1932

Abstract

Fungi comprise approximately 20% of all eukaryotic species and are connected to virtually all life forms on Earth. Yet, their diversity remains contentious, their distribution elusive, and their conservation neglected. We aim to flip this situation by synthesizing current knowledge. We present a revised estimate of 2–3 million fungal species with a “best estimate” at 2.5 million. To name the unknown >90% of these by the end of this century, we propose recognition of species known only from DNA data and call for large-scale sampling campaigns. We present an updated global map of fungal richness, highlighting tropical and temperate ecoregions of high diversity. We call for further Red List assessments and enhanced management guidelines to aid fungal conservation. Given that fungi play an inseparable role in our lives and in all ecosystems, and considering the fascinating questions remaining to be answered, we argue that fungi constitute the next frontier of biodiversity research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-090937
2023-11-13
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112621-090937.html?itemId=/content/journals/10.1146/annurev-environ-112621-090937&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Suz LM, Sarasan V, Wearn JA, Bidartondo MI, Hodkinson TR et al. 2018. Positive plant-fungal interactions. See Ref. 154 31–39
  2. 2.
    van der Wal A, Geydan TD, Kuyper TW, De Boer W. 2013. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol. Rev. 37:4477–94
    [Google Scholar]
  3. 3.
    Willis KJ. 2016. State of the world's plants 2016 Rep. R. Bot. Gardens Kew, London:
  4. 4.
    Rafiqi M, Saunders D, McMullan M, Oliver R, Bone R et al. 2018. Plant-killers: fungal threats to ecosystems. See Ref. 154 56–61
  5. 5.
    Olson DH, Ronnenberg KL, Glidden CK, Christiansen KR, Blaustein AR. 2021. Global patterns of the fungal pathogen Batrachochytrium dendrobatidis support conservation urgency. Front. Vet. Sci. 8:685877
    [Google Scholar]
  6. 6.
    Prescott T, Wong J, Panaretou B, Boa E, Bond A et al. 2018. Useful fungi. See Ref. 154 24–31
  7. 7.
    Gandia A, van den Brandhof JG, Appels FV, Jones MP. 2021. Flexible fungal materials: shaping the future. Trends Biotechnol. 39:121321–31
    [Google Scholar]
  8. 8.
    Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX et al. 2020. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol. Biotechnol. 7:5
    [Google Scholar]
  9. 9.
    Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S et al. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97:1–136
    [Google Scholar]
  10. 10.
    Odoh CK, Eze CN, Obi CJ, Anyah F, Egbe K et al. 2020. Fungal biofertilizers for sustainable agricultural productivity. Agriculturally Important Fungi for Sustainable Agriculture AN Yadav, S Mishra, D Kour, N Yadav, A Kumar 199–225. Cham, Switz.: Springer
    [Google Scholar]
  11. 11.
    Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW et al. 2020. The architecture of metabolism maximizes biosynthetic diversity in the largest class of fungi. Mol. Biol. Evol. 37:102838–56
    [Google Scholar]
  12. 12.
    Honda S, Eusebio-Cope A, Miyashita S, Yokoyama A, Aulia A et al. 2020. Establishment of Neurospora crassa as a model organism for fungal virology. Nat. Commun. 11:5627
    [Google Scholar]
  13. 13.
    Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11:15125
    [Google Scholar]
  14. 14.
    Almeida F, Rodrigues ML, Coelho C. 2019. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10:214
    [Google Scholar]
  15. 15.
    WHO (World Health Organ.) 2022. WHO fungal priority pathogens list to guide research, development and public health action Rep. WHO Geneva:
  16. 16.
    Berbee ML, James TY, Strullu-Derrien C. 2017. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71:41–60
    [Google Scholar]
  17. 17.
    Golan JJ, Pringle A. 2017. Long-distance dispersal of fungi. Microbiol. Spectr. 5:4 FUNK-0047-2016
    [Google Scholar]
  18. 18.
    Spribille T, Resl P, Stanton DE, Tagirdzhanova G. 2022. Evolutionary biology of lichen symbioses. New Phytol. 234:51566–82
    [Google Scholar]
  19. 19.
    Schmitt CL, Tatum ML. 2008. The Malheur National Forest: location of the world's largest living organism (the Humongous Fungus) Rep. US Dep. Agric, For. Serv. Pac. Northwest Region Portland:
  20. 20.
    Anderson JB, Bruhn JN, Kasimer D, Wang H, Rodrigue N, Smith ML. 2018. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. R. Soc. B 285:189320182233
    [Google Scholar]
  21. 21.
    Cannon PF, Aguirre-Hudson B, Aime MC, Ainsworth AM, Bidartondo MI et al. 2018. Definition and diversity. See Ref. 154 4–11
  22. 22.
    Kuhar F, Furci G, Drechsler-Santos ER, Pfister DH. 2018. Delimitation of Funga as a valid term for the diversity of fungal communities: the Fauna, Flora & Funga proposal (FF&F). IMA Fungus 9:A71–74
    [Google Scholar]
  23. 23.
    Wilson RA, Talbot NJ. 2009. Fungal physiology - a future perspective. Microbiology 155:123810–15
    [Google Scholar]
  24. 24.
    Treseder KK, Lennon JT. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79:2243–62
    [Google Scholar]
  25. 25.
    Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovacs GM. 2017. Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol. Spectr. 5:4 FUNK-0036-2016
    [Google Scholar]
  26. 26.
    Antonelli A, Fry C, Smith RJ, Simmonds MSJ, Kersey PJ et al. 2020. State of the world's plants and fungi 2020 Rep. R. Bot. Gardens Kew, London:
  27. 27.
    Index Fungorum Partnership 2023. Species Fungorum. Royal Botanic Gardens, Kew. http://www.speciesfungorum.org/Names/Names.asp [ last accessed 24 April 2023 ]
    [Google Scholar]
  28. 28.
    Bánki O, Roskov Y, Döring M, Ower G, Vandepitte L et al. 2022. Catalogue of Life Checklist (Annual Checklist 2022). Catalogue of Life https://doi.org/10.48580/dfq8
    [Google Scholar]
  29. 29.
    Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA et al. 2019. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5:11eaaz0414
    [Google Scholar]
  30. 30.
    Guiry MD. 2012. How many species of algae are there?. J. Phycol. 48:51057–63
    [Google Scholar]
  31. 31.
    Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8:215
    [Google Scholar]
  32. 32.
    Erwin TL. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36:174–75
    [Google Scholar]
  33. 33.
    Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. 2011. How many species are there on Earth and in the ocean?. PLOS Biol. 9:8e1001127
    [Google Scholar]
  34. 34.
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  35. 35.
    Pimm SL, Joppa LN. 2015. How many plant species are there, where are they, and at what rate are they going extinct?. Ann. Mo. Bot. Gard. 100:3170–76
    [Google Scholar]
  36. 36.
    Corlett RT. 2016. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38:110–16
    [Google Scholar]
  37. 37.
    Corlett RT. 2020. Safeguarding our future by protecting biodiversity. Plant Divers. 42:4221–28
    [Google Scholar]
  38. 38.
    Hawksworth DL. 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res. 105:121422–32
    [Google Scholar]
  39. 39.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS et al. 2014. Global diversity and geography of soil fungi. Science 346:62131256688
    [Google Scholar]
  40. 40.
    Tedersoo L, Mikryukov V, Anslan S, Bahram M, Khalid AN et al. 2021. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers 111:1573–88
    [Google Scholar]
  41. 41.
    Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh-Doust N et al. 2022. Global patterns in endemicity and vulnerability of soil fungi. Glob. Change Biol. 28:6696–710
    [Google Scholar]
  42. 42.
    Hawksworth DL, Lücking R. 2017. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5:4FUNK–0052-2016
    [Google Scholar]
  43. 43.
    Baldrian P, Větrovský T, Lepinay C, Kohout P. 2022. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114:539–47
    [Google Scholar]
  44. 44.
    Hawksworth DL. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95:6641–55
    [Google Scholar]
  45. 45.
    May RM. 2000. The dimensions of life on Earth. Nature and Human Society: The Quest for a Sustainable World PH Raven, T Williams 30–45. Washington, DC: Natl. Acad. Press
    [Google Scholar]
  46. 46.
    Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. 2019. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:3127–40
    [Google Scholar]
  47. 47.
    Díaz S, Malhi Y. 2022. Biodiversity: concepts, patterns, trends, and perspectives. Annu. Rev. Environ. Resour. 47:31–63
    [Google Scholar]
  48. 48.
    Kirk PM, Cannon PF, Minter DW, Stalpers JA, eds. 2008. Ainsworth and Bisby's Dictionary of the Fungi Wallingford, UK: CABI. , 10th ed..
  49. 49.
    Index Fungorum Partnership 2011. Index Fungorum. Royal Botanic Gardens, Kew. http://www.indexfungorum.org/Names/Names.asp [accessed in 2011]
    [Google Scholar]
  50. 50.
    Hawksworth DL. 2012. Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21:92425–33
    [Google Scholar]
  51. 51.
    Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA et al. 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:6044876–79
    [Google Scholar]
  52. 52.
    Gaya E, Vasco-Palacios AM, Vargas-Estupiñán N, Lücking R, Carretero J et al. 2021. ColFungi: Colombian Resources for Fungi Made Accessible London: R. Bot. Gardens, Kew
  53. 53.
    Gaya E, Motato-Vásquez V, Lücking R 2022. Diversity of Fungi of Colombia. Catalogue of Fungi of Colombia RF de Almeida, R Lücking, AM Vasco-Palacios, E Gaya, M Diazgranados 45–57. London: R. Bot. Gardens, Kew
    [Google Scholar]
  54. 54.
    Clubbe C, Ainsworth AM, Bárrios S, Bensusan K, Brodie J et al. 2020. Current knowledge, status, and future for plant and fungal diversity in Great Britain and the UK Overseas Territories. Plants People Planet 2:5557–79
    [Google Scholar]
  55. 55.
    Chethana KW, Manawasinghe IS, Hurdeal VG, Bhunjun CS, Appadoo MA et al. 2021. What are fungal species and how to delineate them?. Fungal Divers. 109:1–25
    [Google Scholar]
  56. 56.
    Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA et al. 2020. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding?. IMA Fungus 11:14
    [Google Scholar]
  57. 57.
    Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T et al. 2021. Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 6:5540–48
    [Google Scholar]
  58. 58.
    O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71:95544–50
    [Google Scholar]
  59. 59.
    Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW. 2014. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84:13–20
    [Google Scholar]
  60. 60.
    Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F et al. 2014. A single macrolichen constitutes hundreds of unrecognized species. PNAS 111:3011091–96
    [Google Scholar]
  61. 61.
    Tedersoo L, Tooming-Klunderud A, Anslan S. 2018. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 217:31370–85
    [Google Scholar]
  62. 62.
    Barbera P, Kozlov AM, Czech L, Morel B, Darriba D et al. 2019. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68:2365–69
    [Google Scholar]
  63. 63.
    Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA et al. 2019. T-BAS version 2.1: Tree-Based Alignment Selector toolkit for evolutionary placement of DNA sequences and viewing alignments and specimen metadata on curated and custom trees. Microbiol. Resour. Announc. 8:29e00328-19
    [Google Scholar]
  64. 64.
    Czech L, Stamatakis A. 2019. Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples. PLOS ONE 14:5e0217050
    [Google Scholar]
  65. 65.
    Reynolds NK, Jusino MA, Stajich JE, Smith ME. 2022. Understudied, underrepresented, and unknown: methodological biases that limit detection of early diverging fungi from environmental samples. Mol. Ecol. Resour. 22:31065–85
    [Google Scholar]
  66. 66.
    Põlme S, Abarenkov K, Nilsson HR, Lindahl BD, Engelbrecht K et al. 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105:1–16
    [Google Scholar]
  67. 67.
    Větrovský T, Kohout P, Kopecký M, Machac A, Matěj M et al. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10:5142
    [Google Scholar]
  68. 68.
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–73
    [Google Scholar]
  69. 69.
    Bastida F, Eldridge DJ, García C, Kenny PG, Bardgett RD, Delgado-Baquerizo M. 2021. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J. 15:2081–91
    [Google Scholar]
  70. 70.
    Delgado-Baquerizo M, Eldridge DJ, Liu YR, Sokoya B, Wang JT et al. 2021. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7:eabg5809
    [Google Scholar]
  71. 71.
    Bahram M, Espenberg M, Pärn J, Lehtovirta-Morley L, Anslan S et al. 2022. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13:1430
    [Google Scholar]
  72. 72.
    Maestre FT, Eldridge DJ, Gross N, Le Bagousse-Pinguet Y, Saiz H et al. 2022. The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands. Web Ecol. 22:75–96
    [Google Scholar]
  73. 73.
    Pascoe IG. 1990. History of systematic mycology in Australia. History of Systematic Botany in Australia PS Short 259–64. South Yarra, Vic.: Aus. Syst. Bot. Soc.
    [Google Scholar]
  74. 74.
    Shivas RG, Hyde KD 1997. Biodiversity of plant pathogenic fungi in the tropics. Biodiversity of Tropical Microfungi KD Hyde 47–56. Hong Kong: Hong Kong Univ. Press
    [Google Scholar]
  75. 75.
    Gladfelter AS, James TY, Amend AS. 2019. Marine fungi. Curr. Biol. 29:6R191–95
    [Google Scholar]
  76. 76.
    Vargas-Gastélum L, Riquelme M. 2020. The mycobiota of the deep sea: what omics can offer. Life 10:11292
    [Google Scholar]
  77. 77.
    Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S et al. 2022. Predicting global numbers of teleomorphic ascomycetes. Fungal Divers. 114:237–78
    [Google Scholar]
  78. 78.
    Dragone NB, Diaz MA, Hogg ID, Lyons WB, Jackson WA et al. 2021. Exploring the boundaries of microbial habitability in soil. J. Geophys. Res. 126:6e2020JG006052
    [Google Scholar]
  79. 79.
    Grossart HP, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M et al. 2019. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17:6339–54
    [Google Scholar]
  80. 80.
    Hassett BT, Al-Shaibi BK, Al-Nabhani A, Al-Sadi AM 2020. New species of aquatic chytrids from Oman. Mycologia 112:4781–91
    [Google Scholar]
  81. 81.
    Hamm PS, Mueller RC, Kuske CR, Porras-Alfaro A. 2020. Keratinophilic fungi: specialized fungal communities in a desert ecosystem identified using cultured-based and Illumina sequencing approaches. Microbiol. Res. 239:126530
    [Google Scholar]
  82. 82.
    Kowal J, Arrigoni E, Jarvis S, Zappala S, Forbes E et al. 2022. Atmospheric pollution, soil nutrients and climate effects on Mucoromycota arbuscular mycorrhizal fungi. Environ. Microbiol. 24:83390–404
    [Google Scholar]
  83. 83.
    Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA et al. 2018. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers. 92:43–129
    [Google Scholar]
  84. 84.
    Galindo LJ, López-García P, Torruella G, Karpov S, Moreira D. 2021. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 12:4973
    [Google Scholar]
  85. 85.
    Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N et al. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90:11–17
    [Google Scholar]
  86. 86.
    Wingfield MJ, Slippers B, Roux J, Wingfield BD. 2001. Worldwide movement of exotic forest fungi, especially in the tropics and the Southern Hemisphere. Bioscience 51:2134–40
    [Google Scholar]
  87. 87.
    Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ et al. 2019. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10:2369
    [Google Scholar]
  88. 88.
    El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. 2021. Marine endophytic fungal metabolites: a whole new world of pharmaceutical therapy exploration. Heliyon 7:3e06362
    [Google Scholar]
  89. 89.
    Werth S. 2011. Biogeography and phylogeography of lichen fungi and their photobionts. Biogeography of Microscopic Organisms: Is Everything Small Everywhere? D Fontaneto 191–208. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. 90.
    Widhelm TJ, Grewe F, Huang JP, Ramanauskas K, Mason-Gamer R, Lumbsch HT. 2021. Using RADseq to understand the circum-Antarctic distribution of a lichenized fungus, Pseudocyphellaria glabra. J. Biogeogr. 48:178–90
    [Google Scholar]
  91. 91.
    Vasco-Palacios AM, Lücking R, Moncada B, Palacio M, Motato-Vásquez V. 2022. A critical assessment of biogeographic distribution patterns of Colombian fungi. Catalogue of Fungi of Colombia RF de Almeida, R Lücking, AM Vasco-Palacios, E Gaya, M Diazgranados 121–36. London: R. Bot. Gardens, Kew
    [Google Scholar]
  92. 92.
    Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–63
    [Google Scholar]
  93. 93.
    Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC et al. 2013. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–49
    [Google Scholar]
  94. 94.
    Tedersoo L. 2017. Global biogeography and invasions of ectomycorrhizal plants: past, present and future. Biogeography of Mycorrhizal Symbiosis. Ecological Studies, Vol. 230 L Tedersoo 469–531. Cham, Switz.: Springer
    [Google Scholar]
  95. 95.
    Vasar M, Davison J, Sepp SK, Mucina L, Oja J et al. 2022. Global soil microbiomes: a new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 31:61120–32
    [Google Scholar]
  96. 96.
    Buyck B, Hofstetter V. 2011. The contribution of tef-1 sequences to species delimitation in the Cantharellus cibarius complex in the southeastern USA. Fungal Divers. 49:135–46
    [Google Scholar]
  97. 97.
    Foltz MJ, Perez KE, Volk TJ. 2013. Molecular phylogeny and morphology reveal three new species of Cantharellus within 20 m of one another in western Wisconsin, USA. Mycologia 105:2447–61
    [Google Scholar]
  98. 98.
    Lücking R, Forno MD, Moncada B, Coca LF, Vargas-Menodaza LY et al. 2017. Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth's seventieth birthday. Fungal Divers. 84:1139–207
    [Google Scholar]
  99. 99.
    Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL et al. 2009. A global assessment of endemism and species richness across island and mainland regions. PNAS 106:9322–27
    [Google Scholar]
  100. 100.
    Barlow J, França F, Gardner TA, Hicks CC, Lennox GD et al. 2018. The future of hyperdiverse tropical ecosystems. Nature 559:517–26
    [Google Scholar]
  101. 101.
    Daru BH, Farooq H, Antonelli A, Faurby S. 2020. Endemism patterns are scale dependent. Nat. Commun. 11:2115
    [Google Scholar]
  102. 102.
    Dal Forno M, Bungartz F, Yánez-Ayabaca A, Lücking R, Lawrey JD 2017. High levels of endemism among Galapagos basidiolichens. Fungal Divers. 85:45–73
    [Google Scholar]
  103. 103.
    Lücking R, Moncada B, Smith CW. 2017. The genus Lobariella (Ascomycota: Lobariaceae) in Hawaii: late colonization, high inferred endemism and three new species resulting from “micro-radiation.”. Lichenologist 49:6673–91
    [Google Scholar]
  104. 104.
    Simon A, Goffinet B, Magain N, Sérusiaux E. 2018. High diversity, high insular endemism and recent origin in the lichen genus Sticta (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes. Mol. Phylogenet. Evol. 122:15–28
    [Google Scholar]
  105. 105.
    Rivas-Ferreiro M, Skarha SM, Rakotonasolo F, Suz LM, Dentinger BTM 2023. DNA-based fungal diversity in Madagascar and arrival of the ectomycorrhizal fungi to the island. Biotropica 55954–68
  106. 106.
    Antonelli A, Smith RJ, Perrigo AL, Crottini A, Hackel J et al. 2022. Madagascar's extraordinary biodiversity: evolution, distribution, and use. Science 378:6623eabf0869
    [Google Scholar]
  107. 107.
    Lücking R. 2019. Stop the abuse of time! Strict temporal banding is not the future of rank-based classifications in fungi (including lichens) and other organisms. Crit. Rev. Plant Sci. 38:3199–253
    [Google Scholar]
  108. 108.
    Liimatainen K, Kim JT, Pokorny L, Kirk PM, Dentinger B, Niskanen T. 2022. Taming the beast: a revised classification of Cortinariaceae based on genomic data. Fungal Divers. 112:89–170
    [Google Scholar]
  109. 109.
    Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S et al. 2014. Endemism and functional convergence across the North American soil mycobiome. PNAS 111:176341–46
    [Google Scholar]
  110. 110.
    Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T et al. 2021. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231:763–76
    [Google Scholar]
  111. 111.
    Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. PNAS 112:5115684–89
    [Google Scholar]
  112. 112.
    Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD. 2016. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: Some like it hot. ISME J. 10:51228–39
    [Google Scholar]
  113. 113.
    de Witte LC, Rosenstock NP, van der Linde S, Braun S. 2017. Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Sci. Total Environ. 15:605–6061083–96
    [Google Scholar]
  114. 114.
    van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H et al. 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558:243–48
    [Google Scholar]
  115. 115.
    Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. 2021. Ectomycorrhizas and tipping points in forest ecosystems. New Phytol. 231:1700–7
    [Google Scholar]
  116. 116.
    Ceulemans T, Van Geel M, Jacquemyn H, Boeraeve M, Plue J et al. 2019. Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Glob. Ecol. Biogeogr. 28:121796–805
    [Google Scholar]
  117. 117.
    van Geel M, Jacquemyn H, Peeters G, van Acker K, Honnay O, Ceulemans T. 2020. Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytol. 228:51640–51
    [Google Scholar]
  118. 118.
    Hurtado P, Prieto M, Aragón G, Escudero A, Martínez I. 2019. Critical predictors of functional, phylogenetic and taxonomic diversity are geographically structured in lichen epiphytic communities. J. Ecol. 107:52303–16
    [Google Scholar]
  119. 119.
    U'Ren JM, Lutzoni F, Miadlikowska J, Zimmerman NB, Carbone I et al. 2019. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 3:1430–37
    [Google Scholar]
  120. 120.
    Oita S, Ibáñez A, Lutzoni F, Miadlikowska J, Geml J et al. 2021. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun. Biol. 4:313
    [Google Scholar]
  121. 121.
    Ritter CD, Dunthorn M, Anslan S, de Lima VX, Tedersoo L et al. 2020. Advancing biodiversity assessments with environmental DNA: long-read technologies help reveal the drivers of Amazonian fungal diversity. Ecol. Evol. 10:147509–24
    [Google Scholar]
  122. 122.
    Menezes AA, Cáceres MES, Bastos CJP, Lücking R. 2018. The latitudinal diversity gradient of epiphytic lichens in the Brazilian Atlantic Forest: Does Rapoport's rule apply?. Bryologist 121:4480–97
    [Google Scholar]
  123. 123.
    Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Griffith GW et al. 2015. A fungal perspective on conservation biology. Conserv. Biol. 29:161–68
    [Google Scholar]
  124. 124.
    May TW, Cooper JA, Dahlberg A. 2018. Recognition of the discipline of conservation mycology. Conserv. Biol. 33:3733–36
    [Google Scholar]
  125. 125.
    Arnolds E. 1988. The changing macromycete flora in the Netherlands. Trans. Br. Mycol. Soc. 90:3391–406
    [Google Scholar]
  126. 126.
    Moore D, Nauta MM, Evans SE, Rothero M. 2001. Fungal Conservation: Issues and Solutions. British Mycological Society, Symposium 1999 Cambridge, UK: Cambridge Univ. Press
  127. 127.
    Scheidegger C, Goward T. 2002. Monitoring lichens for conservation: Red Lists and conservation action plans. NATO Science Series, Vol. 7: Monitoring with Lichens - Monitoring Lichens L Nimis, C Scheidegger, P Wolseley 163–81. Dordrecht, Neth.: Springer
    [Google Scholar]
  128. 128.
    IUCN (Int. Union Conserv. Nat.) 2012. The IUCN Red List Categories and Criteria version 3.1. Gland, Switz./Cambridge, UK: IUCN. , 2nd ed..
  129. 129.
    Griffith GW, Bratton JL, Easton GL. 2004. Charismatic megafungi: the conservation of waxcap grasslands. Br. Wildlife 15:331–43
    [Google Scholar]
  130. 130.
    Int. Union Conserv. Nat 2022. The IUCN Red List of Threatened Species. Version 2022-2. International Union for Conservation of Nature https://www.iucnredlist.org [ last accessed on 30 December 2022 ]
    [Google Scholar]
  131. 131.
    Mueller GM, Cunha KM, May TW, Allen JL, Westrip JRS et al. 2022. What do the first 597 global fungal Red List assessments tell us about the threat status of fungi?. Diversity 14:736
    [Google Scholar]
  132. 132.
    Dahlberg A, Mueller GM. 2011. Applying IUCN red-listing criteria for assessing and reporting on the conservation status of fungal species. Fungal Ecol. 4:147–62
    [Google Scholar]
  133. 133.
    Dahlberg A, Genney DR, Heilmann-Clausen J. 2010. Developing a comprehensive strategy for fungal conservation in Europe: current status and future needs. Fungal Ecol. 3:50–64
    [Google Scholar]
  134. 134.
    Allen JL, McMullin RT, Tripp EA, Lendemer JC. 2019. Lichen conservation in North America: a review of current practices and research in Canada and the United States. Biodivers. Conserv. 28:3103–38
    [Google Scholar]
  135. 135.
    Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P. 2022. Fungal communities in soils under global change. Stud. Mycol. 103:1–24
    [Google Scholar]
  136. 136.
    Arnolds E, Veerkamp M. 2008. Basisrapport Rode Lijst Paddenstoelen Utrecht: Ned. Mycolog. Ver.
  137. 137.
    Eide W, Ahrné K, Bjelke U, Nordström S, Ottosson E et al., eds. 2020. Tillstånd och trender för arter och deras livsmiljöer: rödlistade arter i Sverige 2020 (Status and trends for species and their habitats – red-listed species in Sweden 2020) (In Swedish) SLU Artdatabanken rapp. 24 Uppsala: Swedish Species Inf. Cent.
    [Google Scholar]
  138. 138.
    Sheldrake M. 2020. Entangled Life: How Fungi Make Our Worlds, Change Our Minds and Shape Our Futures New York: Random House
  139. 139.
    Runnel K, Tamm H, Lõhmus A. 2015. Surveying wood-inhabiting fungi: most molecularly detected polypore species form fruit-bodies within short distances. Fungal Ecol. 18:93–99
    [Google Scholar]
  140. 140.
    Frøslev TG, Kjøller R, Bruun HH, Ejrnaes R, Hansen AJ et al. 2019. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biol. Conserv. 233:201–12
    [Google Scholar]
  141. 141.
    Lidén M, Pettersson M, Bergsten U, Lundmark T. 2004. Artificial dispersal of endangered epiphytic lichens: a tool for conservation in boreal forest landscapes. Biol. Conserv. 118:431–42
    [Google Scholar]
  142. 142.
    Smith PL. 2014. Lichen translocation with reference to species conservation and habitat restoration. Symbiosis 62:17–28
    [Google Scholar]
  143. 143.
    Nordén J, Abrego N, Boddy L, Bässler C, Dahlberg A et al. 2020. Ten principles for conservation translocations of threatened wood-inhabiting Fungi. Fungal Ecol. 44:100919
    [Google Scholar]
  144. 144.
    Winter M, Devictor V, Schweiger O. 2013. Phylogenetic diversity and nature conservation: Where are we?. Trends Ecol. Evol. 28:4199–204
    [Google Scholar]
  145. 145.
    Dighton J. 2018. Fungi in Ecosystem Processes CRC Press. , 2nd ed..
  146. 146.
    Seena S, Baschien C, Barros J, Sridhar KR, Graça MA et al. 2023. Ecosystem services provided by fungi in freshwaters: a wake-up call. Hydrobiologia 850:2779–94
    [Google Scholar]
  147. 147.
    Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C. 2022. The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Res. 50:D1D387–90
    [Google Scholar]
  148. 148.
    Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M et al. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90:1135–59
    [Google Scholar]
  149. 149.
    James TY, Stajich JE, Hittinger CT, Rokas A. 2020. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 74:291–313
    [Google Scholar]
  150. 150.
    Li Y, Steenwyk JL, Chang Y, Wang Y, James TY et al. 2021. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 31:81653–65
    [Google Scholar]
  151. 151.
    Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D et al. 2022. Outline of Fungi and fungus-like taxa—2021. Mycosphere 13:153–453
    [Google Scholar]
  152. 152.
    Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A et al. 2018. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3:121417–28
    [Google Scholar]
  153. 153.
    Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M 2018. The fungal tree of life: from molecular systematics to genome-scale phylogenies. The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EV Stukenbrock, NAR Gow 1–34. Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  154. 154.
    Willis KJ 2018. State of the World's Fungi 2018 London: R. Bot. Gardens, Kew
  155. 155.
    Leonardi M, Comandini O, Sanjust E, Rinaldi AC. 2021. Conservation status of milkcaps (Basidiomycota, Russulales, Russulaceae), with notes on poorly known species. Sustainability 13:10365
    [Google Scholar]
  156. 156.
    Martin GW. 1951. The numbers of fungi. Proc. Ia. Acad. Sci. 58:175–78
    [Google Scholar]
  157. 157.
    Cannon PF. 1997. Diversity of the Phyllachoraceae with special reference to the tropics. Biodiversity of Tropical Microfungi KD Hyde 255–78. Hong Kong: Hong Kong Univ. Press
    [Google Scholar]
  158. 158.
    Aptroot A. 1997. Species diversity in tropical rainforest ascomycetes: lichenized versus non-lichenized; foliicolous versus corticolous. Abstr. Bot. 21:37–44
    [Google Scholar]
  159. 159.
    Fröhlich J, Hyde KD. 1999. Biodiversity of palm fungi in the tropics: Are global fungal diversity estimates realistic?. Biodivers. Conserv. 8:977–1004
    [Google Scholar]
  160. 160.
    Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. 2000. Are tropical fungal endophytes hyperdiverse?. Ecol. Lett. 3:267–74
    [Google Scholar]
  161. 161.
    Schmit JP, Mueller GM. 2007. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16:99–111
    [Google Scholar]
  162. 162.
    Hywel-Jones NL 1993. A systematic survey of insect fungi from natural, tropical forest in Thailand. In Aspects of Tropical Mycologyed. S Isaac, JC Frankland, R Watling, AJS Whalley pp. 300–1 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112621-090937
Loading
/content/journals/10.1146/annurev-environ-112621-090937
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error