1932

Abstract

Natural wood has been used for construction, fuel, and furniture for thousands of years because of its versatility, renewability, and aesthetic appeal. However, new opportunities for wood are arising as researchers have developed ways to tune the material's optical, thermal, mechanical, and ionic transport properties by chemically and physically modifying wood's naturally porous structure and chemical composition. Such modifications can be used to produce sustainable, functional materials for various emerging applications such as automobiles, construction, energy storage, and environmental remediation. In this review, we highlight recent advancements in engineered wood for sustainable technologies, including thermal and light management, environmental remediation, nanofluidics, batteries, and structural materials with high strength-to-weight ratios. Additionally, the current challenges, opportunities, and future of wood research are discussed, providing a guideline for the further development of next-generation, sustainable wood-based materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-010622-105440
2023-07-03
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-010622-105440.html?itemId=/content/journals/10.1146/annurev-matsci-010622-105440&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Babin A, Vaneeckhaute C, Iliuta MC. 2021. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass Bioenergy 146:105968
    [Google Scholar]
  2. 2.
    Rowell RM. 2006. Chemical modification of wood: a short review. Wood Mater. Sci. Eng. 1:129–33
    [Google Scholar]
  3. 3.
    Gérardin P. 2016. New alternatives for wood preservation based on thermal and chemical modification of wood—a review. Ann. For. Sci. 73:3559–70
    [Google Scholar]
  4. 4.
    Bednarek Z, Kaliszuk-Wietecka A. 2007. Analysis of the fire-protection impregnation influence on wood strength. J. Civ. Eng. Manag. 13:279–85
    [Google Scholar]
  5. 5.
    Lozhechnikova A, Bellanger H, Michen B, Burgert I, Österberg M. 2017. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Appl. Surf. Sci. 396:1273–81
    [Google Scholar]
  6. 6.
    Sandberg D, Kutnar A, Mantanis G. 2017. Wood modification technologies—a review. iForest Biogeosci. For. 10:6895–908
    [Google Scholar]
  7. 7.
    Berglund LA, Burgert I. 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30:191704285
    [Google Scholar]
  8. 8.
    Xu T, Du H, Liu H, Liu W, Zhang X et al. 2021. Advanced nanocellulose-based composites for flexible functional energy storage devices (Adv. Mater. 48/2021). Adv. Mater. 33:482101368
    [Google Scholar]
  9. 9.
    Chen Y, Zhang L, Yang Y, Pang B, Xu W et al. 2021. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications.. Adv. Mater. 33:112005569
    [Google Scholar]
  10. 10.
    Liu C, Luan P, Li Q, Cheng Z, Xiang P et al. 2021. Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33:282001654
    [Google Scholar]
  11. 11.
    Liu C, Luan P, Li Q, Cheng Z, Sun X et al. 2020. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 3:62066–79
    [Google Scholar]
  12. 12.
    Völkel L, Beaumont M, Johansson L, Czibula C, Rusakov D et al. 2022. Assessing fire-damage in historical papers and alleviating damage with soft cellulose nanofibers. Small 18:132105420
    [Google Scholar]
  13. 13.
    Völkel L, Rusakov D, Kontturi E, Beaumont M, Rosenau T, Potthast A 2022. Manufacturing heat-damaged papers as model materials for evaluating conservation methods. Cellulose 29:6373–91
    [Google Scholar]
  14. 14.
    Beaumont M, Tardy BL, Reyes G, Koso TV, Schaubmayr E et al. 2021. Assembling native elementary cellulose nanofibrils via a reversible and regioselective surface functionalization. J. Am. Chem. Soc. 143:4117040–46
    [Google Scholar]
  15. 15.
    Sun X, Zhu Y, Zhu J, Le K, Servati P, Jiang F. 2022. Tough and ultrastretchable liquid-free ion conductor strengthened by deep eutectic solvent hydrolyzed cellulose microfibers. Adv. Funct. Mater. 32:292202533
    [Google Scholar]
  16. 16.
    Montanari C, Ogawa Y, Olsén P, Berglund LA. 2021. High performance, fully bio-based, and optically transparent wood biocomposites. Adv. Sci. 8:122100559
    [Google Scholar]
  17. 17.
    Zhu M, Song J, Li T, Gong A, Wang Y et al. 2016. Highly anisotropic, highly transparent wood composites. Adv. Mater. 28:265181–87
    [Google Scholar]
  18. 18.
    Li T, Zhu M, Yang Z, Song J, Dai J et al. 2016. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6:221601122
    [Google Scholar]
  19. 19.
    Yang C, Wu Q, Xie W, Zhang X, Brozena A et al. 2021. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598:7882590–96
    [Google Scholar]
  20. 20.
    Li J, Chen C, Zhu JY, Ragauskas AJ, Hu L 2021. In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2:8606–20
    [Google Scholar]
  21. 21.
    Keplinger T, Wittel FK, Rüggeberg M, Burgert I. 2021. Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 33:282001375
    [Google Scholar]
  22. 22.
    Pettersen RC. 1984. The chemical composition of wood. Chem. Solid Wood 207:57–126
    [Google Scholar]
  23. 23.
    Zhu H, Zhu S, Jia Z, Parvinian S, Li Y et al. 2015. Anomalous scaling law of strength and toughness of cellulose nanopaper. PNAS 112:298971–76
    [Google Scholar]
  24. 24.
    Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J. 2014. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J. R. Soc. Interface 11:9520140126
    [Google Scholar]
  25. 25.
    Brethauer S, Shahab RL, Studer MH. 2020. Impacts of biofilms on the conversion of cellulose. Appl. Microbiol. Biotechnol. 104:125201–12
    [Google Scholar]
  26. 26.
    Berardi U. 2015. Building energy consumption in US, EU, and BRIC countries. Procedia Eng 118:128–36
    [Google Scholar]
  27. 27.
    Cao X, Dai X, Liu J. 2016. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build 128:198–213
    [Google Scholar]
  28. 28.
    Yang H, Wang Y, Yu Q, Cao G, Yang R et al. 2018. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl. Energy 212:455–64
    [Google Scholar]
  29. 29.
    Chang SJ, Kang Y, Wi S, Jeong S-G, Kim S. 2017. Hygrothermal performance improvement of the Korean wood frame walls using macro-packed phase change materials (MPPCM). Appl. Therm. Eng. 114:457–65
    [Google Scholar]
  30. 30.
    Cui Y, Xie J, Liu J, Pan S. 2015. Review of phase change materials integrated in building walls for energy saving. Procedia Eng 121:763–70
    [Google Scholar]
  31. 31.
    Yang H, Wang Y, Yu Q, Cao G, Sun X et al. 2018. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy 159:929–36
    [Google Scholar]
  32. 32.
    Yang H, Chao W, Wang S, Yu Q, Cao G et al. 2019. Self-luminous wood composite for both thermal and light energy storage. Energy Storage Mater 18:15–22
    [Google Scholar]
  33. 33.
    Yang H, Wang S, Wang X, Chao W, Wang N et al. 2020. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy 261:114481
    [Google Scholar]
  34. 34.
    Nocentini K, Achard P, Biwole P, Stipetic M. 2018. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build 158:14–22
    [Google Scholar]
  35. 35.
    Yu ZL, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma ZY et al. 2018. Fire-retardant and thermally insulating phenolic-silica aerogels. Angew. Chem. Int. Ed. 57:174538–42
    [Google Scholar]
  36. 36.
    Lang AW, Li Y, De Keersmaecker M, Shen DE, Österholm AM et al. 2018. Transparent wood smart windows: polymer electrochromic devices based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) electrodes. ChemSusChem 11:5854–63
    [Google Scholar]
  37. 37.
    Xu X, Zhang Q, Hao M, Hu Y, Lin Z et al. 2019. Double-negative-index ceramic aerogels for thermal superinsulation. Science 363:6428723–27
    [Google Scholar]
  38. 38.
    Li T, Song J, Zhao X, Yang Z, Pastel G et al. 2018. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 4:3eaar3724
    [Google Scholar]
  39. 39.
    He S, Chen C, Li T, Song J, Zhao X et al. 2020. An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods 4:11900747
    [Google Scholar]
  40. 40.
    Liu Q, Frazier AW, Zhao X, Joshua A, Hess AJ et al. 2018. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48:266–74
    [Google Scholar]
  41. 41.
    Zhai Y, Ma Y, David SN, Zhao D, Lou R et al. 2017. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355:63291062–66
    [Google Scholar]
  42. 42.
    Yin X, Yang R, Tan G, Fan S. 2020. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370:6518786–91
    [Google Scholar]
  43. 43.
    Li T, Zhai Y, He S, Gan W, Wei Z et al. 2019. A radiative cooling structural material. Science 364:6442760–63
    [Google Scholar]
  44. 44.
    Kittel C. 1949. Interpretation of the thermal conductivity of glasses. Phys. Rev. 75:6972–74
    [Google Scholar]
  45. 45.
    Wan C, Liu X, Huang Q, Cheng W, Su J, Wu Y. 2021. A brief review of transparent wood: synthetic strategy, functionalization and applications. Curr. Org. Synth. 18:7615–23
    [Google Scholar]
  46. 46.
    Schmitz A, Kamiński J, Scalet BM, Soria A. 2011. Energy consumption and CO2 emissions of the European glass industry. Energy Policy 39:1142–55
    [Google Scholar]
  47. 47.
    Jani Y, Hogland W. 2014. Waste glass in the production of cement and concrete—a review. J. Environ. Chem. Eng. 2:31767–75
    [Google Scholar]
  48. 48.
    Mi R, Li T, Dalgo D, Chen C, Kuang Y et al. 2020. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv. Funct. Mater. 30:11907511
    [Google Scholar]
  49. 49.
    Jia C, Chen C, Mi R, Li T, Dai J et al. 2019. Clear wood toward high-performance building materials. ACS Nano 13:99993–10001
    [Google Scholar]
  50. 50.
    Li Y, Yang X, Fu Q, Rojas R, Yan M, Berglund L. 2018. Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A 6:31094–101
    [Google Scholar]
  51. 51.
    Chen P, Li Y, Nishiyama Y, Pingali SV, O'Neill HM et al. 2021. Small angle neutron scattering shows nanoscale PMMA distribution in transparent wood biocomposites. Nano Lett 21:72883–90
    [Google Scholar]
  52. 52.
    Montanari C, Li Y, Chen H, Yan M, Berglund LA. 2019. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 11:2220465–72
    [Google Scholar]
  53. 53.
    Li Y, Vasileva E, Sychugov I, Popov S, Berglund L. 2018. Optically transparent wood: recent progress, opportunities, and challenges. Adv. Opt. Mater. 6:141800059
    [Google Scholar]
  54. 54.
    Li Y, Fu Q, Yang X, Berglund L. 2018. Transparent wood for functional and structural applications. Philos. Trans. R. Soc. A 376:211220170182
    [Google Scholar]
  55. 55.
    Xia Q, Chen C, Li T, He S, Gao J et al. 2021. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 7:5eabd7342
    [Google Scholar]
  56. 56.
    Wang L, Liu Y, Zhan X, Luo D, Sun X. 2019. Photochromic transparent wood for photo-switchable smart window applications. J. Mater. Chem. C 7:288649–54
    [Google Scholar]
  57. 57.
    Montanari C, Li Y, Chen H, Yan M, Berglund LA. 2019. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 11:2220465–72
    [Google Scholar]
  58. 58.
    Li Y, Fu Q, Yu S, Yan M, Berglund L. 2016. Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules 17:41358–64
    [Google Scholar]
  59. 59.
    Mi R, Chen C, Keplinger T, Pei Y, He S et al. 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11:13836
    [Google Scholar]
  60. 60.
    Gan W, Xiao S, Gao L, Gao R, Li J, Zhan X. 2017. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain Chem. Eng. 5:53855–62
    [Google Scholar]
  61. 61.
    Li Y, Yu S, Veinot JGC, Linnros J, Berglund L, Sychugov I. 2017. Luminescent transparent wood. Adv. Opt. Mater. 5:11600834
    [Google Scholar]
  62. 62.
    Yu Z, Yao Y, Yao J, Zhang L, Chen Z et al. 2017. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J. Mater. Chem. A 5:136019–24
    [Google Scholar]
  63. 63.
    Qiu Z, Xiao Z, Gao L, Li J, Wang H et al. 2019. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles. Compos. Sci. Technol. 172:43–48
    [Google Scholar]
  64. 64.
    Casini M. 2018. Active dynamic windows for buildings: a review. Renew. Energy 119:923–34
    [Google Scholar]
  65. 65.
    Cheng Z, Guan H, Meng J, Wang X. 2020. Dual-functional porous wood filter for simultaneous oil/water separation and organic pollutant removal. ACS Omega 5:2314096–103
    [Google Scholar]
  66. 66.
    Kim S, Kim K, Jun G, Hwang W. 2020. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14:1217233–40
    [Google Scholar]
  67. 67.
    Wang Y, Wang J, Ling S, Liang H, Dai M et al. 2019. Wood-derived nanofibrillated cellulose hydrogel filters for fast and efficient separation of nanoparticles. Adv. Sustain Syst. 3:91900063
    [Google Scholar]
  68. 68.
    Jiao M, Yao Y, Chen C, Jiang B, Pastel G et al. 2020. Highly efficient water treatment via a wood-based and reusable filter. ACS Mater. Lett. 2:4430–37
    [Google Scholar]
  69. 69.
    Chen X, Zhu X, He S, Hu L, Ren ZJ. 2021. Advanced nanowood materials for the water–energy nexus. Adv. Mater. 33:282001240
    [Google Scholar]
  70. 70.
    Yang Z, Liu H, Li J, Yang K, Zhang Z et al. 2020. High-throughput metal trap: sulfhydryl-functionalized wood membrane stacks for rapid and highly efficient heavy metal ion removal. ACS Appl. Mater. Interfaces 12:1315002–11
    [Google Scholar]
  71. 71.
    Guo R, Cai X, Liu H, Yang Z, Meng Y et al. 2019. In situ growth of metal–organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ. Sci. Technol. 53:52705–12
    [Google Scholar]
  72. 72.
    Yang Z, Ni H, Liu P, Liu H, Yang K et al. 2021. Nanofibrils in 3D aligned channel arrays with synergistic effect of Ag/NPs for rapid and highly efficient electric field disinfection. Chin. Chem. Lett. 32:103143–48
    [Google Scholar]
  73. 73.
    He S, Chen C, Chen G, Chen F, Dai J et al. 2020. High-performance, scalable wood-based filtration device with a reversed-tree design. Chem. Mater. 32:51887–95
    [Google Scholar]
  74. 74.
    Fu Q, Ansari F, Zhou Q, Berglund LA. 2018. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12:32222–30
    [Google Scholar]
  75. 75.
    He S, Chen C, Kuang Y, Mi R, Liu Y et al. 2019. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12:51558–67
    [Google Scholar]
  76. 76.
    Hou D, Li T, Chen X, He S, Dai J et al. 2019. Hydrophobic nanostructured wood membrane for thermally efficient distillation. Sci. Adv. 5:8eaaw3203
    [Google Scholar]
  77. 77.
    Zhu M, Li Y, Chen G, Jiang F, Yang Z et al. 2017. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29:441704107
    [Google Scholar]
  78. 78.
    Li T, Liu H, Zhao X, Chen G, Dai J et al. 2018. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28:161707134
    [Google Scholar]
  79. 79.
    Yang J, Chen Y, Jia X, Li Y, Wang S, Song H. 2020. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 12:4147029–37
    [Google Scholar]
  80. 80.
    Huang W, Hu G, Tian C, Wang X, Tu J et al. 2019. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation. Sustain. Energy Fuels 3:113000–8
    [Google Scholar]
  81. 81.
    Zhu M, Li Y, Chen F, Zhu X, Dai J et al. 2018. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8:41701028
    [Google Scholar]
  82. 82.
    Guan Q-F, Han Z-M, Ling Z-C, Yang H-B, Yu S-H. 2020. Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water. Nano Lett 20:85699–704
    [Google Scholar]
  83. 83.
    Finnerty C, Zhang L, Sedlak DL, Nelson KL, Mi B. 2017. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51:2011701–9
    [Google Scholar]
  84. 84.
    Kashyap V, Al-Bayati A, Sajadi SM, Irajizad P, Wang SH, Ghasemi H. 2017. A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 5:2915227–34
    [Google Scholar]
  85. 85.
    Xu W, Hu X, Zhuang S, Wang Y, Li X et al. 2018. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8:141702884
    [Google Scholar]
  86. 86.
    Kuang Y, Chen C, Chen G, Pei Y, Pastel G et al. 2019. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Adv. Funct. Mater. 29:161900162
    [Google Scholar]
  87. 87.
    Chen X, He S, Falinski MM, Wang Y, Li T et al. 2021. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14:105347–57
    [Google Scholar]
  88. 88.
    Zhang Z, Wen L, Jiang L. 2021. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6:7622–39
    [Google Scholar]
  89. 89.
    Liu P, Zhou T, Yang L, Zhu C, Teng Y et al. 2021. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 14:84400–9
    [Google Scholar]
  90. 90.
    Bocquet L. 2020. Nanofluidics coming of age. Nat. Mater. 19:3254–56
    [Google Scholar]
  91. 91.
    Lu J, Wang H 2021. Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter 4:92810–30
    [Google Scholar]
  92. 92.
    Zhou Y, Ding H, Smith AT, Jia X, Chen S et al. 2019. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. J. Mater. Chem. A 7:2314089–96
    [Google Scholar]
  93. 93.
    Xu Y. 2018. Nanofluidics: a new arena for materials science. Adv. Mater. 30:31702419
    [Google Scholar]
  94. 94.
    Pérez-Mitta G, Peinetti AS, Cortez ML, Toimil-Molares ME, Trautmann C, Azzaroni O. 2018. Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett 18:53303–10
    [Google Scholar]
  95. 95.
    Hou Y, Hou X. 2021. Bioinspired nanofluidic iontronics. Science 373:6555628–29
    [Google Scholar]
  96. 96.
    Li T, Li SX, Kong W, Chen C, Hitz E et al. 2019. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5:2eaau4238
    [Google Scholar]
  97. 97.
    Chen G, Li T, Chen C, Wang C, Liu Y et al. 2019. A highly conductive cationic wood membrane. Adv. Funct. Mater. 29:441902772
    [Google Scholar]
  98. 98.
    Kong W, Chen C, Chen G, Wang C, Liu D et al. 2021. Wood ionic cable. Small 17:402008200
    [Google Scholar]
  99. 99.
    Li T, Chen C, Brozena AH, Zhu JY, Xu L et al. 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590:784447–56
    [Google Scholar]
  100. 100.
    Kong W, Wang C, Jia C, Kuang Y, Pastel G et al. 2018. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30:391801934
    [Google Scholar]
  101. 101.
    Chen G, Li T, Chen C, Kong W, Jiao M et al. 2021. Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15:711244–52
    [Google Scholar]
  102. 102.
    Wu Q, Wang C, Wang R, Chen C, Gao J et al. 2020. Salinity-gradient power generation with ionized wood membranes. Adv. Energy Mater. 10:11902590
    [Google Scholar]
  103. 103.
    Liu J, Yuan H, Tao X, Liang Y, Yang SJ et al. 2020. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat 2:1e12019
    [Google Scholar]
  104. 104.
    Peng X, Zhang L, Chen Z, Zhong L, Zhao D et al. 2019. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31:161900341
    [Google Scholar]
  105. 105.
    Jiao M, Liu T, Chen C, Yue M, Pastel G et al. 2020. Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Mater 27:327–32
    [Google Scholar]
  106. 106.
    Huang J, Zhao B, Liu T, Mou J, Jiang Z et al. 2019. Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29:311902255
    [Google Scholar]
  107. 107.
    Chen C, Xu S, Kuang Y, Gan W, Song J et al. 2019. Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Adv. Energy Mater. 9:91802964
    [Google Scholar]
  108. 108.
    Chen Y, Zou K, Dai X, Bai H, Zhang S et al. 2021. Polysulfide filter and dendrite inhibitor: highly graphitized wood framework inhibits polysulfide shuttle and lithium dendrites in Li–S batteries. Adv. Funct. Mater. 31:312102458
    [Google Scholar]
  109. 109.
    Zhao C, Liu J, Wang J, Ren D, Yu J et al. 2021. A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc-air batteries. Adv. Mater. 33:152008606
    [Google Scholar]
  110. 110.
    Zhong L, Jiang C, Zheng M, Peng X, Liu T et al. 2021. Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett 6:103624–33
    [Google Scholar]
  111. 111.
    Zhang Y, Zuo T-T, Popovic J, Lim K, Yin Y-X et al. 2020. Towards better Li metal anodes: challenges and strategies. Mater. Today 33:56–74
    [Google Scholar]
  112. 112.
    Zhu Y, Gonzalez-Rosillo JC, Balaish M, Hood ZD, Kim KJ, Rupp JLM. 2021. Lithium-film ceramics for solid-state lithionic devices. Nat. Rev. Mater. 6:4313–31
    [Google Scholar]
  113. 113.
    Fan L-Z, He H, Nan C-W. 2021. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6:111003–19
    [Google Scholar]
  114. 114.
    Pacheco-Torgal F, Jalali S. 2011. Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater. 25:2582–90
    [Google Scholar]
  115. 115.
    Ben Chaabene W, Flah M, Nehdi ML. 2020. Machine learning prediction of mechanical properties of concrete: critical review. Constr. Build. Mater. 260:119889
    [Google Scholar]
  116. 116.
    Shi J, Peng J, Huang Q, Cai L, Shi SQ. 2020. Fabrication of densified wood via synergy of chemical pretreatment, hot-pressing and post mechanical fixation. J. Wood Sci. 66:15
    [Google Scholar]
  117. 117.
    Shaw MD, Karunakaran C, Tabil LG. 2009. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds. Biosyst. Eng. 103:2198–207
    [Google Scholar]
  118. 118.
    Taghiyari HR, Rassam G, Ahmadi-DavazdahEmam K. 2017. Effects of densification on untreated and nano-aluminum-oxide impregnated poplar wood. J. For. Res. 28:2403–10
    [Google Scholar]
  119. 119.
    Luan Y, Fang C-H, Ma Y-F, Fei B-H. 2022. Wood mechanical densification: a review on processing. Mater. Manuf. Process. 37:4359–71
    [Google Scholar]
  120. 120.
    Gašparík M, Gaff M. 2015. Influence of densification on bending strength of beech wood. Wood Res 60:2211–18
    [Google Scholar]
  121. 121.
    Li K, Wang S, Chen H, Yang X, Berglund LA, Zhou Q. 2020. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32:422003653
    [Google Scholar]
  122. 122.
    Song J, Chen C, Zhu S, Zhu M, Dai J et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554:7691224–28
    [Google Scholar]
  123. 123.
    Han X, Ye Y, Lam F, Pu J, Jiang F. 2019. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 7:4727023–31
    [Google Scholar]
  124. 124.
    Frey M, Widner D, Segmehl JS, Casdorff K, Keplinger T, Burgert I. 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10:55030–37
    [Google Scholar]
  125. 125.
    Dong X, Gan W, Shang Y, Tang J, Wang Y et al. 2022. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5:628–35
    [Google Scholar]
  126. 126.
    Xiao S, Chen C, Xia Q, Liu Y, Yao Y et al. 2021. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374:6566465–71
    [Google Scholar]
  127. 127.
    LeVan SL, Winandy JE. 1990. Effects of fire retardant treatments on wood strength: a review. Wood Fiber Sci 22:1113–31
    [Google Scholar]
  128. 128.
    Samanta P, Samanta A, Montanari C, Li Y, Maddalena L et al. 2022. Fire-retardant and transparent wood biocomposite based on commercial thermoset. Compos. A Appl. Sci. Manuf. 156:106863
    [Google Scholar]
  129. 129.
    Merk V, Chanana M, Keplinger T, Gaan S, Burgert I. 2015. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano-and submicron level. Green Chem 17:31423–28
    [Google Scholar]
  130. 130.
    Moya R, Gaitán-Alvarez J, Berrocal A, Araya F. 2020. Effect of CaCO3 on the wood properties of tropical hardwood species from fast-growth plantation in Costa Rica. BioResources 15:34802–22
    [Google Scholar]
  131. 131.
    Merk V, Chanana M, Gaan S, Burgert I. 2016. Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung 70:9867–76
    [Google Scholar]
  132. 132.
    Gan W, Chen C, Wang Z, Pei Y, Ping W et al. 2020. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv. Funct. Mater. 30:101909196
    [Google Scholar]
  133. 133.
    Chen G, Chen C, Pei Y, He S, Liu Y et al. 2020. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 383:123109
    [Google Scholar]
  134. 134.
    Zhang L, Zhang W, Peng Y, Wang W, Cao J. 2022. Thermal behavior and flame retardancy of poplar wood impregnated with furfuryl alcohol catalyzed by boron/phosphorus compound system. Ind. Crops Prod. 176:114361
    [Google Scholar]
  135. 135.
    Zhang T, Xi J, Qiu S, Zhang B, Luo Z et al. 2021. Facilely produced highly adhered, low thermal conductivity and non-combustible coatings for fire safety. J. Colloid Interface Sci. 604:378–89
    [Google Scholar]
  136. 136.
    Kong L, Guan H, Wang X. 2018. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain. Chem. Eng. 6:33349–57
    [Google Scholar]
  137. 137.
    Guo H, Luković M, Mendoza M, Schlepütz CM, Griffa M et al. 2019. Bioinspired struvite mineralization for fire-resistant wood. ACS Appl. Mater. Interfaces 11:55427–34
    [Google Scholar]
  138. 138.
    Guo H, Özparpucu M, Windeisen-Holzhauser E, Schlepütz CM, Quadranti E et al. 2020. Struvite mineralized wood as sustainable building material: mechanical and combustion behavior. ACS Sustain. Chem. Eng. 8:2810402–12
    [Google Scholar]
  139. 139.
    Toivonen MS, Kurki-Suonio S, Schacher FH, Hietala S, Rojas OJ, Ikkala O. 2015. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromolecules 16:31062–71
    [Google Scholar]
  140. 140.
    Sandberg D, Kutnar A, Karlsson O, Jones D. 2021. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation Boca Raton, FL: CRC Press
  141. 141.
    Akpan EI, Wetzel B, Friedrich K. 2021. Eco-friendly and sustainable processing of wood-based materials. Green Chem 23:62198–232
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-010622-105440
Loading
/content/journals/10.1146/annurev-matsci-010622-105440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error