1932

Abstract

Community (or citizen) science, the involvement of volunteers in scientific endeavors, has a long history. Over the past few centuries, the contributions of volunteers to our understanding of patterns and processes in entomology have been inspiring. From the collation of large-scale and long-term data sets, which have been instrumental in underpinning our knowledge of the status and trends of many insect groups, to action, including species management, whether for conservation or control, community scientists have played pivotal roles. Contributions, such as pest monitoring by farmers and species discoveries by amateur naturalists, set foundations for the research engaging entomologists today. The next decades will undoubtedly bring new approaches, tools, and technologies to underpin community science. The potential to increase inclusion within community science is providing exciting opportunities within entomology. An increase in the diversity of community scientists, alongside an increasing taxonomic and geographic breadth of initiatives, will bring enormous benefits globally for people and nature.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Role of Community Science in Entomology
Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-072121-075258
2022-01-07
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-072121-075258.html?itemId=/content/journals/10.1146/annurev-ento-072121-075258&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams BJ, Li E, Bahlai CA, Meineke EK, McGlynn TP, Brown BV. 2020. Local- and landscape-scale variables shape insect diversity in an urban biodiversity hot spot. Ecol. Appl. 30:4e02089
    [Google Scholar]
  2. 2. 
    Adriaens T, San Martin y Gomez G, Bogaert J, Crevecoeur L, Beuckx J-P, Maes D 2015. Testing the applicability of regional IUCN Red List criteria on ladybirds (Coleoptera, Coccinellidae) in Flanders (north Belgium): opportunities for conservation. Insect Conserv. Divers. 8:5404–17
    [Google Scholar]
  3. 3. 
    Allen DE. 1976. The naturalist in Britain. Q. Rev. Biol. 51:4516–18
    [Google Scholar]
  4. 4. 
    Altwegg R, Nichols JD 2019. Occupancy models for citizen-science data. Methods Ecol. Evol. 10:18–21
    [Google Scholar]
  5. 5. 
    Barahona-Segovia RM, Barceló M. 2020. Myopa nebulosa sp. nov. and Myopa bozinovici sp. nov. (Diptera: Conopidae): new thick-headed flies from a threatened biodiversity hotspot in central Chile. Zootaxa 4780:2zootaxa.4780.2.4
    [Google Scholar]
  6. 6. 
    Barahona-Segovia RM, Castillo Tapia R, Pañinao Monsálvez L. 2017. First record of Myopa metallica Camras, 1992 (Diptera: Conopidae: Myopinae) in Northern Chile after 46 years: a case study of the success of citizen science programs. J. Insect Biodivers. 5:131–8
    [Google Scholar]
  7. 7. 
    Bartel RA, Oberhauser KS, de Roode JC, Altizer SM. 2011. Monarch butterfly migration and parasite transmission in eastern North America. Ecology 92:2342–51
    [Google Scholar]
  8. 8. 
    Bates AJ, Sadler JP, Grundy D, Lowe N, Davis G et al. 2014. Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity. PLOS ONE 9:1e86925
    [Google Scholar]
  9. 9. 
    Bauer T, Feldmeier S, Krehenwinkel H, Wieczorrek C, Reiser N, Breitling R. 2019. Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota 42:19–43
    [Google Scholar]
  10. 10. 
    Bazin M, Williams CR. 2018. Mosquito traps for urban surveillance: collection efficacy and potential for use by citizen scientists. J. Vector Ecol. 43:198–103
    [Google Scholar]
  11. 11. 
    Belitz MW, Hendrick LK, Monfils MJ, Cuthrell DL, Marshall CJ et al. 2018. Aggregated occurrence records of the federally endangered Poweshiek skipperling (Oarisma poweshiek). Biodivers. Data J. 6:e29081
    [Google Scholar]
  12. 12. 
    Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:5785351–54
    [Google Scholar]
  13. 13. 
    Bird TJ, Bates AE, Lefcheck JS, Hill NA, Thomson RJ et al. 2014. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173:144–54
    [Google Scholar]
  14. 14. 
    Birkin L, Goulson D. 2015. Using citizen science to monitor pollination services. Ecol. Entomol. 40:3–11
    [Google Scholar]
  15. 15. 
    Bonney R. 2021. Expanding the impact of citizen science. Bioscience 71:5448–51
    [Google Scholar]
  16. 16. 
    Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL et al. 2014. Next steps for citizen science. Science 343:61781436–37
    [Google Scholar]
  17. 17. 
    Brower LP. 1995. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J. Lepid. Soc. 49:4304–85
    [Google Scholar]
  18. 18. 
    Burgess HK, DeBey LB, Froehlich HE, Schmidt N, Theobald EJ et al. 2017. The science of citizen science: exploring barriers to use as a primary research tool. Biol. Conserv. 208:113–20
    [Google Scholar]
  19. 19. 
    Campbell H, Engelbrecht I. 2018. The Baboon Spider Atlas—using citizen science and the “fear factor” to map baboon spider (Araneae: Theraphosidae) diversity and distributions in Southern Africa. Insect Conserv. Divers. 11:2143–51
    [Google Scholar]
  20. 20. 
    Chuit R, Paulone I, Wisnivesky-Colli C, Bo R, Perez AC et al. 1992. Result of a first step toward community-based surveillance of transmission of Chagas’ disease with appropriate technology in rural areas. Am. J. Trop. Med. Hyg. 46:4444–50
    [Google Scholar]
  21. 21. 
    Clare JDJ, Townsend PA, Anhalt-Depies C, Locke C, Stenglein JL et al. 2019. Making inference with messy (citizen science) data: When are data accurate enough and how can they be improved?. Ecol. Appl. 29:2e01849
    [Google Scholar]
  22. 22. 
    Collinson N, Sparks T. 2008. Phenology—nature's calendar: an overview of results from the UK phenology network. Arboric. J. 30:4271–78
    [Google Scholar]
  23. 23. 
    Curtis-Robles R, Wozniak EJ, Auckland LD, Hamer GL, Hamer SA. 2015. Combining public health education and disease ecology research: using citizen science to assess Chagas disease entomological risk in Texas. PLOS Negl. Trop. Dis. 9:12e0004235
    [Google Scholar]
  24. 24. 
    Danielsen F, Enghoff M, Poulsen MK, Funder M, Jensen PM, Burgess ND. 2021. The concept, practice, application, and results of locally based monitoring of the environment. Bioscience 71:5484–502
    [Google Scholar]
  25. 25. 
    Dawson E. 2014. Reframing social exclusion from science communication: moving away from “barriers” towards a more complex perspective. J. Sci. Commun. 13:2C02
    [Google Scholar]
  26. 26. 
    de Souza Amorim D, Brown BV. 2020. Urban Scatopsidae (Diptera) of Los Angeles, California, United States. Insect Syst. Divers. 4:11
    [Google Scholar]
  27. 27. 
    Deguines N, Julliard R, Flores M, Fontaine C. 2016. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6:71967–76
    [Google Scholar]
  28. 28. 
    Deguines N, Princé K, Prévot A-C, Fontaine B. 2020. Assessing the emergence of pro-biodiversity practices in citizen scientists of a backyard butterfly survey. Sci. Total Environ. 716:136842
    [Google Scholar]
  29. 29. 
    Del Toro I, Ribbons RR. 2020. No Mow May lawns have higher pollinator richness and abundances: An engaged community provides floral resources for pollinators. PeerJ 8:e10021
    [Google Scholar]
  30. 30. 
    Dennis EB, Morgan BJT, Brereton TM, Roy DB, Fox R 2017. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31:61350–61
    [Google Scholar]
  31. 31. 
    Devictor V, Bensaude-Vincent B. 2016. From ecological records to big data: the invention of global biodiversity. Hist. Philos. Life Sci. 38:413
    [Google Scholar]
  32. 32. 
    Diamond SE, Cayton H, Wepprich T, Jenkins CN, Dunn RR et al. 2014. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95:92613–21
    [Google Scholar]
  33. 33. 
    Dickinson JL, Zuckerberg B, Bonter DN. 2010. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41:149–72
    [Google Scholar]
  34. 34. 
    Dumonteil E, Ramirez-Sierra MJ, Ferral J, Euan-Garcia M, Chavez-Nuñez L. 2009. Usefulness of community participation for the fine temporal monitoring of house infestation by non-domiciliated triatomines. J. Parasitol. 95:2469–71
    [Google Scholar]
  35. 35. 
    Eritja R, Ruiz-Arrondo I, Delacour-Estrella S, Schaffner F, Álvarez-Chachero J et al. 2019. First detection of Aedes japonicus in Spain: an unexpected finding triggered by citizen science. Parasites Vectors 12:153
    [Google Scholar]
  36. 36. 
    Everaars J, Strohbach MW, Gruber B, Dormann CF. 2011. Microsite conditions dominate habitat selection of the red mason bee (Osmia bicornis, Hymenoptera: Megachilidae) in an urban environment: a case study from Leipzig, Germany. Landsc. Urban Plan. 103:115–23
    [Google Scholar]
  37. 37. 
    Fernández-Triana J, Buffam J, Beaudin M, Davis H, Fernández-Galliano A et al. 2017. An annotated and illustrated checklist of Microgastrinae wasps (Hymenoptera, Braconidae) from the Canadian Arctic Archipelago and Greenland. Zookeys 691:49–101
    [Google Scholar]
  38. 38. 
    Fisher A, Saniee K, van der Heide C, Griffiths J, Meade D, Villablanca F 2018. Climatic niche model for overwintering monarch butterflies in a topographically complex region of California. Insects 9:4167
    [Google Scholar]
  39. 39. 
    Fontaine B, Bergerot B, Le Viol I, Julliard R 2016. Impact of urbanization and gardening practices on common butterfly communities in France. Ecol. Evol. 6:228174–80
    [Google Scholar]
  40. 40. 
    Fox R, Bourn NAD, Dennis EB, Heafield RT, Maclean IMD, Wilson RJ. 2019. Opinions of citizen scientists on open access to UK butterfly and moth occurrence data. Biodivers. Conserv. 28:123321–41
    [Google Scholar]
  41. 41. 
    Fox R, Oliver TH, Harrower C, Parsons MS, Thomas CD, Roy DB 2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 51:4949–57
    [Google Scholar]
  42. 42. 
    Freitag H, Pangantihon CV, Njunjić I. 2018. Three new species of Grouvellinus champion, 1923 from Maliau Basin, Sabah, Borneo, discovered by citizen scientists during the first Taxon Expedition (Insecta, Coleoptera, Elmidae). Zookeys 754:1–21
    [Google Scholar]
  43. 43. 
    Gadermaier G, Dörler D, Heigl F, Mayr S, Rüdisser J et al. 2018. Peer-reviewed publishing of results from citizen science projects. J. Sci. Commun. 17:03L01
    [Google Scholar]
  44. 44. 
    Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K. 2018. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. 115:4621–23
    [Google Scholar]
  45. 45. 
    Garcia-Marti I, Zurita-Milla R, Harms MG, Swart A. 2018. Using volunteered observations to map human exposure to ticks. Sci. Rep. 8:15435
    [Google Scholar]
  46. 46. 
    García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113:3680–85
    [Google Scholar]
  47. 47. 
    Gardiner MM, Allee LL, Brown PM, Losey JE, Roy HE, Smyth RR 2012. Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10:9471–76
    [Google Scholar]
  48. 48. 
    Gardiner MM, Perry KI, Riley CB, Turo KJ, Delgado de la Flor YA, Sivakoff FS. 2021. Community science data suggests that urbanization and forest habitat loss threaten aphidophagous native lady beetles. Ecol. Evol. 11:62761–74
    [Google Scholar]
  49. 49. 
    Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ et al. 2016. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol. Invasions 18:4935–52
    [Google Scholar]
  50. 50. 
    Girardello M, Chapman A, Dennis R, Kaila L, Borges PAV, Santangeli A 2019. Gaps in butterfly inventory data: a global analysis. Biol. Conserv. 236:289–95
    [Google Scholar]
  51. 51. 
    Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLOS ONE 11:10e0165632
    [Google Scholar]
  52. 52. 
    Goertzen D, Suhling F. 2018. Urbanization versus other land use: diverging effects on dragonfly communities in Germany. Divers. Distrib. 25:138–47
    [Google Scholar]
  53. 53. 
    Gosling L, Sparks TH, Araya Y, Harvey M, Ansine J 2016. Differences between urban and rural hedges in England revealed by a citizen science project. BMC Ecol 16:S115
    [Google Scholar]
  54. 54. 
    Goulson D, Nicholls E. 2016. The canary in the coalmine; bee declines as an indicator of environmental health. Sci. Prog. 99:3312–26
    [Google Scholar]
  55. 55. 
    Grados J. 2019. A new species of the genus Watsonidia Toulgoët, 1981 (Lepidoptera, Erebidae, Arctiini): example of polymorphism in the Amazon of Peru. Zootaxa 4691:133–46
    [Google Scholar]
  56. 56. 
    Gregg JW, Jones CG, Dawson TE. 2006. Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites. Ecol. Appl. 16:62368–81
    [Google Scholar]
  57. 57. 
    Grez AA, Zaviezo T, Roy HE, Brown PMJ, Bizama G. 2016. Rapid spread of Harmonia axyridis in Chile and its effects on local coccinellid biodiversity. Divers. Distrib. 22:9982–94
    [Google Scholar]
  58. 58. 
    Halsch CA, Shapiro AM, Fordyce JA, Nice CC, Thorne JH et al. 2021. Insects and recent climate change. PNAS 118:2e2002543117
    [Google Scholar]
  59. 59. 
    Hamer SA, Curtis-Robles R, Hamer GL. 2018. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28:98–104
    [Google Scholar]
  60. 60. 
    Hancock TJ, Lee D-H, Bergh JC, Morrison WR, Leskey TC. 2019. Presence of the invasive brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) on home exteriors during the autumn dispersal period: results generated by citizen scientists. Agric. For. Entomol. 21:199–108
    [Google Scholar]
  61. 61. 
    Hanelt B, Schmidt-Rhaesa A, Bolek MG. 2015. Cryptic species of hairworm parasites revealed by molecular data and crowdsourcing of specimen collections. Mol. Phylogenet. Evol. 82:A211–18
    [Google Scholar]
  62. 62. 
    Harris JE, Rodenhouse NL, Holmes RT. 2019. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol. Conserv. 240:108219
    [Google Scholar]
  63. 63. 
    Howard E, Davis A 2015. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from journey north, a citizen science program. Ann. Entomol. Soc. Am. 108:664–69
    [Google Scholar]
  64. 64. 
    IPBES 2019. Global assessment report on biodiversity and ecosystem service of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Rep., IPBES Secr., Bonn, Ger .
  65. 65. 
    Isaac NJB, Strien AJ, August TA, Zeeuw MP, Roy DB. 2014. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5:101052–60
    [Google Scholar]
  66. 66. 
    Jisming-See S-W, Sing K-W, Wilson J-J 2016. DNA barcodes and citizen science provoke a diversity reappraisal for the “ring” butterflies of Peninsular Malaysia (Ypthima: Satyrinae: Nymphalidae: Lepidoptera). Genome 59:10879–88
    [Google Scholar]
  67. 67. 
    Johnson BJ, Brosch D, Christiansen A, Wells E, Wells M et al. 2018. Neighbors help neighbors control urban mosquitoes. Sci. Rep. 8:15797
    [Google Scholar]
  68. 68. 
    Jordan RC, Sorensen AE, Ladeau S. 2017. Citizen science as a tool for mosquito control. J. Am. Mosq. Control Assoc. 33:3241–45
    [Google Scholar]
  69. 69. 
    Kaminski LA, Soares GR, Seraphim N, Wahlberg N, Marini-Filho OJ, Freitas AVL. 2015. Natural history and systematic position of Rhetus belphegor (n. comb.) (Lepidoptera: Riodinidae), an endangered butterfly with narrow distribution in Southeast Brazil. J. Insect Conserv. 19:61141–51
    [Google Scholar]
  70. 70. 
    Karlsson D, Hartop E, Forshage M, Jaschhof M, Ronquist F 2020. The Swedish Malaise Trap Project: a 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8:e47255
    [Google Scholar]
  71. 71. 
    Kleinke B, Prajzner S, Gordon C, Hoekstra N, Kautz A, Gardiner M 2018. Identifying barriers to citizen scientist retention when measuring pollination services. Citiz. Sci. Theory Pract. 3:12
    [Google Scholar]
  72. 72. 
    Kosmala M, Wiggins A, Swanson A, Simmons B. 2016. Assessing data quality in citizen science. Front. Ecol. Environ. 14:10551–60
    [Google Scholar]
  73. 73. 
    Laaksonen M, Sajanti E, Sormunen JJ, Penttinen R, Hänninen J et al. 2017. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6:5e31
    [Google Scholar]
  74. 74. 
    Lamarre GPA, Juin Y, Lapied E, Le Gall P, Nakamura A 2018. Using field-based entomological research to promote awareness about forest ecosystem conservation. Nat. Conserv. 29:39–56
    [Google Scholar]
  75. 75. 
    Levé M, Baudry E, Bessa-Gomes C. 2019. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647:420–30
    [Google Scholar]
  76. 76. 
    Lewandowski EJ, Oberhauser KS. 2017. Butterfly citizen scientists in the United States increase their engagement in conservation. Biol. Conserv. 208:106–12
    [Google Scholar]
  77. 77. 
    Losey J, Allee L, Smyth R. 2012. The lost ladybug project: Citizen spotting surpasses scientist's surveys. Am. Entomol. 58:122–24
    [Google Scholar]
  78. 78. 
    Losey JE, Perlman JE, Hoebeke ER. 2007. Citizen scientist rediscovers rare nine-spotted lady beetle, Coccinella novemnotata, in eastern North America. J. Insect Conserv. 11:4415–17
    [Google Scholar]
  79. 79. 
    Maistrello L, Dioli P, Bariselli M, Mazzoli GL, Giacalone-Forini I. 2016. Citizen science and early detection of invasive species: phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions 18:113109–16
    [Google Scholar]
  80. 80. 
    Maistrello L, Dioli P, Dutto M, Volani S, Pasquali S, Gilioli G 2018. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: the Italian invasion of Halyomorpha halys. Bioscience 68:12979–89
    [Google Scholar]
  81. 81. 
    Maki EC, Cohnstaedt LW. 2015. Crowdsourcing for large-scale mosquito (Diptera: Culicidae) sampling. Can. Entomol. 147:1118–23
    [Google Scholar]
  82. 82. 
    Matechou E, Freeman SN, Comont R 2018. Caste-specific demography and phenology in bumblebees: modelling BeeWalk data. J. Agric. Biol. Environ. Stat. 23:4427–45
    [Google Scholar]
  83. 83. 
    McKinley DC, Miller-Rushing AJ, Ballard HL, Bonney R, Brown H et al. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208:15–28
    [Google Scholar]
  84. 84. 
    Méndez M, de Jaime C, Alcántara MA. 2017. Habitat description and interannual variation in abundance and phenology of the endangered beetle Lucanus cervus L. (Coleoptera) using citizen science monitoring. J. Insect Conserv. 21:5–6907–15
    [Google Scholar]
  85. 85. 
    Miller-Rushing A, Primack R, Bonney R 2012. The history of public participation in ecological research. Front. Ecol. Environ. 10:6285–90
    [Google Scholar]
  86. 86. 
    Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR et al. 2020. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241:108327
    [Google Scholar]
  87. 87. 
    Muratet A, Fontaine B. 2015. Contrasting impacts of pesticides on butterflies and bumblebees in private gardens in France. Biol. Conserv. 182:148–54
    [Google Scholar]
  88. 88. 
    Nadkarni NM, Weber CQ, Goldman SV, Schatz DL, Allen S, Menlove R 2019. Beyond the deficit model: the ambassador approach to public engagement. Bioscience 69:4305–13
    [Google Scholar]
  89. 89. 
    Nieto NC, Porter WT, Wachara JC, Lowrey TJ, Martin L et al. 2018. Using citizen science to describe the prevalence and distribution of tick bite and exposure to tick-borne diseases in the United States. PLOS ONE 13:7e0199644
    [Google Scholar]
  90. 90. 
    Oberhauser K, Elmquist D, Perilla-López JM, Gebhard I, Lukens L, Stireman J. 2017. Tachinid fly (Diptera: Tachinidae) parasitoids of Danaus plexippus (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 110:6536–43
    [Google Scholar]
  91. 91. 
    Oberhauser K, LeBuhn G. 2012. Insects and plants: engaging undergraduates in authentic research through citizen science. Front. Ecol. Environ. 10:6318–20
    [Google Scholar]
  92. 92. 
    Olivier T, Schmucki R, Fontaine B, Villemey A, Archaux F. 2016. Butterfly assemblages in residential gardens are driven by species’ habitat preference and mobility. Landsc. Ecol. 31:4865–76
    [Google Scholar]
  93. 93. 
    Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J et al. 2017. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8:916
    [Google Scholar]
  94. 94. 
    Pandya RE. 2012. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10:6314–17
    [Google Scholar]
  95. 95. 
    Pataki BA, Garriga J, Eritja R, Palmer JRB, Bartumeus F, Csabai I. 2021. Deep learning identification for citizen science surveillance of tiger mosquitoes. Sci. Rep. 11:4718
    [Google Scholar]
  96. 96. 
    Pateman R, Dyke A, West S. 2021. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6:19
    [Google Scholar]
  97. 97. 
    Pescott OL, Simkin JM, August TA, Randle Z, Dore AJ, Botham MS 2015. Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: review and evidence from biological records. Biol. J. Linn. Soc. 115:3611–35
    [Google Scholar]
  98. 98. 
    Pocock MJO, Evans DM. 2014. The success of the horse-chestnut leaf-miner, Cameraria ohridella, in the UK revealed with hypothesis-led citizen science. PLOS ONE 9:1e86226
    [Google Scholar]
  99. 99. 
    Pocock MJO, Marzano M, Bullas-Appleton E, Dyke A, de Groot M et al. 2020. Ethical dilemmas when using citizen science for early detection of invasive tree pests and diseases. Manag. Biol. Invasions 11:4720–32
    [Google Scholar]
  100. 100. 
    Pocock MJO, Roy HE, August T, Kuria A, Barasa F et al. 2019. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56:2274–81
    [Google Scholar]
  101. 101. 
    Pocock MJO, Roy HE, Preston CD, Roy DB 2015. The Biological Records Centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115:3475–93
    [Google Scholar]
  102. 102. 
    Pocock MJO, Tweddle JC, Savage J, Robinson LD, Roy HE 2017. The diversity and evolution of ecological and environmental citizen science. PLOS ONE 12:4e0172579
    [Google Scholar]
  103. 103. 
    Preston CD, Oswald PH. 2012. A copy of John Ray's Cambridge catalogue (1660) presented by the author to Peter Courthope. Arch. Nat. Hist. 39:2342–44
    [Google Scholar]
  104. 104. 
    Prysby M, Oberhauser K. 2004. Temporal and geographical variation in monarch densities: citizen scientists document monarch population patterns. The Monarch Butterfly: Biology and Conservation KS Oberhauser, MJ Solensky 9–20 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  105. 105. 
    Pyke GH, Ehrlich PR. 2010. Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol. Rev. 85:2247–66
    [Google Scholar]
  106. 106. 
    Richardson LL, McFarland KP, Zahendra S, Hardy S 2019. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. J. Insect Conserv. 23:145–62
    [Google Scholar]
  107. 107. 
    Ries L, Oberhauser K. 2015. A citizen army for science: quantifying the contributions of citizen scientists to our understanding of monarch butterfly biology. Bioscience 65:4419–30
    [Google Scholar]
  108. 108. 
    Rosenheim JA, Gratton C. 2017. Ecoinformatics (Big Data) for agricultural entomology: pitfalls, progress, and promise. Annu. Rev. Entomol. 62:399–417
    [Google Scholar]
  109. 109. 
    Roy HE, Adriaens T, Isaac NJB, Kenis M, Onkelinx T et al. 2012. Invasive alien predator causes rapid declines of native European ladybirds. Divers. Distrib. 18:7717–25
    [Google Scholar]
  110. 110. 
    Roy HE, Baxter E, Saunders A, Pocock MJO 2016. Focal plant observations as a standardised method for pollinator monitoring: opportunities and limitations for mass participation citizen science. PLOS ONE 11:3e0150794
    [Google Scholar]
  111. 111. 
    Roy HE, Brown PMJ, Adriaens T, Berkvens N, Borges I et al. 2016. The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biol. Invasions 18:4997–1044
    [Google Scholar]
  112. 112. 
    Roy HE, Rorke SL, Beckmann B, Booy O, Botham MS et al. 2015. The contribution of volunteer recorders to our understanding of biological invasions. Biol. J. Linn. Soc. 115:3678–89
    [Google Scholar]
  113. 113. 
    Saunders ME. 2019. No simple answers for insect conservation. Am. Sci. 107:3148–52
    [Google Scholar]
  114. 114. 
    Saunders ME, Janes JK, O'Hanlon JC. 2020. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70:180–89
    [Google Scholar]
  115. 115. 
    Schultz CB, Brown LM, Pelton E, Crone EE 2017. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214:343–46
    [Google Scholar]
  116. 116. 
    Schultz PW, Kaiser FG. 2012. Promoting pro-environmental behavior. The Oxford Handbook of Environmental and Conservation Psychology SD Clayton 556–80 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  117. 117. 
    Schwartz MD. 1994. Monitoring global change with phenology: the case of the spring green wave. Int. J. Biometeorol. 38:118–22
    [Google Scholar]
  118. 118. 
    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:14435
    [Google Scholar]
  119. 119. 
    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. PNAS 115:10E2264–73
    [Google Scholar]
  120. 120. 
    Sforzi A, Tweddle J, Vogel J, Lois G, Wägele W et al. 2019. Citizen science and the role of natural history museums. Citizen Science S Hecker, M Haklay, A Bowser, Z Makuch, J Vogel, A Bonn 429–44 London: UCL Press
    [Google Scholar]
  121. 121. 
    Sharma N, Greaves S, Siddharthan A, Anderson HB, Robinson A et al. 2019. From citizen science to citizen action: analysing the potential for a digital platform to cultivate attachments to nature. J. Sci. Commun. 18:1A07
    [Google Scholar]
  122. 122. 
    Silvertown J. 2009. A new dawn for citizen science. Trends Ecol. Evol. 24:9467–71
    [Google Scholar]
  123. 123. 
    Sivakoff FS, Prajzner SP, Gardiner MM. 2020. Urban heavy metal contamination limits bumblebee colony growth. J. Appl. Ecol. 57:81561–69
    [Google Scholar]
  124. 124. 
    Stevens M, Vitos M, Altenbuchner J, Conquest G, Lewis J, Haklay M 2014. Taking participatory citizen science to extremes. IEEE Pervasive Comput 13:220–29
    [Google Scholar]
  125. 125. 
    Stoeckli S, Felber R, Haye T. 2020. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biometeorol. 64:122019–32
    [Google Scholar]
  126. 126. 
    Suprayitno N, Narakusumo RP, von Rintelen T, Hendrich L, Balke M. 2017. Taxonomy and biogeography without frontiers—WhatsApp, Facebook and smartphone digital photography let citizen scientists in more remote localities step out of the dark. Biodivers. Data J. 5:e19938
    [Google Scholar]
  127. 127. 
    Tambo JA, Kansiime MK, Mugambi I, Rwomushana I, Kenis M et al. 2020. Understanding smallholders’ responses to fall armyworm (Spodoptera frugiperda) invasion: evidence from five African countries. Sci. Total Environ. 740:140015
    [Google Scholar]
  128. 128. 
    Tengö M, Austin BJ, Danielsen F, Fernández-Llamazares Á. 2021. Creating synergies between citizen science and indigenous and local knowledge. Bioscience 71:5503–18
    [Google Scholar]
  129. 129. 
    Terry JCD, Roy HE, August TA 2020. Thinking like a naturalist: enhancing computer vision of citizen science images by harnessing contextual data. Methods Ecol. Evol. 11:2303–15
    [Google Scholar]
  130. 130. 
    Theobald EJ, Ettinger AK, Burgess HK, DeBey LB, Schmidt NR et al. 2015. Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biol. Conserv. 181:236–44
    [Google Scholar]
  131. 131. 
    Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD et al. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:56651879–81
    [Google Scholar]
  132. 132. 
    Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F. 2017. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7:9132
    [Google Scholar]
  133. 133. 
    Trumbull DJ, Bonney R, Bascom D, Cabral A. 2000. Thinking scientifically during participation in a citizen-science project. Sci. Educ. 84:2265–75
    [Google Scholar]
  134. 134. 
    van Strien AJ, van Swaay CAM, Termaat T. 2013. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50:61450–58
    [Google Scholar]
  135. 135. 
    Vazquez-Prokopec GM, Spillmann C, Zaidenberg M, Kitron U, Gürtler RE 2009. Cost-effectiveness of Chagas disease vector control strategies in Northwestern Argentina. PLOS Negl. Trop. Dis. 3:1e363
    [Google Scholar]
  136. 136. 
    Vétek G, Melifronidou-Pantelidou A, Koukkoularidou D, Martinou A 2021. Initiation of a monitoring programme for early detection of Halyomorpha halys in Cyprus by using pheromone-baited traps and involving citizen science. Manag. Biol. Invasions 12:2331–43
    [Google Scholar]
  137. 137. 
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  138. 138. 
    Walther D, Kampen H 2017. The citizen science project “Mueckenatlas” helps monitor the distribution and spread of invasive mosquito species in Germany. J. Med. Entomol. 54:61790–94
    [Google Scholar]
  139. 139. 
    Werenkraut V, Baudino F, Roy HE. 2020. Citizen science reveals the distribution of the invasive harlequin ladybird (Harmonia axyridis Pallas) in Argentina. Biol. Invasions 22:102915–21
    [Google Scholar]
  140. 140. 
    Wightman JA. 2018. Can lessons learned 30 years ago contribute to reducing the impact of the fall army worm Spodoptera frugiperda in Africa and India?. Outlook Agric 47:4259–69
    [Google Scholar]
  141. 141. 
    Wilson JF, Baker D, Cheney J, Cook M, Ellis M et al. 2018. A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. J. Insect Conserv. 22:2189–96
    [Google Scholar]
  142. 142. 
    Winterton SL. 2020. A new bee-mimicking stiletto fly (Therevidae) from China discovered on iNaturalist. Zootaxa 4816:3361–69
    [Google Scholar]
  143. 143. 
    Winterton SL, Guek HP, Brooks SJ. 2012. A charismatic new species of green lacewing discovered in Malaysia (Neuroptera, Chrysopidae): the confluence of citizen scientist, online image database and cybertaxonomy. Zookeys 214:1–11
    [Google Scholar]
/content/journals/10.1146/annurev-ento-072121-075258
Loading
/content/journals/10.1146/annurev-ento-072121-075258
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error