]
  2. 2. 
    Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K et al. 2020. Olfactory receptor and circuit evolution promote host specialization. Nature 579:7799402–8
    [Google Scholar]
  3. 3. 
    Azanchi R, Kaun KR, Heberlein U. 2013. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. PNAS 110:5221153–58
    [Google Scholar]
  4. 4. 
    Baker RA. 1997. Reassessment of some fruit and vegetable pectin levels. J. Food Sci. 62:2225–29
    [Google Scholar]
  5. 5. 
    Becher PG, Bengtsson M, Hansson BS, Witzgall P. 2010. Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J. Chem. Ecol. 36:6599–607
    [Google Scholar]
  6. 6. 
    Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A et al. 2012. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct. Ecol. 26:4822–28
    [Google Scholar]
  7. 7. 
    Bellen HJ. 1998. The fruit fly: a model organism to study the genetics of alcohol abuse and addiction?. Cell 93:6909–12
    [Google Scholar]
  8. 8. 
    Benton R, Vannice KS, Vosshall LB. 2007. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:7167289–93
    [Google Scholar]
  9. 9. 
    Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp JM et al. 2018. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila. PLOS Genet 14:4e1007328
    [Google Scholar]
  10. 10. 
    Billeter J-C, Levine JD. 2015. The role of cVA and the odorant binding protein LUSH in social and sexual behavior in Drosophila melanogaster. Front. Ecol. Evol. 3:00075
    [Google Scholar]
  11. 11. 
    Bokor K, Pecsenye K. 2000. Differences in the effect of ethanol on fertility and viability components among laboratory strains of Drosophila melanogaster. Hereditas 132:3215–27
    [Google Scholar]
  12. 12. 
    Cavener D. 1979. Preference for ethanol in Drosophila melanogaster associated with the alcohol dehydrogenase polymorphism. Behav. Genet. 9:5359–65
    [Google Scholar]
  13. 13. 
    Chaiyasut C, Jantavong S, Kruatama C, Peerajan S, Sirilun S, Shank L 2013. Factors affecting methanol content of fermented plant beverage containing Morinda citrifolia. Afr. J. Biotechnol. 12:274356–63
    [Google Scholar]
  14. 14. 
    Chakir M, Peridy O, Capy P, Pla E, David JR 1993. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid. PNAS 90:83621–25
    [Google Scholar]
  15. 15. 
    Chen J, Zhang Y, Shen P. 2008. A protein kinase C activity localized to neuropeptide Y-like neurons mediates ethanol intoxication in Drosophila melanogaster. Neuroscience 156:142–47
    [Google Scholar]
  16. 16. 
    Cherry R, Bhadha J 2018. Response of sugarcane wireworms (Coleoptera: Elateridae) and white grubs (Coleoptera: Scarabaeidae) to ethanol in soil. J. Entomol. Sci. 54:154–60
    [Google Scholar]
  17. 17. 
    Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B et al. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:7167203–18
    [Google Scholar]
  18. 18. 
    Crowley-Gall A, Date P, Han C, Rhodes N, Andolfatto P et al. 2016. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc. R. Soc. B 283:183720161562
    [Google Scholar]
  19. 19. 
    Das S, Trona F, Khallaf MA, Schuh E, Knaden M et al. 2017. Electrical synapses mediate synergism between pheromone and food odors in Drosophila melanogaster. PNAS 114:46E9962–71
    [Google Scholar]
  20. 20. 
    Dekker T, Revadi S, Mansourian S, Ramasamy S, Lebreton S et al. 2015. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc. R. Soc. B 282:180420143018
    [Google Scholar]
  21. 21. 
    Devineni AV, Heberlein U. 2009. Preferential ethanol consumption in Drosophila models features of addiction. Curr. Biol. 19:242126–32
    [Google Scholar]
  22. 22. 
    Devineni AV, Heberlein U. 2012. Acute ethanol responses in Drosophila are sexually dimorphic. PNAS 109:5121087–92
    [Google Scholar]
  23. 23. 
    Devineni AV, Heberlein U. 2013. The evolution of Drosophila melanogaster as a model for alcohol research. Annu. Rev. Neurosci. 36:121–38
    [Google Scholar]
  24. 24. 
    Diegelmann S, Jansen A, Jois S, Kastenholz K, Escarcena LV et al. 2017. The CApillary FEeder assay measures food intake in Drosophila melanogaster. J. Vis. Exp. 121:55024
    [Google Scholar]
  25. 25. 
    Dweck HKM, Ebrahim SAM, Kromann S, Bown D, Hillbur Y et al. 2013. Olfactory preference for egg laying on citrus substrates in Drosophila. Curr. Biol. 23:242472–80
    [Google Scholar]
  26. 26. 
    Dweck HKM, Ebrahim SAM, Thoma M, Mohamed AAM, Keesey IW et al. 2015. Pheromones mediating copulation and attraction in Drosophila. PNAS 112:21E2829–35
    [Google Scholar]
  27. 27. 
    Ebrahim SAM, Dweck HKM, Stökl J, Hofferberth JE, Trona F et al. 2015. Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLOS Biol 13:12e1002318
    [Google Scholar]
  28. 28. 
    Eisses KT. 1997. The influence of 2-propanol and acetone on oviposition rate and oviposition site preference for acetic acid and ethanol of Drosophila melanogaster. Behav. Genet. 27:3171–80
    [Google Scholar]
  29. 29. 
    Engel GL, Taber K, Vinton E, Crocker AJ 2019. Studying alcohol use disorder using Drosophila melanogaster in the era of “Big Data. .” Behav. Brain Funct. 15:7
    [Google Scholar]
  30. 30. 
    Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GSB et al. 2016. Humidity sensing in Drosophila. Curr. Biol. 26:101352–58
    [Google Scholar]
  31. 31. 
    Fischer C, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. 2017. Metabolite exchange between microbiome members produces compounds that influence drosophila behavior. eLife 6:e18855
    [Google Scholar]
  32. 32. 
    Fisher YE, Lu J, D'Alessandro I, Wilson RI 2019. Sensorimotor experience remaps visual input to a heading-direction network. Nature 576:7785121–25
    [Google Scholar]
  33. 33. 
    Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15:232086–96
    [Google Scholar]
  34. 34. 
    Frenkel C, Peters JS, Tieman DM, Tiznado ME, Handa AK. 1998. Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J. Biol. Chem. 273:84293–95
    [Google Scholar]
  35. 35. 
    Fry JD. 2014. Mechanisms of naturally evolved ethanol resistance in Drosophila melanogaster. J. Exp. Biol. 217:223996–4003
    [Google Scholar]
  36. 36. 
    Fry JD, Saweikis M. 2006. Aldehyde dehydrogenase is essential for both adult and larval ethanol resistance in Drosophila melanogaster. Genet. Res. 87:287–92
    [Google Scholar]
  37. 37. 
    Geer BW, Langevin ML, McKechnie SW. 1985. Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem. Genet. 23:7–8607–22
    [Google Scholar]
  38. 38. 
    Giang T, He J, Belaidi S, Scholz H 2017. Key odorants regulate food attraction in Drosophila melanogaster. Front. Behav. Neurosci. 11:160
    [Google Scholar]
  39. 39. 
    Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH 2018. Sun navigation requires compass neurons in Drosophila. Curr. Biol. 28:172845–52.e4
    [Google Scholar]
  40. 40. 
    Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH et al. 2016. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat. Commun. 7:11866
    [Google Scholar]
  41. 41. 
    Grewal JS, Nguyen C, Robles R, Cho C, Kir K et al. 2014. Complex and non-redundant signals from individual odor receptors that underlie chemotaxis behavior in Drosophila melanogaster larvae. Biol. Open 3:10947–57
    [Google Scholar]
  42. 42. 
    Guillou A, Troha K, Wang H, Franc NC, Buchon N. 2016. The Drosophila CD36 homologue croquemort is required to maintain immune and gut homeostasis during development and aging. PLOS Pathog 12:10e1005961
    [Google Scholar]
  43. 43. 
    Hampel S, McKellar CE, Simpson JH, Seeds AM. 2017. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila. eLife 6:e28804
    [Google Scholar]
  44. 44. 
    Hiwilepo-van Hal P, Bille PG, Verkerk R, van Boekel MAJS, Dekker M. 2014. A review of the proximate composition and nutritional value of Marula (Sclerocarya birrea subsp. caffra). Phytochem. Rev. 13:4881–92
    [Google Scholar]
  45. 45. 
    Hoffmann A. 1983. Bidirectional selection for olfactory response to acetaldehyde and ethanol in Drosophila melanogaster. Genet. Sel. Evol. 15:4501–18
    [Google Scholar]
  46. 46. 
    Ja WW, Carvalho GB, Mak EM, De La, Rosa NN, Fang AY et al. 2007. Prandiology of Drosophila and the CAFE assay. PNAS 104:208253–56
    [Google Scholar]
  47. 47. 
    Joseph RM, Devineni AV, King IFG, Heberlein U 2009. Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. PNAS 106:2711352–57
    [Google Scholar]
  48. 48. 
    Kacsoh BZ, Bozler J, Bosco G. 2018. Drosophila species learn dialects through communal living. PLOS Genet 14:7e1007430
    [Google Scholar]
  49. 49. 
    Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. 2019. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J 13:71788–800
    [Google Scholar]
  50. 50. 
    Karageorgi M, Bräcker LB, Lebreton S, Minervino C, Cavey M et al. 2017. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27:6847–53
    [Google Scholar]
  51. 51. 
    Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U. 2011. A Drosophila model for alcohol reward. Nat. Neurosci. 14:5612–21
    [Google Scholar]
  52. 52. 
    Kaun KR, Devineni AV, Heberlein U. 2012. Drosophila melanogaster as a model to study drug addiction. Hum. Genet. 131:6959–75
    [Google Scholar]
  53. 53. 
    Keesey IW, Doll G, Das Chakraborty S, Baschwitz A, Lemoine M et al. 2020. Alcohol boosts pheromone production in male flies and makes them sexier. bioRxiv 2020.08.09.242784. https://doi.org/10.1101/2020.08.09.242784
    [Crossref]
  54. 54. 
    Keesey IW, Grabe V, Gruber L, Koerte S, Obiero GF et al. 2019. Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat. Commun. 10:1162
    [Google Scholar]
  55. 55. 
    Keesey IW, Knaden M, Hansson BS. 2015. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41:2121–28
    [Google Scholar]
  56. 56. 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A et al. 2017. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat. Commun. 8:265
    [Google Scholar]
  57. 57. 
    Keesey IW, Koerte S, Retzke T, Haverkamp A, Hansson BS, Knaden M. 2016. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42:8739–47
    [Google Scholar]
  58. 58. 
    Kim MS, Repp A, Smith DP 1998. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150:2711–21
    [Google Scholar]
  59. 59. 
    Kim MS, Smith DP. 2001. The invertebrate odorant-binding protein LUSH is required for normal olfactory behavior in Drosophila. Chem. Senses 26:2195–99
    [Google Scholar]
  60. 60. 
    Kimmerer TW, Kozlowski TT. 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69:4840–47
    [Google Scholar]
  61. 61. 
    Koerte S, Keesey IW, Easson MLAE, Gershenzon J, Hansson BS, Knaden M. 2020. Variable dependency on associated yeast communities influences host range in Drosophila species. Oikos 129:7964–82
    [Google Scholar]
  62. 62. 
    Kruse SW, Zhao R, Smith DP, Jones DNM. 2003. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10:9694–700
    [Google Scholar]
  63. 63. 
    Kurtovic A, Widmer A, Dickson BJ. 2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:7135542–46
    [Google Scholar]
  64. 64. 
    Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET et al. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:7190987–90
    [Google Scholar]
  65. 65. 
    Lasbleiz C, Ferveur JF, Everaerts C. 2006. Courtship behaviour of Drosophila melanogaster revisited. Anim. Behav. 72:51001–12
    [Google Scholar]
  66. 66. 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA et al. 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 15:188
    [Google Scholar]
  67. 67. 
    Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG et al. 2014. Love makes smell blind: Mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci. Rep. 4:7119
    [Google Scholar]
  68. 68. 
    Lebreton S, Trona F, Borrero-Echeverry F, Bilz F, Grabe V et al. 2015. Feeding regulates sex pheromone attraction and courtship in Drosophila females. Sci. Rep. 5:13132
    [Google Scholar]
  69. 69. 
    Lesk C, Coffel E, D'Amato AW, Dodds K, Horton R 2017. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7:10713–17
    [Google Scholar]
  70. 70. 
    Lin CC, Potter CJ. 2015. Re-classification of Drosophila melanogaster trichoid and intermediate sensilla using fluorescence-guided single sensillum recording. PLOS ONE 10:10e0139675
    [Google Scholar]
  71. 71. 
    Lin HH, Cao DS, Sethi S, Zeng Z, Chin JSR et al. 2016. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90:61272–85
    [Google Scholar]
  72. 72. 
    Linneweber GA, Andriatsilavo M, Dutta SB, Bengochea M, Hellbruegge L et al. 2020. A neurodevelopmental origin of behavioral individuality in the Drosophila visual system. Science 367:64821112–19
    [Google Scholar]
  73. 73. 
    Lynch ZR, Schlenke TA, Morran LT, de Roode JC. 2017. Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster. PLOS ONE 12:7e0180182
    [Google Scholar]
  74. 74. 
    Mansourian S, Enjin A, Jirle EV, Ramesh V, Rehermann G et al. 2018. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28:243960–68.e3
    [Google Scholar]
  75. 75. 
    Mansourian S, Stensmyr MC. 2015. The chemical ecology of the fly. Curr. Opin. Neurobiol. 34:95–102
    [Google Scholar]
  76. 76. 
    Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M et al. 2013. Functional diversity among sensory receptors in a Drosophila olfactory circuit. PNAS 110:23E2134–43
    [Google Scholar]
  77. 77. 
    Maze IS, Wright GA, Mustard JA. 2006. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera). J. Insect Physiol. 52:11–121243–53
    [Google Scholar]
  78. 78. 
    Mazzoni V, Anfora G, Virant-Doberlet M. 2013. Substrate vibrations during courtship in three Drosophila species. PLOS ONE 8:11e80708
    [Google Scholar]
  79. 79. 
    McKechnie SW, Geer BW. 1984. Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochem 14:2231–42
    [Google Scholar]
  80. 80. 
    McKenzie JA, McKechnie SW. 1979. A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40:3299–309
    [Google Scholar]
  81. 81. 
    McKenzie JA, Parsons PA. 1972. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia 10:4373–88
    [Google Scholar]
  82. 82. 
    Meijerink J, Braks MAH, Van Loon JJA. 2001. Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J. Insect Physiol. 47:4–5455–64
    [Google Scholar]
  83. 83. 
    Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF et al. 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr. Biol. 30:1127–34.e5
    [Google Scholar]
  84. 84. 
    Mercot H, Defaye D, Capy P, Pla E, David JR 1994. Alcohol tolerance, ADH activity, and ecological niche of Drosophila. Evolution 48:3746–57
    [Google Scholar]
  85. 85. 
    Milan NF, Kacsoh BZ, Schlenke TA. 2012. Alcohol consumption as self-medication against blood-borne parasites in the fruit fly. Curr. Biol. 22:6488–93
    [Google Scholar]
  86. 86. 
    Miller DR. 2006. Ethanol and (-)-α-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. J. Chem. Ecol. 32:4779–94
    [Google Scholar]
  87. 87. 
    Miller DR, Crowe CM, Dodds KJ, Galligan LD, De Groot P et al. 2015. Ipsenol, ipsdienol, ethanol, and α-pinene: trap lure blend for Cerambycidae and Buprestidae (Coleoptera) in pine forests of Eastern North America. J. Econ. Entomol. 108:41837–51
    [Google Scholar]
  88. 88. 
    Miller DR, Crowe CM, Mayo PD, Silk PJ, Sweeney JD. 2015. Responses of cerambycidae and other insects to traps baited with ethanol, 2,3-hexanediol, and 3,2-hydroxyketone lures in North-Central Georgia. J. Econ. Entomol. 108:52354–65
    [Google Scholar]
  89. 89. 
    Mohamed AAM, Retzke T, Das Chakraborty S, Fabian B, Hansson BS et al. 2019. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe. Nat. Commun. 10:1201
    [Google Scholar]
  90. 90. 
    Nat. Res. Counc 1992. Applications of Biotechnology in Traditional Fermented Foods Washington, DC: Nat. Acad. Press
  91. 91. 
    Niven JE, Laughlin SB 2008. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211:111792–1804
    [Google Scholar]
  92. 92. 
    Nojima T, Rings A, Allen AM, Billeter J, Neville MC et al. 2021. A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behavior. Curr. Biol. 31:1175–91
    [Google Scholar]
  93. 93. 
    Ogueta M, Cibik O, Eltrop R, Schneider A, Scholz H. 2010. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster. Chem. Senses 35:9813–22
    [Google Scholar]
  94. 94. 
    Park A, Tran T, Scheuermann EA, Smith DP, Atkinson NS. 2020. Alcohol potentiates a pheromone signal in flies. eLife 9:e59853
    [Google Scholar]
  95. 95. 
    Park AA, Tran T, Scheuermann E, Gutierrez L, Stojanik C et al. 2019. Alcohol increases aggression in flies. bioRxiv 685529. https://doi.org/10.1101/685529
    [Crossref]
  96. 96. 
    Parr J, Large A, Wang X, Fowler SC, Ratzlaff KL, Ruden DM. 2001. The inebri-actometer: a device for measuring the locomotor activity of Drosophila exposed to ethanol vapor. J. Neurosci. Methods 107:1–293–99
    [Google Scholar]
  97. 97. 
    Petruccelli E, Kaun KR. 2019. Insights from intoxicated Drosophila. Alcohol 74:21–27
    [Google Scholar]
  98. 98. 
    Pohl JB, Baldwin BA, Dinh BL, Rahman P, Smerek D et al. 2012. Ethanol preference in Drosophila melanogaster is driven by its caloric value. Alcohol Clin. Exp. Res. 36:111903–12
    [Google Scholar]
  99. 99. 
    Prestage S, Linforth RST, Taylor AJ, Lee E, Speirs J, Schuch W 1999. Volatile production in tomato fruit with modified alcohol dehydrogenase activity. J. Sci. Food Agric. 79:1131–36
    [Google Scholar]
  100. 100. 
    Qiao H, Keesey IW, Hansson BS, Knaden M. 2019. Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. J. Exp. Biol. 222:jeb192500
    [Google Scholar]
  101. 101. 
    Ranger CM, Biedermann PHW, Phuntumart V, Beligala GU, Ghosh S et al. 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. PNAS 115:174447–52
    [Google Scholar]
  102. 102. 
    Rao RS, Bhadra B, Shivaji S. 2008. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett. Appl. Microbiol. 47:119–24
    [Google Scholar]
  103. 103. 
    Reed MR. 1938. The olfactory reactions of Drosophila melanogaster Meigen to the products of fermenting banana. Physiol. Zool. 11:3317–25
    [Google Scholar]
  104. 104. 
    Rodan AR, Kiger JA Jr., Heberlein U. 2002. Functional dissection of neuroanatomical loci regulating ethanol sensitivity. J Neurosci 22:219490–501
    [Google Scholar]
  105. 105. 
    Rodan AR, Rothenfluh A. 2010. The genetics of behavioral alcohol responses in Drosophila. Int. Rev. Neurobiol. 91:25–51
    [Google Scholar]
  106. 106. 
    Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R. 2010. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468:7324686–90
    [Google Scholar]
  107. 107. 
    Scaplen KM, Kaun KR. 2016. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function. J. Neurogenet. 30:2133–48
    [Google Scholar]
  108. 108. 
    Scaplen KM, Mei NJ, Bounds HA, Song SL, Azanchi R, Kaun KR 2019. Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Sci. Rep. 9:4427
    [Google Scholar]
  109. 109. 
    Scaplen KM, Talay M, Salamon S, Nuñez KM, Waterman AG et al. 2020. Circuits that encode and guide alcohol-associated preference. eLife 9:e48730
    [Google Scholar]
  110. 110. 
    Scheffer LK. 2020. A connectome and analysis of the adult Drosophila central brain. eLife 9:e57443
    [Google Scholar]
  111. 111. 
    Schneider A, Ruppert M, Hendrich O, Giang T, Ogueta M et al. 2012. Neuronal basis of innate olfactory attraction to ethanol in Drosophila. PLOS ONE 7:12e52007
    [Google Scholar]
  112. 112. 
    Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM et al. 2014. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife 3:e02951
    [Google Scholar]
  113. 113. 
    Sha K, Choi SH, Im J, Lee GG, Loeffler F, Park JH. 2014. Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLOS ONE 9:1e87062
    [Google Scholar]
  114. 114. 
    Shanbhag SR, Muller B, Steinbrecht RA. 2000. Atlas of olfactory organs of Drosophila melanogaster. 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev. 29:211–29
    [Google Scholar]
  115. 115. 
    Shao L, Chung P, Wong A, Siwanowicz I, Kent CF et al. 2019. A neural circuit encoding the experience of copulation in female Drosophila. Neuron 102:51025–36.e6
    [Google Scholar]
  116. 116. 
    Sharma K, Mahato N, Cho MH, Lee YR. 2017. Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46
    [Google Scholar]
  117. 117. 
    Shinde VA, Patil RB. 2016. Production of ethanol by Saccharomyces cerevisiae using orange peels and banana peels. Int. J. Curr. Microbiol. Appl. Sci. 5:8280–84
    [Google Scholar]
  118. 118. 
    Shohat-Ophir G, Kaun KR, Azanchi R, Heberlein U 2012. Sexual deprivation increases ethanol intake in Drosophila. Science 335:60741351–55
    [Google Scholar]
  119. 119. 
    Soldano A, Alpizar YA, Boonen B, Franco L, Liu G et al. 2016. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. eLife 5:e13133
    [Google Scholar]
  120. 120. 
    Sprengelmeyer QD, Mansourian S, Lange JD, Matute DR, Cooper BS et al. 2020. Recurrent collection of Drosophila melanogaster from wild African environments and genomic insights into species history. Mol. Biol. Evol. 37:3627–38
    [Google Scholar]
  121. 121. 
    Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A et al. 2012. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:61345–57
    [Google Scholar]
  122. 122. 
    Stensmyr MC, Hansson BS. 2011. Review evolution of insect olfaction. Neuron 72:5698–711
    [Google Scholar]
  123. 123. 
    Stensmyr MC, Stieber R, Hansson BS. 2008. The Cayman crab fly revisited—phylogeny and biology of Drosophila endobranchia. PLOS ONE 3:4e1942
    [Google Scholar]
  124. 124. 
    Tilles DA, Sjödin K, Nordlander G, Eidmann HH. 1986. Synergism between ethanol and conifer host volatiles as attractants for the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae). J. Econ. Entomol. 79:4970–73
    [Google Scholar]
  125. 125. 
    Troutwine BR, Ghezzi A, Pietrzykowski AZ, Atkinson NS. 2016. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway. Genes Brain Behav 15:4382–94
    [Google Scholar]
  126. 126. 
    van Breugel F, Huda A, Dickinson MH 2018. Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila. Nature 564:7736420–24
    [Google Scholar]
  127. 127. 
    Vogt K, Zimmerman D, Schlichting M, Hernandez-Nunez L, Qin S et al. 2021. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Sci. Adv. 7:eabd6900
    [Google Scholar]
  128. 128. 
    Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA. 2009. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 20:2263–75
    [Google Scholar]
  129. 129. 
    Wallingford AK, Hesler SP, Cha DH, Loeb GM. 2016. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72:4701–6
    [Google Scholar]
  130. 130. 
    Wang SP, Hu XX, Meng QW, Muhammad SA, Chen RR et al. 2013. The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults. Comp. Biochem. Physiol. B 166:17–14
    [Google Scholar]
  131. 131. 
    Wen T, Parrish CA, Xu D, Wu Q, Shen P. 2005. Drosophila neuropeptide F and its receptor, NPFR1, define a signalling pathway that acutely modulates alcohol sensitivity. PNAS 102:62141–46
    [Google Scholar]
  132. 132. 
    Wolf FW, Rodan AR, Tsai LT-Y, Heberlein U. 2002. High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J. Neurosci. 22:2411035–44
    [Google Scholar]
  133. 133. 
    Xu L, He J, Kaiser A, Gräber N, Schläger L et al. 2016. A single pair of serotonergic neurons counteracts serotonergic inhibition of ethanol attraction in Drosophila. PLOS ONE 11:12e0167518
    [Google Scholar]
  134. 134. 
    Xu P, Atkinson R, Jones DNM, Smith DP. 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:2193–200
    [Google Scholar]
  135. 135. 
    Yang S, Zhao Y, Yu J, Fan Z, Gong S et al. 2019. Sugar alcohols of polyol pathway serve as alarmins to mediate local-systemic innate immune communication in Drosophila. Cell Host Microbe 26:2240–51.e8
    [Google Scholar]
  136. 136. 
    Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB. 2016. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell 165:3715–29
    [Google Scholar]
  137. 137. 
    Zer-Krispil S, Zak H, Shao L, Ben-Shaanan S, Tordjman L et al. 2018. Ejaculation induced by the activation of Crz neurons is rewarding to Drosophila males. Curr. Biol. 28:91445–52.e3
    [Google Scholar]
  138. 138. 
    Zhu J, Fry JD. 2015. Preference for ethanol in feeding and oviposition in temperate and tropical populations of Drosophila melanogaster. Entomol. Exp. Appl. 155:164–70
    [Google Scholar]
  139. 139. 
    Ziegler AB, Berthelot-Grosjean M, Grosjean Y. 2013. The smell of love in Drosophila. Front. Physiol. 4:72
    [Google Scholar]
/content/journals/10.1146/annurev-ento-070721-091828
Loading
/content/journals/10.1146/annurev-ento-070721-091828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error