1932

Abstract

We review the theoretical, computational, and synthetic literature on hybrid improper ferroelectricity in layered perovskite oxides. Different ferroelectric mechanisms are described and compared, and their elucidation using theory and first-principles calculations is discussed. We also highlight the connections between crystal chemistry and the physical mechanisms of ferroelectricity. The experimental literature on hybrid improper ferroelectrics is surveyed, with a particular emphasis on cation-ordered double perovskites, Ruddlesden–Popper and Dion–Jacobson phases. We discuss preparative routes for synthesizing hybrid improper ferroelectrics in all three families and the conditions under which different phases can be stabilized. Finally, we survey some synthetic opportunities for expanding the family of hybrid improper ferroelectrics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-010313
2022-07-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-080819-010313.html?itemId=/content/journals/10.1146/annurev-matsci-080819-010313&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Petzelt J, Dvořák V. 1971. Symmetry aspect of the phase transitions in boracites. Czechoslov. J. Phys. B 21:1141–52
    [Google Scholar]
  2. 2.
    Smollenskiĭ GA, Siniĭ IG, Tagantsev AK, Prokhorova SD, Mikvabiya VD, Windsch W. 1985. Acoustic anomaly and nature of the phase transition in the uniaxial weakly polar ferroelectric TSSC. Sov. Phys. JETP 61:566–605
    [Google Scholar]
  3. 3.
    Tagantsev AK. 1987. Weakly polar ferroelectricity: dielectric properties and possible nature. JETP Lett. 45:447–50
    [Google Scholar]
  4. 4.
    Tagantsev AK. 1988. Weak ferroelectrics. Ferroelectrics 79:57–60
    [Google Scholar]
  5. 5.
    Levanyuk AP, Sannikov DG. 1974. Improper ferroelectrics. Sov. Phys. Uspekhi 17:199–214
    [Google Scholar]
  6. 6.
    Stokes HT, Hatch DM. 1991. Coupled order parameters in the Landau theory of phase transitions in solids. Phase Transit. 34:53–67
    [Google Scholar]
  7. 7.
    Aleksandrov KS. 1995. Structural phase transitions in layered perovskitelike crystals. Crystallogr. Rep. 40:251–72
    [Google Scholar]
  8. 8.
    Aleksandrov KS, Beznosikov VV. 1997. Hierarchies of perovskite-like crystals. Phys. Solid State 39:695–715
    [Google Scholar]
  9. 9.
    Etxebarria I, Perez-Mato JM, Boullay P. 2010. The role of trilinear couplings in the phase transitions of Aurivillius compounds. Ferroelectrics 401:17–23
    [Google Scholar]
  10. 10.
    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P et al. 2008. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452:732–36
    [Google Scholar]
  11. 11.
    Fukushima T, Stroppa A, Picozzi S, Perez-Mato JM. 2011. Large ferroelectric polarization in the new double perovskite NaLaMnWO6 induced by non-polar instabilities. Phys. Chem. Chem. Phys. 13:12186–90
    [Google Scholar]
  12. 12.
    Benedek NA, Fennie CJ. 2011. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106:107204
    [Google Scholar]
  13. 13.
    Rabe KM, Dawber M, Lichtensteiger C, Ahn CH, Triscone JM 2007. Modern physics of ferroelectrics: essential background. Physics of Ferroelectrics: A Modern Perspective CH Ahn 1–30 Berlin: Springer-Verlag
    [Google Scholar]
  14. 14.
    Rabe KM, Ghosez P. 2007. First-principles studies of ferroelectric oxides. Physics of Ferroelectrics: A Modern Perspective CH Ahn 117–74 Berlin: Springer-Verlag
    [Google Scholar]
  15. 15.
    Benedek NA, Mulder AT, Fennie CJ. 2012. Polar octahedral rotations: a path to new multifunctional materials. J. Solid State Chem. 195:11–20
    [Google Scholar]
  16. 16.
    Rondinelli JM, Fennie CJ. 2012. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24:1961–68
    [Google Scholar]
  17. 17.
    Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ. 2013. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Adv. Funct. Mater. 23:4810–20
    [Google Scholar]
  18. 18.
    Bellaiche L, Íñiguez J. 2013. Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites. Phys. Rev. B 88:014104
    [Google Scholar]
  19. 19.
    Zhao HJ, Íñiguez J, Ren W, Chen XM, Bellaiche L. 2014. Atomistic theory of hybrid improper ferroelectricity in perovskites. Phys. Rev. B 89:174101
    [Google Scholar]
  20. 20.
    Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. 2015. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 44:10543–58
    [Google Scholar]
  21. 21.
    Gu T, Scarbrough T, Yang Y, Íñiguez J, Bellaiche L, Xiang HJ. 2018. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys. Rev. Lett. 120:197602
    [Google Scholar]
  22. 22.
    Salje EKH. 1992. Application of Landau theory for the analysis of phase transitions in minerals. Phys. Rep. 215:49–99
    [Google Scholar]
  23. 23.
    Chandra P, Littlewood PB. 2007. A Landau primer for ferroelectrics. Physics of Ferroelectrics: A Modern Perspective CH Ahn 69–116 Berlin: Springer-Verlag
    [Google Scholar]
  24. 24.
    Cohen RE. 1992. Origin of ferroelectricity in perovskite oxides. Nature 358:136–38
    [Google Scholar]
  25. 25.
    Ghosez P, Cockayne E, Waghmare UV, Rabe KM. 1999. Lattice dynamics of BaTiO3, PbTiO3 and PbZrO3: a comparative first-principles study. Phys. Rev. B 60:836–43
    [Google Scholar]
  26. 26.
    Cochran W. 1959. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3:412–14
    [Google Scholar]
  27. 27.
    Cochran W. 1960. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9:387–423
    [Google Scholar]
  28. 28.
    Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. 2004. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3:164–70
    [Google Scholar]
  29. 29.
    Fennie CJ, Rabe KM. 2005. Ferroelectric phase transition in YMnO3 from first principles. Phys. Rev. B 72:100103
    [Google Scholar]
  30. 30.
    Smollenskiĭ GA, Bokov VA. 1964. Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 35:915–18
    [Google Scholar]
  31. 31.
    Artyukhin S, Delaney KT, Spaldin NA, Mostovoy M. 2014. Landau theory of topological defects in multiferroic hexagonal manganites. Nat. Mater. 13:42–49
    [Google Scholar]
  32. 32.
    Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong SW. 2010. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9:253–58
    [Google Scholar]
  33. 33.
    Bersuker IB. 2001. Modern aspects of the Jahn–Teller effect theory and applications to molecular problems. Chem. Rev. 101:1067–114
    [Google Scholar]
  34. 34.
    Payne DJ, Egdell RG, Walsh A, Watson GW, Guo J et al. 2006. Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. Phys. Rev. Lett. 96:157403
    [Google Scholar]
  35. 35.
    Stoltzfus MW, Woodward PM, Seshadri R, Klepeis JH, Bursten B. 2007. Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs versus inert pairs. Inorg. Chem. 46:3839–50
    [Google Scholar]
  36. 36.
    Walsh A, Payne DJ, Egdell RG, Watson GW. 2011. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40:4455–63
    [Google Scholar]
  37. 37.
    Seshadri R, Hill NA. 2001. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13:2892–99
    [Google Scholar]
  38. 38.
    Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. 2005. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71:014113
    [Google Scholar]
  39. 39.
    Belik AA. 2012. Polar and nonpolar phases of BiMO3: a review. J. Solid State Chem. 195:32–40
    [Google Scholar]
  40. 40.
    Harrison WA. 1989. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond New York: Dover
  41. 41.
    Ghosez P, Michenaud JP, Gonze X. 1998. Dynamical atomic charges: the case of ABO3 compounds. Phys. Rev. B 58:6224–40
    [Google Scholar]
  42. 42.
    Spaldin NA. 2012. A beginner's guide to the modern theory of polarization. J. Solid State Chem. 195:2–10
    [Google Scholar]
  43. 43.
    Ederer C, Spaldin NA. 2006. Origin of ferroelectricity in the multiferroic barium fluorides BaMF4: a first principles study. Phys. Rev. B 74:024102
    [Google Scholar]
  44. 44.
    Garcia-Castro AC, Spaldin NA, Romero AH, Bousquet E. 2014. Geometric ferroelectricity in fluoroperovskites. Phys. Rev. B 89:104107
    [Google Scholar]
  45. 45.
    King G, Wayman LM, Woodward PM. 2009. Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites. J. Solid State Chem. 182:1319–25
    [Google Scholar]
  46. 46.
    King G, Wills AS, Woodward PM. 2009. Magnetic structures of NaLMnWO6 perovskites (L=La, Nd, Tb). Phys. Rev. B 79:224428
    [Google Scholar]
  47. 47.
    King G, Thimmaiah S, Dwivedi A, Woodward PM. 2007. Synthesis and characterization of new AABWO6 perovskites exhibiting simultaneous ordering of A-site and B-site cations. Chem. Mater. 19:6451–58
    [Google Scholar]
  48. 48.
    De C, Kim TH, Kim KH, Sundaresan A. 2014. The absence of ferroelectric polarization in layered and rock-salt ordered NaLnMnWO6 (Ln = La, Nd, Tb) perovskites. Phys. Chem. Chem. Phys. 16:5407–11
    [Google Scholar]
  49. 49.
    Blasco J, Rodriguez-Velamazan JA, Subias G, Garcia-Munoz JL, Stankiewicz J, Garcia J. 2019. Spin ordering and physical properties of NaPrFeWO6 and NaSmFeWO6 with polar double perovskite structure. Acta Mater. 176:53–62
    [Google Scholar]
  50. 50.
    Retuerto M, Li MR, Ignatov A, Croft M, Ramanujachary KV et al. 2013. Polar and magnetic layered A-site and rock salt B-site-ordered NaLnFeWO6 (Ln = La, Nd) perovskites. Inorg. Chem. 52:12482–91
    [Google Scholar]
  51. 51.
    Zuo P, Colin CV, Klein H, Bordet P, Suard E et al. 2017. Structural study of a doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb): hybrid improper ferroelectricity in nine new members. Inorg. Chem. 56:8478–89
    [Google Scholar]
  52. 52.
    Zuo P, Klein H, Darie C, Colin CV 2018. Magnetic properties of the doubly ordered perovskite NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) family. J. Magn. Magn. Mater. 458:48–51
    [Google Scholar]
  53. 53.
    Shankar PNR, Orlandi F, Manuel P, Zhang WG, Halasyamani PS, Sundaresan A 2020. A-site and B-site cation ordering induces polar and multiferroic behavior in the perovskite NaLnNiWO6 (Ln = Y, Dy, Ho, and Yb). Chem. Mater. 32:5641–49
    [Google Scholar]
  54. 54.
    Shankar PNR, Orlandi F, Manuel P, Zhang WG, Halaysyamani PS, Sundaresan A 2021. Structural, magnetic, and electrical properties of doubly ordered perovskites NaLnNiWO6 (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb). J. Phys. Chem. C 125:6749–57
    [Google Scholar]
  55. 55.
    Snedden A, Hervoches CH, Lightfoot P. 2003. Ferroelectric phase transitions on SrBi2Nb2O9 and Bi5Ti3FeO15: a powder neutron diffraction study. Phys. Rev. B 67:092102
    [Google Scholar]
  56. 56.
    Rae AD, Thompson JG, Withers RL. 1992. Structure refinement of commensurately modulated bismuth strontium tantalate, Bi2SrTa2O9. Acta Crystallogr B48:41828
    [Google Scholar]
  57. 57.
    Boullay P, Tellier J, Mercurio D, Manier M, Zuniga FJ, Perez-Mato JM. 2012. Phase transition sequence in ferroelectric Aurivillius compounds investigated by single crystal X-ray diffraction. Solid State Sci. 14:1367–71
    [Google Scholar]
  58. 58.
    Liu MF, Zhang Y, Lin LF, Lin L, Yang SW et al. 2018. Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Appl. Phys. Lett. 113:022902
    [Google Scholar]
  59. 59.
    Oh YS, Luo X, Huang FT, Wang YZ, Cheong SW. 2015. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14:407–13
    [Google Scholar]
  60. 60.
    Yoshida S, Fujita K, Akamatsu H, Hernandez O, Sen Gupta A et al. 2018. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv. Funct. Mater. 28:1801856
    [Google Scholar]
  61. 61.
    Yoshida S, Akamatsu H, Tsuji R, Hernandez O, Padmanabhan H et al. 2018. Hybrid improper ferroelectricity in (Sr,Ca)3Sn2O7 and beyond: universal relationship between ferroelectric transition temperature and tolerance factor in n = 2 Ruddlesden-Popper phases. J. Am. Chem. Soc. 140:15690–700
    [Google Scholar]
  62. 62.
    Uppuluri R, Akamatsu H, Sen Gupta A, Wang HY, Brown CM et al. 2019. Competing polar and antipolar structures in the Ruddlesden-Popper layered perovskite Li2SrNb2O7. Chem. Mater. 31:4418–25
    [Google Scholar]
  63. 63.
    Zhu T, Khalsa G, Havas DM, Gibbs AS, Zhang W et al. 2018. Cation exchange as a mechanism to engineer polarity in layered perovskites. Chem. Mater. 30:8915–24
    [Google Scholar]
  64. 64.
    Pitcher MJ, Mandal P, Dyer MS, Alaria J, Borisov P et al. 2015. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347:420–24
    [Google Scholar]
  65. 65.
    Mallick S, Fortes AD, Zhang W, Halasyamani PS, Hayward MA. 2021. Switching between proper and hybrid-improper polar structures via cation substitution in A2La(TaTi)O7 (A = Li, Na). Chem. Mater. 33:2666–72
    [Google Scholar]
  66. 66.
    Snedden A, Knight KS, Lightfoot P. 2003. Structural distortions in the layered perovskites CsANb2O7 (A = Nd, Bi). J. Solid State Chem. 173:309–13
    [Google Scholar]
  67. 67.
    Li BW, Osada M, Ozawa TC, Sasaki T. 2012. RbBiNb2O7: a new lead-free high-Tc ferroelectric. Chem. Mater. 24:3111–13
    [Google Scholar]
  68. 68.
    Zhu T, Cohen T, Gibbs AS, Zhang W, Halasyamani PS et al. 2017. Theory and neutrons combine to reveal a family of layered perovskites without inversion symmetry. Chem. Mater. 29:9489–97
    [Google Scholar]
  69. 69.
    Chen C, Ning HP, Lepadatu S, Cain M, Yan HX, Reece MJ. 2015. Ferroelectricity in Dion–Jacobson ABiNb2O7 (A = Rb, Cs) compounds. J. Mater. Chem. C 3:19–22
    [Google Scholar]
  70. 70.
    Strayer ME, Sen Gupta A, Akamatsu H, Lei S, Benedek NA et al. 2016. Emergent noncentrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion-Jacobson phase layered perovskites. Adv. Funct. Mater. 26:1930–37
    [Google Scholar]
  71. 71.
    Nowadnick EA, Fennie CJ. 2016. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Phys. Rev. B 94:104105
    [Google Scholar]
  72. 72.
    Stengel M, Fennie CJ, Ghosez P. 2012. Electrical properties of improper ferroelectrics from first principles. Phys. Rev. B 86:094112
    [Google Scholar]
  73. 73.
    Burdett JK. 1981. Use of the Jahn–Teller theorem in inorganic chemistry. Inorg. Chem. 20:1959–62
    [Google Scholar]
  74. 74.
    Benedek NA. 2015. Origin of ferroelectricity in a family of polar oxides: the Dion–Jacobson phases. Inorg. Chem. 53:3769–77
    [Google Scholar]
  75. 75.
    Glazer AM. 1972. The classification of tilted octahedra in perovskites. Acta Crystallogr. B28:3384–92
    [Google Scholar]
  76. 76.
    Megaw HD, Darlington CNW. 1975. Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallogr. A31:161–73
    [Google Scholar]
  77. 77.
    Aleksandrov KS. 1976. Successive structural phase-transitions in perovskites. 1. Symmetry distorted phases. Kristallografiya 21:249–55
    [Google Scholar]
  78. 78.
    O'Keeffe M, Hyde BG. 1977. Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta Crystallogr. B33:3802–13
    [Google Scholar]
  79. 79.
    Woodward PM. 1997. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B53:32–43
    [Google Scholar]
  80. 80.
    Woodward PM. 1997. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B53:44–66
    [Google Scholar]
  81. 81.
    Howard CJ, Stokes HT. 1998. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B54:782–89
    [Google Scholar]
  82. 82.
    Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR. 1993. B-cation arrangements in double perovskites. Prog. Solid State Chem. 22:197–233
    [Google Scholar]
  83. 83.
    King G, Woodward PM. 2010. Cation ordering in perovskites. J. Mater. Chem. 20:5785–96
    [Google Scholar]
  84. 84.
    Knapp MC, Woodward PM. 2006. A-site cation ordering in AABB′O6 perovskites. J. Solid State Chem. 179:1076–85
    [Google Scholar]
  85. 85.
    Lopez ML, Veiga ML, Pico C 1994. Cation ordering in distorted perovskites (MLa)(NgTe)O6, M = Na, K. J. Mater. Chem. 4:547–50
    [Google Scholar]
  86. 86.
    Arillo MA, Gomez J, Lopez ML, Pico C, Veiga ML. 1997. Structural characterization and properties of the perovskite (NaLa)(MW)O6 (M=Co, Ni): two new members in the group–subgroup relations for the pervoskite-type structures. J. Mater. Chem 7:801–6
    [Google Scholar]
  87. 87.
    De C, Sundaresan A. 2018. Nonswitchable polarization and magnetoelectric coupling in the high-pressure synthesized doubly ordered perovskites NaYMnWO6 and NaHoCoWO6. Phys. Rev. B 97:214418
    [Google Scholar]
  88. 88.
    Dachraoui W, Yang T, Liu C, King G, Hadermann J et al. 2011. Short-range layered A-site ordering in double perovskites NaLaBB'O6 (B = Mn, Fe; B′ = Nb, Ta). Chem. Mater. 23:2398–406
    [Google Scholar]
  89. 89.
    King G, Garcia-Martin S. 2019. Expanding the doubly cation ordered AA′BB′O6 perovskite family: structural complexity in NaLaInNbO6 and NaLaInTaO6. Inorg. Chem. 58:14058–67
    [Google Scholar]
  90. 90.
    Borchani SM, Koubaa WCR, Megdiche M. 2017. Structural, magnetic and electrical properties of a new double-perovskite LaNaMnMoO6 material. R. Soc. Open Sci. 4:10920
    [Google Scholar]
  91. 91.
    Borchani SM, Megdiche M. 2018. Electrical properties and conduction mechanism in the NaLaMnMoO6 double perovskite ceramic. J. Phys. Chem. Solids 114:121–28
    [Google Scholar]
  92. 92.
    Ghosh S, Fennie CJ. 2015. Linear magnetoelectricity at room temperature in perovskite superlattices by design. Phys. Rev. B 92:184112
    [Google Scholar]
  93. 93.
    Zhang YJ, Wang J, Sahoo MPK, Wang XY, Shimada T, Kitamura T. 2016. Hybrid improper ferroelectricity in SrZrO3/BaZrO3 superlattice. Phys. Chem. Chem. Phys. 18:24024–32
    [Google Scholar]
  94. 94.
    Zhou PX, Lu SH, Li CF, Zhong CG, Zhao ZY et al. 2019. Magnetism and hybrid improper ferroelectricity in LaMO3/YMO3 superlattices. Phys. Chem. Chem. Phys. 21:20132–36
    [Google Scholar]
  95. 95.
    Alaria J, Borisov P, Dyer MS, Manning TD, Lepadatu S et al. 2014. Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components. Chem. Sci. 5:1599–610
    [Google Scholar]
  96. 96.
    Nagai T, Mochizuki Y, Shirakuni H, Nakano A, Oba F et al. 2020. Phase transition from weak ferroelectricity to incipient ferroelectricity in Li2Sr(Nb1-xTax)2O7. Chem. Mater. 32:744–50
    [Google Scholar]
  97. 97.
    Nagai T, Shirakuni H, Nakano A, Sawa H, Moriwake H et al. 2019. Weak ferroelectricity in n = 2 pseudo Ruddlesden–Popper-type niobate Li2SrNb2O7. Chem. Mater. 31:6257–61
    [Google Scholar]
  98. 98.
    Zhang BH, Hu ZZ, Chen BH, Liu XQ, Chen XM. 2020. Room-temperature ferroelectricity in A-site ordered Ruddlesden-Popper Li2CaTa2O7 ceramics. J. Materiomics 6:593–99
    [Google Scholar]
  99. 99.
    da Silva EL, Gerami AM, Lekshmi PN, Marcondes ML, Assali LVC et al. 2021. Group theory analysis to study phase transitions of quasi-2D Sr3Hf2O7. Nanomaterials 11:897
    [Google Scholar]
  100. 100.
    Liu XQ, Lu JJ, Chen BH, Zhang BH, Chen XM. 2019. Hybrid improper ferroelectricity and possible ferroelectric switching paths in Sr3Hf2O7. J. Appl. Phys. 125:114105
    [Google Scholar]
  101. 101.
    Dion M, Ganne M, Tournoux M. 1981. The new phase families Nb3O10 with perovskite sheets. Mater. Res. Bull. 16:1429–35
    [Google Scholar]
  102. 102.
    Jacobson AJ, Johnson JW, Lewandowski JT. 1985. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of KCa2Nan-3Nbn O3n+1 (3 < n < 7). Inorg. Chem. 24:3727–29
    [Google Scholar]
  103. 103.
    Zhu T, Gibbs AS, Benedek NA, Hayward MA. 2020. Complex structural phase transitions of the hybrid improper polar Dion-Jacobson oxides RbNdM2O7 and CsNdM2O7 (M = Nb, Ta). Chem. Mater. 32:4340–46
    [Google Scholar]
  104. 104.
    Ehlert MK, Greedan JE, Subramanian MA. 1988. Novel defect pyrochlores ABi2B5O16 (A = Cs, Rb; B = Ta, Nb). J. Solid State Chem. 75:188–96
    [Google Scholar]
  105. 105.
    Schaak RE, Mallouk TE. 2002. Perovskites by design: a toolbox of solid-state reactions. Chem. Mater. 14:1455–71
    [Google Scholar]
  106. 106.
    Hayward MA 2013. Soft chemistry synthesis of oxides. Comprehensive Inorganic Chemistry II J Reedijk, KR Poeppelmeier 417–53 Amsterdam: Elsevier
    [Google Scholar]
  107. 107.
    Ranmohotti KGS, Josepha E, Choi J, Zhang JX, Wiley JB 2011. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. 23:442–60
    [Google Scholar]
  108. 108.
    Gopalakrishnan J, Bhat V, Raveau B. 1987. AILaNb2O7: a new series of layered perovskites exhibiting ion-exchange and intercalation behavior. Mater. Res. Bull. 22:413–17
    [Google Scholar]
  109. 109.
    Toda K, Sato M. 1996. Synthesis and structure determination of new layered perovskite compounds, ALaTa2O7 and ACa2Ta3O10 (A = Rb, Li). J. Mater. Chem. 6:1067–71
    [Google Scholar]
  110. 110.
    Josepha EA, Farooq S, Mitchell CM, Wiley JB. 2014. Synthesis and thermal stability studies of a series of metastable Dion–Jacobson double-layered neodymium-niobate perovskites. J. Solid State Chem. 216:85–90
    [Google Scholar]
  111. 111.
    Kodenkandath TA, Kumbhar AS, Zhou WL, Wiley JB. 2001. Construction of copper halide networks within layered perovskites. Syntheses and characterization of new low-temperature copper oxyhalides. Inorg. Chem. 48:710–14
    [Google Scholar]
  112. 112.
    Kodenkandath TA, Lalena JN, Zhou WLL, Carpenter EE, Abd S et al. 1999. Assembly of metal-anion arrays within a perovskite host. Low-temperature synthesis of new layered copper-oxyhalides, (CuX)LaNb2O7, X = Cl, Br. J. Am. Chem. Soc. 121:10743–46
    [Google Scholar]
  113. 113.
    Ranmohotti KGS, Montasserasadi MD, Choi J, Yao Y, Mohanty D et al. 2012. Room temperature oxidative intercalation with chalcogen hydrides: two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites. Mater. Res. Bull. 47:1289–94
    [Google Scholar]
  114. 114.
    Suzuki H, Notsu K, Takeda Y, Sugimoto W, Sugahara Y. 2003. Reactions of alkoxyl derivatives of a layered perovskite with alcohols: substitution reactions on the interlayer surface of a layered perovskite. Chem. Mater. 15:636–41
    [Google Scholar]
  115. 115.
    Takeda Y, Momma T, Osaka T, Kuroda K, Sugahara Y. 2008. Organic derivatives of the layered perovskite HLaNb2O7·xH2O with polyether chains on the interlayer surface: characterization, intercalation of LiClO4, and ionic conductivity. J. Mater. Chem. 18:3581–87
    [Google Scholar]
  116. 116.
    Takeda Y, Suzuki H, Notsu K, Sugimoto W, Sugahara Y. 2006. Preparation of a novel organic derivative of the layered perovskite bearing HLaNb2O7·nH2O interlayer surface trifluoroacetate groups. Mater. Res. Bull. 41:834–41
    [Google Scholar]
  117. 117.
    Petralanda U, Etxebarria I. 2015. Structural instabilities and sequence of phase transitions in SrBi2Nb2O9 and SrBi2Ta2O9 from first principles and Monte Carlo simulations. Phys. Rev. B 91:184106
    [Google Scholar]
  118. 118.
    Deleted in proof
  119. 119.
    Schaak RE, Mallouk TE. 2000. Topochemical synthesis of three-dimensional perovskites from lamellar precursors. J. Am. Chem. Soc. 122:2798–803
    [Google Scholar]
  120. 120.
    Cushing BL, Falster AU, Simmons WB, Wiley JB. 1996. A multivalent ion exchange route to lamellar calcium cobalt oxides, CaxCoO2 (x ≤ 0.5). Chem. Commun. 1996:2635–36
    [Google Scholar]
  121. 121.
    Cushing BL, Wiley JB. 1998. Topotactic routes to layered calcium cobalt oxides. J. Solid State Chem. 141:385–91
    [Google Scholar]
  122. 122.
    Hyeon KA, Byeon SH. 1999. Synthesis and structure of new layered oxides, MIILa2Ti3O10 (M = Co, Cu, and Zn). Chem. Mater. 11:352–57
    [Google Scholar]
  123. 123.
    Amano Patino M, Smith T, Zhang W, Halasyamani PS, Hayward MA 2014. Cation exchange in a 3D perovskite—synthesis of Ni0.5TaO3. Inorg. Chem. 53:8020–24
    [Google Scholar]
  124. 124.
    Ling CD, Argyriou DN, Wu GQ, Neumeier JJ. 2000. Neutron diffraction study of La2Ni2O7: structural relationships among n = 1, 2, and 3 phases Lan+1 NinO3n+1. J. Solid State Chem. 152:517–25
    [Google Scholar]
  125. 125.
    Zhang R, Senn MS, Hayward MA. 2016. Directed lifting of inversion symmetry in Ruddlesden-Popper oxide-fluorides: toward ferroelectric and multiferroic behavior. Chem. Mater. 28:8399–406
    [Google Scholar]
  126. 126.
    Cascos VA, Roberts-Watts J, Skingle C, Levin I, Zhang WG et al. 2020. Tuning between proper and hybrid-improper mechanisms for polar behavior in CsLn2Ti2NbO10 Dion-Jacobson phases. Chem. Mater. 32:8700–12
    [Google Scholar]
  127. 127.
    Li W, Wang ZM, Deschler F, Gao S, Friend RH, Cheetham AK. 2017. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2:16099
    [Google Scholar]
  128. 128.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. 2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–47
    [Google Scholar]
  129. 129.
    Weber D. 1978. CH3NH3PBX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforschung B 33:1443–45
    [Google Scholar]
  130. 130.
    Weber D. 1978. CH3NH3SnBrxI3−x (x = 0−3), Sn(II)-system with cubic perovskite structure. Z. Naturforschung B 33:862–65
    [Google Scholar]
  131. 131.
    Jain P, nad Toby BH D, Kroto HW, Cheetham AK. 2008. Order–disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. J. Am. Chem. Soc. 130:10450
    [Google Scholar]
  132. 132.
    Sletten E, Jensen LH. 1973. Crystal-structure of dimethylammonium copper(II) formate, NH2(CH3)2 Cu(OOCH)3. Acta Crystallogr B29:175256
    [Google Scholar]
  133. 133.
    Buser HJ, Schwarzenbach D, Petter W, Ludi A. 1977. Crystal-structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O. Inorg. Chem. 16:2704–10
    [Google Scholar]
  134. 134.
    Xu WJ, Chen SL, Hu ZT, Lin RB, Su YJ et al. 2016. The cation-dependent structural phase transition and dielectric response in a family of cyano-bridged perovskite-like coordination polymers. Dalton Trans. 45:4224–29
    [Google Scholar]
  135. 135.
    Thiele G, Messer D. 1980. S-thiocyanato and N-isothiocyanato linkage isomerism in the crystal-structures of RbCd(SCN)3 and CsCd(SCN)3. Z. Anorg. Allg. Chem. 464:255–67
    [Google Scholar]
  136. 136.
    Xie KP, Xu WJ, He CT, Huang B, Du ZY et al. 2016. Order–disorder phase transition in the first thiocyanate-bridged double perovskite-type coordination polymer: (NH4)2NiCd(SCN)6. CrystEngComm 18:4495–98
    [Google Scholar]
  137. 137.
    Du ZY, Zhao YP, He CT, Wang BY, Xue W et al. 2014. Structural transition in the perovskite-like bimetallic azido coordination polymers: (NMe4)2B′B″(N3)6 (B′ = Cr3+, Fe3+; B″ = Na+, K+). Cryst. Growth Des. 14:3903–9
    [Google Scholar]
  138. 138.
    Zhao XH, Huang XC, Zhang SL, Shao D, Wei HY, Wang XY. 2013. Cation-dependent magnetic ordering and room-temperature bistability in azido-bridged perovskite-type compounds. J. Am. Chem. Soc. 135:16006–9
    [Google Scholar]
  139. 139.
    Bostrom HLB, Goodwin AL. 2021. Hybrid perovskites, metal-organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks. Acc. Chem. Res. 54:1288–97
    [Google Scholar]
  140. 140.
    Bostrom HLB, Senn MS, Goodwin AL. 2018. Recipes for improper ferroelectricity in molecular perovskites. Nat. Commun. 9:2380
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-010313
Loading
/content/journals/10.1146/annurev-matsci-080819-010313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error