1932

Abstract

The economic and environmental threats posed by non-native forest insects are ever increasing with the continuing globalization of trade and travel; thus, the need for mitigation through effective biosecurity is greater than ever. However, despite decades of research and implementation of preborder, border, and postborder preventative measures, insect invasions continue to occur, with no evidence of saturation, and are even predicted to accelerate. In this article, we review biosecurity measures used to mitigate the arrival, establishment, spread, and impacts of non-native forest insects and possible impediments to the successful implementation of these measures. Biosecurity successes are likely under-recognized because they are difficult to detect and quantify, whereas failures are more evident in the continued establishment of additional non-native species. There are limitations in existing biosecurity systems at global and country scales (for example, inspecting all imports is impossible, no phytosanitary measures are perfect, knownunknowns cannot be regulated against, and noncompliance is an ongoing problem). Biosecurity should be a shared responsibility across countries, governments, stakeholders, and individuals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-010854
2023-01-23
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/ento/68/1/annurev-ento-120220-010854.html?itemId=/content/journals/10.1146/annurev-ento-120220-010854&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allen E, Noseworthy M, Ormsby M. 2017. Phytosanitary measures to reduce the movement of forest pests with the international trade of wood products. Biol. Invasions 19:3365–76
    [Google Scholar]
  2. 2.
    Allendorf FW, Lundquist LL. 2003. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17:24–30
    [Google Scholar]
  3. 3.
    Allison JD, Marcotte M, Noseworthy M, Ramsfield T. 2021. Forest biosecurity in Canada—an integrated multi-agency approach. Front. For. Glob. Change 4:700825
    [Google Scholar]
  4. 4.
    Andersen MC, Adams H, Hope B, Powell M. 2004. Risk assessment for invasive species. Risk Anal 24:787–93
    [Google Scholar]
  5. 5.
    Augustin S, Boonham N, De Kogel WJ, Donner P, Faccoli M et al. 2012. A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bull. 42:515–51
    [Google Scholar]
  6. 6.
    Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO et al. 2011. Economic impacts of non-native forest insects in the continental United States. PLOS ONE 6:e24587
    [Google Scholar]
  7. 7.
    Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 2010. Historical accumulation of nonindigenous forest pests in the continental US. BioScience 60:886–97
    [Google Scholar]
  8. 8.
    Barron MC, Liebhold AM, Kean JM, Richardson B, Brockerhoff EG. 2020. Habitat fragmentation and eradication of invading insect herbivores. J. Appl. Ecol. 57:590–98
    [Google Scholar]
  9. 9.
    Bashford R. 2008. The development of a port surrounds trapping system for the detection of exotic forest insect pests in Australia. New Advances and Contribution to Forestry Research AA Oteng-Amoako 85–100 Rijeka, Croat.: InTech
    [Google Scholar]
  10. 10.
    Bedoya CL, Hofstetter RW, Nelson XJ, Hayes M, Miller DR, Brockerhoff EG. 2021. Sound production in bark and ambrosia beetles. Bioacoustics 30:58–73
    [Google Scholar]
  11. 11.
    Bedoya CL, Nelson XJ, Brockerhoff EG, Pawson S, Hayes M. 2022. Experimental characterization and automatic identification of stridulatory sounds inside wood. R. Soc. Open Sci. 9:220217
    [Google Scholar]
  12. 12.
    Bertelsmeier C, Keller L. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33:527–34
    [Google Scholar]
  13. 13.
    Bigsby KM, Tobin PC, Sills EO. 2011. Anthropogenic drivers of gypsy moth spread. Biol. Invasions 13:2077–90
    [Google Scholar]
  14. 14.
    Blackburn L, Epanchin-Niell R, Thompson A, Liebhold A. 2017. Predicting costs of alien species surveillance across varying transportation networks. J. Appl. Ecol. 54:225–33
    [Google Scholar]
  15. 15.
    Blackwood JC, Berec L, Yamanaka T, Epanchin-Niell RS, Hastings A, Liebhold AM 2012. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects. Proc. R. Soc. B 279:2807–15
    [Google Scholar]
  16. 16.
    Bogich TL, Liebhold AM, Shea K. 2008. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J. Appl. Ecol. 45:1134–42
    [Google Scholar]
  17. 17.
    Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J et al. 2012. Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol. Ecol. 21:5728–44
    [Google Scholar]
  18. 18.
    Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. 2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773
    [Google Scholar]
  19. 19.
    Bradshaw CJ, Leroy B, Bellard C, Roiz D, Albert C et al. 2016. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7:12986
    [Google Scholar]
  20. 20.
    Branco M, Nunes P, Roques A, Fernandes MR, Orazio C, Jactel H 2019. Urban trees facilitate the establishment of non-native forest insects. NeoBiota 52:25–46
    [Google Scholar]
  21. 21.
    Branco S, Faccoli M, Brockerhoff EG, Roux G, Jactel H et al. 2021. Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: Are we on the right track?. J. Pest Sci. 95:41–66
    [Google Scholar]
  22. 22.
    Branco S, Videira N, Branco M, Paiva MR. 2015. A review of invasive alien species impacts on eucalypt stands and citrus orchards ecosystem services: towards an integrated management approach. J. Environ. Manag. 149:17–26
    [Google Scholar]
  23. 23.
    Brockerhoff EG, Kimberley M, Liebhold AM, Haack RA, Cavey JF. 2014. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95:594–601
    [Google Scholar]
  24. 24.
    Brockerhoff EG, Liebhold AM. 2017. Ecology of forest insect invasions. Biol. Invasions 19:3141–59
    [Google Scholar]
  25. 25.
    Brockerhoff EG, Liebhold AM, Richardson B, Suckling DM. 2010. Eradication of invasive forest insects: concepts, methods, costs and benefits. N. Z. J. For. Sci. 40:S117–35
    [Google Scholar]
  26. 26.
    Brockerhoff EG, Suckling DM, Roques A, Jactel H, Branco M et al. 2013. Improving the efficiency of lepidopteran pest detection and surveillance: constraints and opportunities for multiple-species trapping. J. Chem. Ecol. 39:50–58
    [Google Scholar]
  27. 27.
    Brown N, Pérez-Sierra A, Crow P, Parnell S 2020. The role of passive surveillance and citizen science in plant health. CABI Agric. Biosci. 1:17
    [Google Scholar]
  28. 28.
    Brunel S, Horn NM, Unger JG, Arnitis R. 2013. Implementation of International Standards for Phytosanitary Measures no. 7 Phytosanitary Certification System and no. 12 Phytosanitary Certificates. EPPO Bull. 43:309–15
    [Google Scholar]
  29. 29.
    Cardwell R, Brewin DG. 2019. Blackleg or blackmail? Economics of the Canada-China canola trade dispute. Can. J. Agric. Econ. 67:251–60
    [Google Scholar]
  30. 30.
    Carnegie AJ, Nahrung HF. 2019. Post-border forest biosecurity in Australia: response to recent exotic detections, current surveillance and ongoing needs. Forests 10:336
    [Google Scholar]
  31. 31.
    Carnegie AJ, Tovar F, Collins S, Lawson SA, Nahrung HF. 2022. A coordinated, risk-based, national forest biosecurity surveillance program for Australia's forests. Front. For. Glob. Change 4:218
    [Google Scholar]
  32. 32.
    Chesmore D, Schofield J. 2010. Acoustic detection of regulated pests in hardwood material. EPPO Bull. 40:46–51
    [Google Scholar]
  33. 33.
    Clarke DA, Palmer DJ, McGrannachan C, Burgess TI, Chown SL et al. 2021. Options for reducing uncertainty in impact classification for alien species. Ecosphere 12:e03461
    [Google Scholar]
  34. 34.
    Cuthbert R, Diagne C, Hudgins EJ, Turbelin A, Ahmed DA et al. 2022. Biological invasion costs reveal insufficient proactive management worldwide. Sci. Total Environ. 819:153404
    [Google Scholar]
  35. 35.
    de Wit MP, Crookes DJ, Blignaut JN, de Beer ZW, Paap T et al. 2022. An assessment of the potential economic impacts of the invasive polyphagous shot hole borer (Coleoptera: Curculionidae) in South Africa. J. Econ. Entomol 115:107686
    [Google Scholar]
  36. 36.
    Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D et al. 2021. High and rising economic costs of biological invasions worldwide. Nature 592:571–76
    [Google Scholar]
  37. 37.
    Dittrich-Schröder G, Hurley BP, Wingfield MJ, Nahrung HF, Slippers B. 2020. Invasive gall-forming wasps that threaten non-native plantation-grown Eucalyptus: diversity and invasion patterns. Agric. For. Entomol. 22:285–97
    [Google Scholar]
  38. 38.
    Dodd A, Stoeckl N, Baumgartner J, Kompas T. 2020. Key Result Summary: Valuing Australia's Biosecurity System Melbourne, Aust.: Cent. Excel. Biosecurity Risk Anal.
  39. 39.
    Dominiak BC, Gillespie PS, Subasinghe R. 2013. Surveillance for Asian gypsy moth (Lymantria dispar asiatica L.) between 2005 and 2012 in New South Wales, Australia. Plant Prot. Q. 28:12–14
    [Google Scholar]
  40. 40.
    Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7:12485
    [Google Scholar]
  41. 41.
    Epanchin-Niell RS. 2017. Economics of invasive species policy and management. Biol. Invasions 19:3333–54
    [Google Scholar]
  42. 42.
    Epanchin-Niell RS, Brockerhoff EG, Kean JM, Turner J. 2014. Designing cost-efficient surveillance for early detection and control of multiple biological invaders. Ecol. Appl. 24:1258–74
    [Google Scholar]
  43. 43.
    Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM. 2012. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15:803–12
    [Google Scholar]
  44. 44.
    Epanchin-Niell RS, Liebhold AM 2015. Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol. Econ. 116:146–53
    [Google Scholar]
  45. 45.
    Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V et al. 2015. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy 51:228–37
    [Google Scholar]
  46. 46.
    Eschen R, O'Hanlon R, Santini A, Vannini A, Roques A et al. 2019. Safeguarding global plant health: the rise of sentinels. J. Pest Sci. 92:29–36
    [Google Scholar]
  47. 47.
    Essl F, Latombe G, Lenzner B, Pagad S, Seebens H et al. 2020. The Convention on Biological Diversity (CBD)’s post-2020 target on invasive alien species—what should it include and how should it be monitored?. NeoBiota 62:99–121
    [Google Scholar]
  48. 48.
    Evans HF. 2010. Pest risk analysis—organisms or pathways. N. Z. J. For. Sci. 40:S35–44
    [Google Scholar]
  49. 49.
    Eyre D, Macarthur R, Haack RA, Lu Y, Krehan H. 2018. Variation in inspection efficacy by member states of wood packaging material entering the European Union. J. Econ. Entomol. 111:707–15
    [Google Scholar]
  50. 50.
    Fan JT, Denux O, Courtin C, Bernard A, Javal M et al. 2019. Multi-component blends for trapping native and exotic longhorn beetles at potential points-of-entry and in forests. J. Pest Sci. 92:281–97
    [Google Scholar]
  51. 51.
    Faulkner KT, Robertson MP, Wilson JR. 2020. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions. Glob. Change Biol. 26:2449–62
    [Google Scholar]
  52. 52.
    Food Agric. Organ. U. N. 2016. International measures for plants for planting: International Phytosanitary Standard for Measures 36 Rep. Int. Plant Prot. Conv. Rome:
  53. 53.
    Food Agric. Organ. U. N 2017. International movement of wood: International Phytosanitary Standard for Measures 39. Rep. Int. Plant Prot. Conv. Rome:
  54. 54.
    Food Agric. Organ. U. N. 2021. Regulation of wood packaging material in international trade: International Phytosanitary Standard for Measures 15 Rep. Int. Plant Prot. Conv. Rome:
  55. 55.
    Gilbert M, Grégoire JC, Freise JF, Heitland W. 2004. Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. J. Anim. Ecol. 73:459–68
    [Google Scholar]
  56. 56.
    Gordh G, McKirdy S, eds. 2014. The Handbook of Plant Biosecurity Berlin: Springer
  57. 57.
    Grant A, Pawson SM, Marzano M. 2019. Emerging stakeholder relations in participatory ICT design: renegotiating the boundaries of sociotechnical innovation in forest biosecurity surveillance. Forests 10:836
    [Google Scholar]
  58. 58.
    Gugliuzzo A, Biedermann PH, Carrillo D, Castrillo LA, Egonyu JP et al. 2021. Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. J. Pest Sci. 94:615–37
    [Google Scholar]
  59. 59.
    Gupta K, Sankaran KV. 2021. Forest biosecurity systems and processes: an Indian perspective. Front. For. Glob. Change 4:699950
    [Google Scholar]
  60. 60.
    Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ et al. 2014. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLOS ONE 9:e96611
    [Google Scholar]
  61. 61.
    Haack RA, Petrice TR. 2009. Bark- and wood-borer colonization of logs and lumber after heat treatment to ISPM 15 specifications: the role of residual bark. J. Econ. Entomol. 102:1075–84
    [Google Scholar]
  62. 62.
    Hajek AE, Diss-Torrance AL, Siegert NW, Liebhold AM. 2021. Inoculative releases and natural spread of the fungal pathogen Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) into US populations of gypsy moth, Lymantria dispar (Lepidoptera: Erebidae). Environ. Entomol. 50:1007–15
    [Google Scholar]
  63. 63.
    Hemming V, Burgman MA, Hanea AM, McBride MF, Wintle BC. 2018. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9:169–80
    [Google Scholar]
  64. 64.
    Hennessey MK, Jeffers L, Nendick D, Glassy K, Floyd L et al. 2014. Phytosanitary treatments. See Reference 56 269–308
  65. 65.
    Holmes TP, Allen W, Haight RG, Keskitalo ECH, Marzano M et al. 2017. Fundamental economic irreversibilities influence policies for enhancing international forest phytosanitary security. Curr. For. Rep. 3:244–54
    [Google Scholar]
  66. 66.
    Holmes TP, Murphy EA, Bell K, Royle D. 2010. Property-value impacts of hemlock woolly adelgid in residential forests. For. Sci. 56:529–40
    [Google Scholar]
  67. 67.
    Hope ES, McKenney DW, Pedlar JH, Lawrence K, MacDonald H 2021. Canadian efforts to slow the spread of emerald ash borer (Agrilus planipennis Fairmaire) are economically efficient. Ecol. Econ. 188:107126
    [Google Scholar]
  68. 68.
    Hoyer-Tomiczek U, Hoch G. 2020. Progress in the use of detection dogs for emerald ash borer monitoring. Forestry 93:326–30
    [Google Scholar]
  69. 69.
    Hoyer-Tomiczek U, Sauseng G, Hoch G. 2016. Scent detection dogs for the Asian longhorn beetle, Anoplophora glabripennis. EPPO Bull. 46:148–55
    [Google Scholar]
  70. 70.
    Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18
    [Google Scholar]
  71. 71.
    Hulme PE. 2014. An introduction to plant biosecurity: past, present and future. See Reference 56 1–25
  72. 72.
    Hulme PE. 2021. Advancing One Biosecurity to address the pandemic risks of biological invasions. BioScience 71:708–21
    [Google Scholar]
  73. 73.
    Humble L. 2010. Pest risk analysis and invasion pathways—insects and wood packing revisited: What have we learned?. N. Z. J. For. Sci. 40:S57–72
    [Google Scholar]
  74. 74.
    Int. Plant Prot. Conv. 2021. Implementation and Capacity Development Meeting (Virtual Meeting N°15) Rep. Int. Plant Prot. Conv. Rome: https://assets.ippc.int/static/media/files/publication/en/2021/10/Report_IC_VM15_2021_Jun_2021-08-17.pdf
  75. 75.
    Jactel H, Desprez-Loustau ML, Battisti A, Brockerhoff E, Santini A et al. 2020. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota 58:107–27
    [Google Scholar]
  76. 76.
    Jamieson LE, Woodberry O, Mascaro S, Meurisse N, Jaksons R et al. 2022. An Integrated Biosecurity Risk Assessment Model (IBRAM) for evaluating the risk of import pathways for the establishment of invasive species. Risk Anal. 42:132545
    [Google Scholar]
  77. 77.
    Javal M, Roques A, Haran J, Hérard F, Keena M, Roux G 2019. Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. J. Pest Sci. 92:173–87
    [Google Scholar]
  78. 78.
    Kalaris T, Fieselmann D, Magarey R, Colunga-Garcia M, Roda A et al. 2014. The role of surveillance methods and technologies in plant biosecurity. See Reference 56 309–37
  79. 79.
    Keller RP, Perrings C. 2011. International policy options for reducing the environmental impacts of invasive species. BioScience 61:1005–12
    [Google Scholar]
  80. 80.
    Kenis M, Rabitsch W, Auger-Rozenberg MA, Roques A. 2007. How can alien species inventories and interception data help us prevent insect invasions?. Bull. Entomol. Res. 97:489–502
    [Google Scholar]
  81. 81.
    Koch FH, Yemshanov D, Haight RG, MacQuarrie CJ, Liu N et al. 2020. Optimal invasive species surveillance in the real world: practical advances from research. Emerg. Top. Life Sci. 4:513–20
    [Google Scholar]
  82. 82.
    Kriticos DJ. 2012. Regional climate-matching to estimate current and future sources of biosecurity threats. Biol. Invasions 14:1533–44
    [Google Scholar]
  83. 83.
    Kyre BR, Bentz BJ, Rieske LK. 2020. Susceptibility of mountain pine beetle (Dendroctonus ponderosae Hopkins) to gene silencing through RNAi provides potential as a novel management tool. For. Ecol. Manag. 473:118322
    [Google Scholar]
  84. 84.
    Larson ER, Graham BM, Achury R, Coon JJ, Daniels MK et al. 2020. From eDNA to citizen science: emerging tools for the early detection of invasive species. Front. Ecol. Environ. 18:194–202
    [Google Scholar]
  85. 85.
    Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S et al. 2017. A vision for global monitoring of biological invasions. Biol. Conserv. 213:295–308
    [Google Scholar]
  86. 86.
    Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G. 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. B 269:2407–13
    [Google Scholar]
  87. 87.
    Leung B, Roura-Pascual N, Bacher S, Heikkila J, Brotons L et al. 2012. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15:1475–93
    [Google Scholar]
  88. 88.
    Leung B, Springborn MR, Turner JA, Brockerhoff EG. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front. Ecol. Environ. 12:273–79
    [Google Scholar]
  89. 89.
    Liebhold AM, Bascompte J. 2003. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6:133–40
    [Google Scholar]
  90. 90.
    Liebhold AM, Berec L, Brockerhoff EG, Epanchin-Niell RS, Hastings A et al. 2016. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entomol. 61:335–52
    [Google Scholar]
  91. 91.
    Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO 2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10:135–43
    [Google Scholar]
  92. 92.
    Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. 2017. Biological invasions in forest ecosystems. Biol. Invasions 19:3437–58
    [Google Scholar]
  93. 93.
    Liebhold AM, Griffin RL. 2016. The legacy of Charles Marlatt and efforts to limit plant pest invasions. Bull. Entomol. Soc. Am. 62:218–27
    [Google Scholar]
  94. 94.
    Liebhold AM, Kean JM. 2019. Eradication and containment of non-native forest insects: successes and failures. J. Pest Sci. 92:83–91
    [Google Scholar]
  95. 95.
    Liebhold AM, Leonard D, Marra JL, Pfister SE 2021. Area-wide management of invading gypsy moth (Lymantria dispar) populations in the USA. Area-Wide Integrated Pest Management: Development and Field Application J Hendrichs, R Pereira, MJB Vreysen 551–60 Boca Raton, FL: CRC Press
    [Google Scholar]
  96. 96.
    Liebhold AM, Tobin PC. 2008. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53:387–408
    [Google Scholar]
  97. 97.
    Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL et al. 2016. Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol. Invasions 18:893–905
    [Google Scholar]
  98. 98.
    MacLachlan MJ, Liebhold AM, Yamanaka T, Springborn MR. 2021. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7:eabj1012
    [Google Scholar]
  99. 99.
    MacLeod A 2015. The relationship between biosecurity surveillance and risk analysis. Biosecurity Surveillance: Quantitative Approaches F Jarrad, S Low-Choy, K Mengersen 109–20 Wallingford, UK: CAB Int.
    [Google Scholar]
  100. 100.
    MacLeod A, Pautasso M, Jeger MJ, Haines-Young R. 2010. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2:49–70
    [Google Scholar]
  101. 101.
    Madden MJ, Young RG, Brown JW, Miller SE, Frewin AJ, Hanner RH. 2019. Using DNA barcoding to improve invasive pest identification at US ports-of-entry. PLOS ONE 14:e0222291
    [Google Scholar]
  102. 102.
    Magarey RD, Dolezal WE, Moore TJ 2010. Worldwide monitoring systems: the need for public and private collaboration. Recent Developments in Management of Plant Diseases U Gisi, I Chet, ML Gullino 349–55 Berlin: Springer
    [Google Scholar]
  103. 103.
    Marchioro M, Battisti A, Faccoli M. 2020. Light traps in shipping containers: a new tool for the early detection of insect alien species. J. Econ. Entomol. 113:1718–24
    [Google Scholar]
  104. 104.
    Marzano M, Allen W, Haight RG, Holmes TP, Keskitalo EC et al. 2017. The role of the social sciences and economics in understanding and informing tree biosecurity policy and planning: a global summary and synthesis. Biol. Invasions 19:3317–32
    [Google Scholar]
  105. 105.
    Measey J, Visser V, Dgebuadze Y, Li B, Dechoum M et al. 2019. The world needs BRICS countries to build capacity in invasion science. PLOS ONE 17:e3000404
    [Google Scholar]
  106. 106.
    Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA. 2019. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 92:13–27
    [Google Scholar]
  107. 107.
    Morrell JJ. 1995. Importation of unprocessed logs into North America: a review of pest mitigation procedures and their efficacy. For. Prod. J. 45:41–50
    [Google Scholar]
  108. 108.
    Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K et al. 2006. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12:71–79
    [Google Scholar]
  109. 109.
    Nahrung HF, Carnegie AJ. 2020. Non-native forest insects and pathogens in Australia: establishment, spread and impact. Front. For. Glob. Change 3:37
    [Google Scholar]
  110. 110.
    Ormsby M, Brenton-Rule E. 2017. A review of global instruments to combat invasive alien species in forestry. Biol. Invasions 19:3355–64
    [Google Scholar]
  111. 111.
    Paap T, Burgess TI, Wingfield MJ. 2017. Urban trees: bridge-heads for forest pest invasions and sentinels for early detection. Biol. Invasions 19:3515–26
    [Google Scholar]
  112. 112.
    Panzavolta T, Bracalini M, Benigno A, Moricca S 2021. Alien invasive pathogens and pests harming trees, forests, and plantations: pathways, global consequences and management. Forests 12:1364
    [Google Scholar]
  113. 113.
    Pawson S, Williams N, Gear I, Armstrong J 2014. Reducing biosecurity business risks for logs and timber. N. Z. J. For. 59:22–28
    [Google Scholar]
  114. 114.
    Pawson SM, Sullivan JJ, Grant A. 2020. Expanding general surveillance of invasive species by integrating citizens as both observers and identifiers. J. Pest Sci. 93:1155–66
    [Google Scholar]
  115. 115.
    Perrings C, Burgiel S, Lonsdale M, Mooney H, Williamson M. 2010. International cooperation in the solution to trade-related invasive species risks. Ann. N. Y. Acad. Sci. 1195:198–212
    [Google Scholar]
  116. 116.
    Piper AM, Batovska J, Cogan NO, Weiss J, Cunningham JP et al. 2019. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience 8:giz092
    [Google Scholar]
  117. 117.
    Poland TM, Rassati D. 2019. Improved biosecurity surveillance of non-native forest insects: a review of current methods. J. Pest Sci. 92:37–49
    [Google Scholar]
  118. 118.
    Prestemon JP, Turner JA, Buongiorno J, Zhu S, Li R. 2008. Some timber product market and trade implications of an invasive defoliator: the case of Asian Lymantria in the United States. J. For. 106:409–15
    [Google Scholar]
  119. 119.
    Preti M, Verheggen F, Angeli S. 2021. Insect pest monitoring with camera-equipped traps: strengths and limitations. J. Pest Sci. 94:203–17
    [Google Scholar]
  120. 120.
    Rabaglia RJ, Cognato AI, Hoebeke ER, Johnson CW, LaBonte JR et al. 2019. Early detection and rapid response: a 10-year summary of the USDA Forest Service program of surveillance for non-native bark and ambrosia beetles. Am. Entomol. 65:29–42
    [Google Scholar]
  121. 121.
    Rassati D, Faccoli M, Petrucco Toffolo E, Battisti A, Marini L 2015. Improving the early detection of alien wood-boring beetles in ports and surrounding forests. J. Appl. Ecol. 52:50–58
    [Google Scholar]
  122. 122.
    Reid CH, Hudgins EJ, Guay JD, Patterson S, Medd AM et al. 2021. The state of Canada's biosecurity efforts to protect biodiversity from species invasions. FACETS 6:1922–54
    [Google Scholar]
  123. 123.
    Ricciardi A, Iacarella JC, Aldridge DC, Blackburn TM, Carlton JT et al. 2021. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29:119–41
    [Google Scholar]
  124. 124.
    Riherd C, Nguyen R, Brazzel JR 2019. Pest free areas. Quarantine Treatments for Pests of Food Plants JL Sharp, GJ Hallman 213–23 Boca Raton, FL: CRC Press
    [Google Scholar]
  125. 125.
    Roe AD, Torson AS, Bilodeau G, Bilodeau P, Blackburn GS et al. 2019. Biosurveillance of forest insects: part I—integration and application of genomic tools to the surveillance of non-native forest insects. J. Pest Sci. 92:51–70
    [Google Scholar]
  126. 126.
    Roques A, Shi J, Auger-Rozenberg MA, Ren L, Augustin S, Luo YQ 2020. Are invasive patterns of non-native insects related to woody plants differing between Europe and China?. Front. For. Glob. Change 2:91
    [Google Scholar]
  127. 127.
    Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ et al. 2014. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol. Environ. 12:457–65
    [Google Scholar]
  128. 128.
    Sarmento MI, Pint G, Araújo WL, Silva RC, Lima CHO et al. 2021. Differential development times of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) reveal differences in susceptibility between two Eucalyptus clones. Pest Manag. Sci. 77:1042–51
    [Google Scholar]
  129. 129.
    Schröder ML, Slippers B, Wingfield MJ, Hurley BP. 2020. Invasion history and management of Eucalyptus snout beetles in the Gonipterus scutellatus species complex. J. Pest Sci. 93:11–25
    [Google Scholar]
  130. 130.
    Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W et al. 2021. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27:970–82
    [Google Scholar]
  131. 131.
    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:14435
    [Google Scholar]
  132. 132.
    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. PNAS 115:E2264–73
    [Google Scholar]
  133. 133.
    Sharov AA, Liebhold AM. 1998. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecol. Appl. 8:833–45
    [Google Scholar]
  134. 134.
    Simberloff D. 2009. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40:81–102
    [Google Scholar]
  135. 135.
    Solano A, Rodriguez SL, Greenwood L, Dodds KJ, Coyle DR. 2021. Firewood transport as a vector of forest pest dispersal in North America: a scoping review. J. Econ. Entomol. 114:14–23
    [Google Scholar]
  136. 136.
    Springborn MR, Lindsay AR, Epanchin-Niell RS 2016. Harnessing enforcement leverage at the border to minimize biological risk from international live species trade. J. Econ. Behav. Organ. 132:98–112
    [Google Scholar]
  137. 137.
    Stanaway MA, Zalucki MP, Gillespie PS, Rodriguez CM, Maynard GV. 2001. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40:180–92
    [Google Scholar]
  138. 138.
    Suckling DM, Barrington AM, Chhagan A, Stephens AEA, Burnip GM et al. 2007. Eradication of the Australian painted apple moth Teia anartoides in New Zealand: trapping, inherited sterility, and male competitiveness. Area-Wide Control of Insect Pests MJB Vreyson, AS Robinson, J Hendricks 603–15 Berlin: Springer
    [Google Scholar]
  139. 139.
    Suckling DM, Stringer LD, Baird DB, Kean JM. 2019. Will growing invasive arthropod biodiversity outpace our ability for eradication?. Ecol. Appl. 29:e01992
    [Google Scholar]
  140. 140.
    Suckling DM, Tobin PC, McCullough DG, Herms DA. 2012. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105:1–13
    [Google Scholar]
  141. 141.
    Thompson M, Lyons A, Kumarasinghe L, Peck DR, Kong G et al. 2011. Remote microscopy: a success story in Australian and New Zealand plant biosecurity. Aust. J. Entomol. 50:1–6
    [Google Scholar]
  142. 142.
    Tobin PC, Blackburn LM. 2007. Slow the spread: a national program to manage the gypsy moth Gen. Tech. Rep. NRS-6, North. Res. Stn., For. Serv., US Dept. Agric. Madison, WI:
  143. 143.
    Tobin PC, Kean JM, Suckling DM, McCullough DG, Herms DA, Stringer LD. 2014. Determinants of successful arthropod eradication programs. Biol. Invasions 16:401–14
    [Google Scholar]
  144. 144.
    Turner RM, Brockerhoff EG, Bertelsmeier C, Blake RE, Caton B et al. 2021. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31:e02412
    [Google Scholar]
  145. 145.
    US Dept. Agric 2021. Removal of emerald ash borer domestic quarantine regulations. Fed. Regist. 85:81085–95
    [Google Scholar]
  146. 146.
    US Dept. Agric 2022. Lymantria dispar Digest 2.1.01 Database For. Serv., US Dept. Agric. Washington, DC: updated Jan. 12. https://apps.fs.usda.gov/nicportal/lddigest/cfm/dsp/dspSuppressionCostByYearForProgram.cfm
    [Google Scholar]
  147. 147.
    Valentin RE, Fonseca DM, Gable S, Kyle KE, Hamilton GC et al. 2020. Moving eDNA surveys onto land: strategies for active eDNA aggregation to detect invasive forest insects. Mol. Ecol. Res. 20:746–55
    [Google Scholar]
  148. 148.
    Van Rooyen E, Paap T, De Beer ZW, Townsend G, Fell S et al. 2021. The polyphagous shot hole borer beetle: current status of a perfect invader in South Africa. S. Afr. J. Sci. 117:9736
    [Google Scholar]
  149. 149.
    Venette RC. 2017. Climate analyses to assess risks from invasive forest insects: simple matching to advanced models. Curr. For. Rep. 3:255–68
    [Google Scholar]
  150. 150.
    Ward SF, Fe S, Liebhold AM. 2019. Spatial patterns of discovery points and invasion hotspots of non-native forest pests. Glob. Ecol. Biogeogr. 28:1749–62
    [Google Scholar]
  151. 151.
    Welsh MJ, Turner JA, Epanchin-Niell RS, Monge JJ, Soliman T et al. 2021. Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases. Ecol. Appl. 31:e02319
    [Google Scholar]
  152. 152.
    Whattam M, Clover G, Firko M, Kalaris T. 2014. The biosecurity continuum and trade: border operations. See Reference 56 269–308
  153. 153.
    Wilson AD, Forse LB, Babst BA, Bataineh MM. 2019. Detection of emerald ash borer infestations in living green ash by noninvasive electronic-nose analysis of wood volatiles. Biosensors 9:123
    [Google Scholar]
  154. 154.
    Withers TM. 2001. Colonization of eucalypts in New Zealand by Australian insects. Austral Ecol. 26:467–76
    [Google Scholar]
  155. 155.
    Yamanaka T, Liebhold AM. 2009. Spatially implicit approaches to understand the manipulation of mating success for insect invasion management. Popul. Ecol. 51:427–44
    [Google Scholar]
  156. 156.
    Yemshanov D, Haight RG, MacQuarrie CJ, Koch FH, Liu N et al. 2020. Optimal planning of multi-day invasive species surveillance campaigns. Ecol. Solut. Evid. 1:e12029
    [Google Scholar]
  157. 157.
    Zahid MI, Grgurinovic CA, Walsh DJ. 2008. Quarantine risks associated with solid wood packaging materials receiving ISPM 15 treatments. Aust. For. 71:287–93
    [Google Scholar]
  158. 158.
    Zahrnt V. 2011. Transparency of complex regulation: How should WTO trade policy reviews deal with sanitary and phytosanitary policies?. World Trade Rev. 10:217–47
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-010854
Loading
/content/journals/10.1146/annurev-ento-120220-010854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error