1932

Abstract

This review focuses on the properties of reactive materials (RMs) that enable exothermic formation reactions and their application as local heat sources. We examine how the heat produced by these formation reactions can enable a range of useful functions including bonding, sealing, ignition, signaling, and built-in degradation. We begin by describing the chemistries, geometries, microstructures, and fabrication of RMs. We then explore the magnitude and measurement of their stored chemical energies and the rates and mechanisms by which the stored energy can be released to generate useful heat. The majority of the review focuses on how the released heat can be modeled and used to perform a range of functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-124041
2022-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-124041.html?itemId=/content/journals/10.1146/annurev-matsci-081720-124041&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dreizin EL. 2009. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35:2141–67
    [Google Scholar]
  2. 2.
    Sundaram D, Yang V, Yetter RA. 2017. Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog. Energy Combust. Sci. 61:293–365
    [Google Scholar]
  3. 3.
    Adams DP. 2015. Reactive multilayers fabricated by vapor deposition: a critical review. Thin Solid Films 576:98–128
    [Google Scholar]
  4. 4.
    Weihs TP 2014. Fabrication and characterization of reactive multilayer films and foils. Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties K Barmak, K Coffey 160–243 Oxford, UK: Woodhead Publ.
    [Google Scholar]
  5. 5.
    Dreizin EL, Schoenitz M. 2017. Mechanochemically prepared reactive and energetic materials: a review. J. Mater. Sci. 52:2011789–809
    [Google Scholar]
  6. 6.
    Baras F, Turlo V, Politano O, Vadchenko SG, Rogachev AS, Mukasyan AS. 2018. SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations. Adv. Eng. Mater. 20:1800091
    [Google Scholar]
  7. 7.
    Zubarev EN. 2011. Reactive diffusion in multilayer metal/silicon nanostructures. Phys. Uspekhi 54:5473–98
    [Google Scholar]
  8. 8.
    Rogachev AS. 2008. Exothermic reaction waves in multilayer nanofilms. Russ. Chem. Rev. 77:121–37
    [Google Scholar]
  9. 9.
    Munir ZA, Anselmi-Tamburinim U. 1989. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 3:277–365
    [Google Scholar]
  10. 10.
    Munir ZA. 1988. Synthesis of high temperature materials by self-propagating combustion methods. Am. Ceram. Soc. Bull. 67:2342–49
    [Google Scholar]
  11. 11.
    Liu G, Li J, Chen K 2013. Combustion synthesis of refractory and hard materials: a review. Int. J. Refract. Metals Hard Mater. 39:90–102
    [Google Scholar]
  12. 12.
    Rogachev AS, Mukasyan AS. 2010. Combustion of heterogeneous nanostructural systems (review). Combust. Explos. Shock Waves 46:3243–66
    [Google Scholar]
  13. 13.
    Moore JJ, Feng HJ. 1995. Combustion synthesis of advanced materials: part I. Reaction parameters. Prog. Mater. Sci. 39:4–5243–73
    [Google Scholar]
  14. 14.
    Moore JJ, Feng HJ. 1995. Combustion synthesis of advanced materials: part II. Classification, applications, and modelling. Prog. Mater. Sci. 39:4–5275–316
    [Google Scholar]
  15. 15.
    HC Yi, Moore JJ. 1990. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25:1159–68
    [Google Scholar]
  16. 16.
    Subrahmanyam J, Viayakumar M. 1992. Self-propagating high-temperature synthesis. J. Mater. Sci. 27:6249–73
    [Google Scholar]
  17. 17.
    Morsi K. 2001. Review: reaction synthesis processing of Ni-Al intermetallic materials. Mater. Sci. Eng. A 299:1–15
    [Google Scholar]
  18. 18.
    Merzhanov AG. 1995. History and recent developments in SHS. Ceram. Int. 21:371–79
    [Google Scholar]
  19. 19.
    Patil KC, Aruna TS, Ekambaram S. 1997. Combustion synthesis. Curr. Opin. Solid State Mater. Sci. 2:158–65
    [Google Scholar]
  20. 20.
    Patil KC, Aruna ST, Mimani T. 2002. Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6:507–12
    [Google Scholar]
  21. 21.
    Kinsey AH, Slusarski K, Woll K, Gibbins D, Weihs TP. 2016. Effect of dilution on reaction properties and bonds formed using mechanically processed dilute thermite foils. J. Mater. Sci. 51:125738–49
    [Google Scholar]
  22. 22.
    Kinsey AH, Slusarski K, Sosa S, Weihs TP. 2017. Gas suppression via copper interlayers in magnetron sputtered Al-Cu2O multilayers. Appl. Mater. Interfaces 9:22026–36
    [Google Scholar]
  23. 23.
    Pouchairet J, Rossi C. 2021. PyroMEMS as future technological building blocks for advanced microenergetic systems. Micromachines 12:118
    [Google Scholar]
  24. 24.
    Rossi C, Estève D. 2005. Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sens. Actuators A Phys. 120:2297–310
    [Google Scholar]
  25. 25.
    Knepper R, Snyder MR, Fritz GM, Fisher K, Knio OM, Weihs TP. 2009. Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J. Appl. Phys. 105:8083504
    [Google Scholar]
  26. 26.
    Trenkle JC, Koerner LJ, Tate MW, Walker N, Gruner SM et al. 2010. Time-resolved X-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 107:11113511
    [Google Scholar]
  27. 27.
    Gavens AJ, van Heerden D, Mann AB, Reiss ME, Weihs TP. 2000. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87:31255–63
    [Google Scholar]
  28. 28.
    Rogachev AS, Grigoryan , Illarionova EV, Kanel' IG, Merzhanov AG et al. 2004. Gasless combustion of Ti–Al bimetallic multilayer nanofoils. Combust. Explos. Shock Waves 40:2166–71
    [Google Scholar]
  29. 29.
    Gachon JC, Rogachev AS, Grigoryan HE, Illarionova EV, Kuntz JJ et al. 2005. On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms. Acta Mater 53:41225–31
    [Google Scholar]
  30. 30.
    Woll K, Bergamaschi A, Avchachov K, Djurabekova F, Gier S et al. 2016. Ru/Al multilayers integrate maximum energy density and ductility for reactive materials. Sci. Rep. 6:19535
    [Google Scholar]
  31. 31.
    Jung WG, Kleppa OJ. 1992. Standard molar enthalpies of formation of MeAl (Me = Ru, Rh, Os, Ir). Metall. Trans. B 23:153–56
    [Google Scholar]
  32. 32.
    Braeuer J, Besser J, Wiemer M, Gessner T. 2012. A novel technique for MEMS packaging: reactive bonding with integrated material systems. Sens. Actuators A: Phys. 188:212–19
    [Google Scholar]
  33. 33.
    Barron SC, Kelly ST, Kirchhoff J, Knepper R, Fisher K et al. 2013. Self-propagating reactions in Al/Zr multilayers: anomalous dependence of reaction velocity on bilayer thickness. J. Appl. Phys. 114:22223517
    [Google Scholar]
  34. 34.
    Reeves RV, Adams DP. 2014. Reaction instabilities in Co/Al nanolaminates due to chemical kinetics variation over micron-scales. J. Appl. Phys. 115:4044911
    [Google Scholar]
  35. 35.
    Adams DP, Hodges VC, Bai MM, Jones E, Rodriguez MA et al. 2008. Exothermic reactions in Co/Al nanolaminates. J. Appl. Phys. 104:4043502
    [Google Scholar]
  36. 36.
    Reeves RV, Rodriguez MA, Jones ED, Adams DP. 2012. Condensed-phase and oxidation reaction behavior of Ti/2B foils in varied gaseous environments. J. Phys. Chem. C 116:17904–12
    [Google Scholar]
  37. 37.
    Fischer S, Grubelich M. 1998. Theoretical energy release of thermites, intermetallics, and combustible metals Tech. Rep. SAND-98-1176C Sandia Natl. Lab. Albuquerque, NM:
  38. 38.
    Colinet C. 1995. The thermodynamic properties of rare earth metallic systems. J. Alloys Comp. 225:1–2409–22
    [Google Scholar]
  39. 39.
    McDonald JP, Rodriguez MA, Jones ED, Adams DP. 2010. Rare-earth transition-metal intermetallic compounds produced via self-propagating, high-temperature synthesis. J. Mater. Res. 25:4718–27
    [Google Scholar]
  40. 40.
    Adams DP, Abere MJ, Sobczak C, Rodriguez MA. 2019. Stabilizing effects of oxidation on propagating formation reactions occurring in nanometer-scale metal multilayers. Thin Solid Films 688:137349
    [Google Scholar]
  41. 41.
    Adams DP, Rodriguez MA, McDonald JP, Bai MM, Jones E et al. 2009. Reactive Ni/Ti nanolaminates. J. Appl. Phys. 106:9093505
    [Google Scholar]
  42. 42.
    Clevenger LA, Thompson CV, Tu KN. 1990. Explosive silicidation in nickel/amorphous-silicon multilayer thin films. J. Appl. Phys. 67:62894–98
    [Google Scholar]
  43. 43.
    Barron SC, Knepper R, Walker N, Weihs TP. 2011. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles. J. Appl. Phys. 109:1013519
    [Google Scholar]
  44. 44.
    de Boer FR, Mattens W, Boom R, Miedema AR, Niessen AK. 1988. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North Holl. Publ. Co.
  45. 45.
    Cohn J. 1959. Fuse member and method of making the same US Patent 2,911,504
  46. 46.
    Ellern H. 1968. Military and Civilian Pyrotechnics New York: Chem. Publ. Co.
  47. 47.
    Arlington SQ, Vummidi Lakshman S, Barron SC, DeLisio JB, Rodriguez JC et al. 2020. Exploring material chemistry for direct ink writing of reactively formed conductors. Mater. Adv. 1:51151–60
    [Google Scholar]
  48. 48.
    Fritz GM, Joress H, Weihs TP. 2011. Enabling and controlling slow reaction velocities in low-density compacts of multilayer reactive particles. Combust. Flame 158:61084–88
    [Google Scholar]
  49. 49.
    Battezzati L, Pappalepore P, Durbiano F, Gallino I. 1999. Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing. Acta Mater 47:61901–14
    [Google Scholar]
  50. 50.
    Sieber H, Park JS, Weissmüller J, Perepezko JH. 2001. Structural evolution and phase formation in cold-rolled aluminum-nickel multilayers. Acta Mater 49:71139–51
    [Google Scholar]
  51. 51.
    Stover AK, Krywopusk NM, Fritz GM, Barron SC, Gibbins JD, Weihs TP. 2013. An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J. Mater. Sci. 48:175917–29
    [Google Scholar]
  52. 52.
    Wang M, Qiu L, Zhao X, Li Y, Rao T et al. 2019. Multilayered Al/Ni energetic structural materials with high energy density and mechanical properties prepared by a facile approach of electrodeposition and hot pressing. Mater. Sci. Eng. A 757:23–31
    [Google Scholar]
  53. 53.
    Hertel S, Vogel K, Wiemer M, Otto T. 2020. Electroplating of Pd/Sn multilayers for reactive bonding in packaging and assembly applications. 2020 IEEE 8th Electronics System-Integration Technology Conference355–59 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54.
    Braeuer J, Besser J, Tomoscheit E, Klimm D, Anbumani S et al. 2013. Investigation of different nano scale energetic material systems for reactive wafer bonding. ECS Trans 50:7241–51
    [Google Scholar]
  55. 55.
    Picard YN, Liu H, Speys SJ, McDonald JP, Adams DP et al. 2004. Cutting reactive foils without igniting them (a femtosecond laser machining approach). Mater. Res. Soc. Symp. Proc. 800:8–13
    [Google Scholar]
  56. 56.
    Fritz GM, Lam CH, Pfeiffer D, Rodbell KP, Wisnieff RL. 2014. Reactive material for integrated circuit tamper detection and response US Patent 8,816,717 B2
  57. 57.
    Herbold EB, Jordan JL, Thadhani NN. 2011. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al + Ni. Acta Mater 59:176717–28
    [Google Scholar]
  58. 58.
    Takacs L. 2002. Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47:355–414
    [Google Scholar]
  59. 59.
    Maric R, Ishihara KN, Shingu PH. 1995. Structure formation and deformation behaviour of multilayer composite prepared by ball milling and repeated pressing. Mater. Sci. Forum 179–181:801–6
    [Google Scholar]
  60. 60.
    Hadjiafxenti A, Gunduz IE, Kyratsi T, Doumanidis CC, Rebholz C. 2013. Exothermic reaction characteristics of continuously ball-milled Al/Ni powder compacts. Vacuum 96:73–78
    [Google Scholar]
  61. 61.
    Breiter AL, Mal'tsev VM, Popov EI 1990. Means of modifying metallic fuel in condensed systems. Combust. Explos. Shock Waves 26:186–92
    [Google Scholar]
  62. 62.
    Schreiber S, Theodossiadis GD, Zaeh MF. 2017. Combustion synthesis of reactive nickel-aluminum particles as an innovative approach for thermal joining applications. IOP Conf. Ser. Mater. Sci. Eng. 181:1012008
    [Google Scholar]
  63. 63.
    Shafirovich E, Mukasyan A, Thiers L, Varma A, Legrand B et al. 2002. Ignition and combustion of Al particles clad by Ni. Combust. Sci. Technol. 174:3125–40
    [Google Scholar]
  64. 64.
    Gibbins JD, Stover AK, Krywopusk NM, Woll K, Weihs TP. 2015. Properties of reactive Al: Ni compacts fabricated by radial forging of elemental and alloy powders. Combust. Flame 162:124408–16
    [Google Scholar]
  65. 65.
    Olney KL, Chiu PH, Higgins A, Serge M, Weihs TP et al. 2014. The mechanisms of plastic strain accommodation during the high strain rate collapse of corrugated Ni–Al laminate cylinders. Philos. Mag. 94:3017–35
    [Google Scholar]
  66. 66.
    Bacciochini A, Radulescu MI, Charron-Tousignant Y, van Dyke J, Nganbe M et al. 2012. Enhanced reactivity of mechanically-activated nano-scale gasless reactive materials consolidated by coldspray. Surf. Coat. Technol. 206:214343–48
    [Google Scholar]
  67. 67.
    Dean SW, Potter JK, Yetter RA, Eden TJ, Champagne V, Trexler M. 2013. Energetic intermetallic materials formed by cold spray. Intermetallics 43:121–30
    [Google Scholar]
  68. 68.
    Renk O, Tkadletz M, Kostoglou N, Gunduz IE, Sun T et al. 2020. Synthesis of bulk reactive Ni–Al composites using high pressure torsion. J. Alloys Comp. 857:157503
    [Google Scholar]
  69. 69.
    Arlington SQ, Barron SC, DeLisio JB, Rodriguez JC, Vummidi Lakshman S et al. 2021. Multifunctional reactive nanocomposites via direct ink writing. Adv. Mater. Technol. 6:52001115
    [Google Scholar]
  70. 70.
    Walters IT, Groven LJ. 2019. Environmentally friendly boron-based pyrotechnic delays: an additive manufacturing approach. ACS Sustain. Chem. Eng. 7:44360–67
    [Google Scholar]
  71. 71.
    Wainwright ER, Weihs TP. 2020. Microstructure and ignition mechanisms of reactive aluminum–zirconium ball milled composite metal powders as a function of particle size. J. Mater. Sci. 55:2914243–63
    [Google Scholar]
  72. 72.
    Fritz GM, Spey SJ, Grapes MD, Weihs TP. 2013. Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy. J. Appl. Phys. 113:1014901
    [Google Scholar]
  73. 73.
    Adams DP, Reeves RV, Abere MJ, Sobczak C, Yarrington CD et al. 2018. Ignition and self-propagating reactions in Al/Pt multilayers of varied design. J. Appl. Phys. 124:9095105
    [Google Scholar]
  74. 74.
    Pauly C, Woll K, Bax B, Mücklich F. 2015. The role of transitional phase formation during ignition of reactive multilayers. Appl. Phys. Lett. 107:11113104
    [Google Scholar]
  75. 75.
    Barmak K, Michaelsen C, Lucadamo G. 1997. Reactive phase formation in sputter-deposited Ni/Al multilayer thin films. J. Mater. Res. 12:1133–46
    [Google Scholar]
  76. 76.
    Michaelsen C, Barmak K, Weihs TP. 1997. Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J. Phys. D Appl. Phys. 30:3167–86
    [Google Scholar]
  77. 77.
    Gunduz IE, Kyriakou A, Vlachos N, Kyratsi T, Doumanidis CC et al. 2014. Spark ignitable Ni-Al ball-milled powders for bonding applications. Surf. Coat. Technol. 260:396–400
    [Google Scholar]
  78. 78.
    Grapes MD, Weihs TP. 2016. Exploring the reaction mechanism in self-propagating Al/Ni multilayers by adding inert material. Combust. Flame 172:105–15
    [Google Scholar]
  79. 79.
    Abere MJ, Yarrington CD, Adams DP. 2018. Heating rate dependent ignition of Al/Pt nanolaminates through pulsed laser irradiation. J. Appl. Phys. 123:23235304
    [Google Scholar]
  80. 80.
    Abere MJ, Yarrington CD, Kotula PG, Mcdonald JP, Adams DP. 2021. Variable laser ignition pathways in Al/Pt reactive multilayers across 10 decades of pulse duration. J. Phys. Chem. C. 125:189756–65
    [Google Scholar]
  81. 81.
    Gash AE, Barbee TW Jr., Cervantes O. 2006. Stab sensitivity of energetic nanolaminates. Proceedings of the 33rd International Pyrotechnic Seminar59–70 Marshall, TX: Int. Pyrotech. Sem.
    [Google Scholar]
  82. 82.
    Shuck CE, Manukyan KV, Rouvimov S, Rogachev AS, Mukasyan AS. 2016. Solid-flame: experimental validation. Combust. Flame 163:487–93
    [Google Scholar]
  83. 83.
    Trenkle JC, Koerner LJ, Tate MW, Gruner SM, Weihs TP, Hufnagel TC. 2008. Phase transformations during rapid heating of Al/Ni multilayer foils. Appl. Phys. Lett. 93:8081903
    [Google Scholar]
  84. 84.
    Kelly ST, Trenkle JC, Koerner LJ, Barron SC, Dufresne EM et al. 2011. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials. J. Synchrotron Radiat. 18:464–74
    [Google Scholar]
  85. 85.
    Neuhauser T, Tinti G, Leiste H, Casati N, Stüber M, Woll K. 2020. Analysis of the reaction runaway in Al/Ni multilayers with combined nanocalorimetry and time-resolved X-ray diffraction. Acta Mater 195:579–87
    [Google Scholar]
  86. 86.
    Wainwright ER, Vummidi Lakshman S, Leong AFT, Kinsey AH, Gibbins JD et al. 2019. Viewing internal bubbling and microexplosions in combusting metal particles via X-ray phase contrast imaging. Combust. Flame 199:194–203
    [Google Scholar]
  87. 87.
    Grapes MD, LaGrange T, Woll K, Reed BW, Campbell GH et al. 2014. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter. APL Mater 2:11116102
    [Google Scholar]
  88. 88.
    Campbell GH, Lagrange T, Kim JS, Reed BW, Browning ND. 2010. Quantifying transient states in materials with the dynamic transmission electron microscope. J. Electron Microsc. 59:Suppl. 167–74
    [Google Scholar]
  89. 89.
    Overdeep KR, Weihs TP. 2015. Design and functionality of a high-sensitivity bomb calorimeter specialized for reactive metallic foils. J. Therm. Anal. Calorim. 122:2787–94
    [Google Scholar]
  90. 90.
    Swaminathan P, Grapes MD, Woll K, Barron SC, Lavan DA, Weihs TP. 2013. Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter. J. Appl. Phys. 113:14143509
    [Google Scholar]
  91. 91.
    Alawieh L, Weihs TP, Knio OM. 2013. A generalized reduced model of uniform and self-propagating reactions in reactive nanolaminates. Combust. Flame 160:91857–69
    [Google Scholar]
  92. 92.
    McDonald JP, Hodges VC, Jones ED, Adams DP. 2009. Direct observation of spinlike reaction fronts in planar energetic multilayer foils. Appl. Phys. Lett. 94:3034102
    [Google Scholar]
  93. 93.
    Kittell DE, Abere MJ, Yarrington CD, Adams DP. 2022. 3D simulations of spinlike flames in Co/Al multilayers with enhanced conduction losses. Combust. Flame 240:111952
    [Google Scholar]
  94. 94.
    McDonald JP, Reeves RV, Jones ED, Chinn KA, Adams DP. 2013. Effects of oxidation on reaction front instabilities and average propagation speed in Ni/Ti multilayer foils. J. Appl. Phys. 113:10103505
    [Google Scholar]
  95. 95.
    Jayaraman S, Mann AB, Reiss M, Weihs TP, Knio OM. 2001. Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils. Combust. Flame 124:1–2178–94
    [Google Scholar]
  96. 96.
    Salloum M, Knio OM. 2010. Simulation of reactive nanolaminates using reduced models: II. Normal propagation. Combust. Flame 157:3436–45
    [Google Scholar]
  97. 97.
    Kittell DE, Yarrington CD, Hobbs ML, Abere MJ, Adams DP. 2018. A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits. J. Appl. Phys. 123:145302
    [Google Scholar]
  98. 98.
    Rogachev AS, Vadchenko SG, Baras F, Politano O, Rouvimov S et al. 2016. Combustion in reactive multilayer Ni/Al nanofoils: experiments and molecular dynamic simulation. Combust. Flame 166:158–69
    [Google Scholar]
  99. 99.
    Turlo V, Politano O, Baras F. 2016. Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers. Acta Mater 120:189–204
    [Google Scholar]
  100. 100.
    Yi P, Ruan D, Weihs TP, Falk ML. 2020. Predicting the rate of homogeneous intermetallic nucleation within steep composition gradients. J. Phys. Chem. C 124:23807–14
    [Google Scholar]
  101. 101.
    Thompson CV. 1992. On the role of diffusion in phase selection during reactions at interfaces. J. Mater. Res. 7:2367–73
    [Google Scholar]
  102. 102.
    Fourmont A, Politano O, Le Gallet S, Desgranges C, Baras F 2021. Reactivity of Ni-Al nanocomposites prepared by mechanical activation: a molecular dynamics study. J. Appl. Phys. 129:065301
    [Google Scholar]
  103. 103.
    Witbeck B, Spearot DE. 2020. Role of grain boundary structure on diffusion and dissolution during Ni/Al nanolaminate combustion. J. Appl. Phys. 127:125111
    [Google Scholar]
  104. 104.
    Witbeck B, Spearot DE. 2019. Grain size effects on Ni/Al nanolaminate combustion. J. Mater. Res. 34:13229–39
    [Google Scholar]
  105. 105.
    Schwarz F, Spolenak R. 2021. Molecular dynamics study of the influence of microstructure on reaction front propagation in Al-Ni multilayers. Appl. Phys. Lett. 119:13133901
    [Google Scholar]
  106. 106.
    Yuile A, Wiese S. 2020. CFD simulations of reactive multi-layer usage in joining processes. 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems70–74 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107.
    Zhong Y, Liu AY, Robertson S, Liang S, Liu C et al. 2020. Quasi-ambient bonding semiconductor components for power electronics integration. IEEE 70th Electronic Components and Technology Conference1468–73 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108.
    Masser R, Braeuer J, Gessner T. 2014. Modelling the reaction behavior in reactive multilayer systems on substrates used for wafer bonding. J. Appl. Phys. 115:244311
    [Google Scholar]
  109. 109.
    Käding OW, Skurk H, Goodson KE. 1994. Thermal conduction in metallized silicon-dioxide layers on silicon. Appl. Phys. Lett. 65:131629–31
    [Google Scholar]
  110. 110.
    Duckham A. 2007. NanoFoil® enables higher sputtering rates. Vacuum Technology & Coating March, p. 64
    [Google Scholar]
  111. 111.
    Levin J, Subramanian J, Rude T, Knio O, Powers M, Enns C. 2005. Room temperature soldering of connectors to PCB using reactive multilayer foils. Proceedings - 2005 International Symposium on Microelectronics256–61 Research Triangle Park, NC: IMAPS
    [Google Scholar]
  112. 112.
    Duckham A, Brown M, Besnoin E, van Heerden D, Knio OM, Weihs TP. 2004. Metallic bonding of ceramic armor using reactive multilayer foils. Ceram. Eng. Sci. Proc. 25:3597–604
    [Google Scholar]
  113. 113.
    Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME et al. 2003. Room-temperature soldering with nanostructured foils. Appl. Phys. Lett. 83:193987–89
    [Google Scholar]
  114. 114.
    Mueller M, Franke J. 2014. Highly efficient packaging processes by reactive multilayer materials for die-attach in power electronic applications. 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)477–81 Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115.
    Heyn J, Blumenthal P, Hemken G, Fiedler S, Walz C et al. 2014. Automation concepts and gripping solutions for bonding with reactive multilayer systems. Procedia CIRP 23:C13–18
    [Google Scholar]
  116. 116.
    Levin JP, Rude TR, Subramanian J, Besnoin E, Weihs TP et al. 2004. Room temperature lead-free soldering of microelectronic components using a local heat source. ASM Conference Proceedings: Joining of Advanced and Specialty Materials75–79 Materials Park, OH: ASM Int.
    [Google Scholar]
  117. 117.
    Wagner D, Ranisch D, Schmidt B, Detert M. 2016. Heat sensitive joining method for miniaturized sensor components in medical technology. 2015 European Microelectronics Packaging Conference (EMPC 2015)390–93 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118.
    Qiu X, Welch D, Christen JB, Zhu J, Oiler J et al. 2010. Reactive nanolayers for physiologically compatible microsystem packaging. J. Mater. Sci. Mater. Electron. 21:6562–66
    [Google Scholar]
  119. 119.
    Subramanian JS, Rodgers P, Newson J, Rude T, He Z et al. 2005. Room temperature soldering of microelectronic components for enhanced thermal performance. Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems681–86 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120.
    Boettge B, Braeuer J, Wiemer M, Petzold M, Bagdahn J, Gessner T. 2010. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology. J. Micromech. Microeng. 20:064018
    [Google Scholar]
  121. 121.
    Long Z, Dai B, Tan S, Wang Y, Wei X. 2017. Transient liquid phase bonding of copper and ceramic Al2O3 by Al/Ni nano multilayers. Ceram. Int. 43:1817000–4
    [Google Scholar]
  122. 122.
    Duckham A, Levin J, Weihs TP. 2006. Soldering and brazing metals to ceramics at room temperature using a novel nanotechnology. Adv. Sci. Technol. 45:1578–87
    [Google Scholar]
  123. 123.
    Raić KT, Rudolf R, Todorović A, Anzel I. 2008. Multilayered nano-foils for low-temperature metal-ceramic joining. Metalurgija 976:143–54
    [Google Scholar]
  124. 124.
    Rogachev AS, Vadchenko SG, Nepapushev AA, Rogachev SA, Scheck YB, Mukasyan AS. 2018. Gasless reactive compositions for materials joining: an overview. Adv. Eng. Mater. 20:81701044
    [Google Scholar]
  125. 125.
    Heian E, Rude T, Van HD, Besnoin E, Xun Y et al. 2007. Reactive multilayer joining Paper presented at the Materials Science & Technology Conference and Exhibition Detroit, MI:
  126. 126.
    van Heerden D, Rude T, Newson J, Knio O, Weihs TP, Gailus DW. 2004. Thermal behavior of a soldered Cu-Si interface. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium46–49 Piscataway, NJ: IEEE
    [Google Scholar]
  127. 127.
    Refai-Ahmed G, He Z, Heian E, Ramzi-Vincent, Rude T, van Heerden D 2007. Comparison of thermal performance of current high-end thermal interface materials. Proceedings of the ASME InterPack Conference (IPACK)399–404 New York: Am. Soc. Mech.
    [Google Scholar]
  128. 128.
    van Heerden D, Rude TR, Newson J, He J, Besnoin E et al. 2004. A tenfold reduction in interface thermal resistance for heat sink mounting. J. Microelectron. Electron. Packag. 1:3187–93
    [Google Scholar]
  129. 129.
    Caswell G. 2009. NanoBond® Assembly – a rapid, room temperature soldering process. 2009 European Microelectronics and Packaging Conference591–97 Piscataway, NJ: IEEE
    [Google Scholar]
  130. 130.
    Subramanian J, Newson J, He Z, Rude T, Challa V. 2005. Characterization of room temperature solder joints using scanning acoustic microscopy. Proceedings - 2005 International Symposium on Microelectronics606–11 Research Triangle Park, NC: IMAPS
    [Google Scholar]
  131. 131.
    Rude T, Subramanian J, Levin J, van Heerden D, Knio O, Powers M. 2005. Hermetic sealing of microelectronics packages using a room temperature soldering process. Proceedings - 2005 International Symposium on Microelectronics286–90 Research Triangle Park, NC: IMAPS
    [Google Scholar]
  132. 132.
    Silva M, Ramos AS, Vieira MT, Simões S. 2021. Diffusion bonding of Ti6Al4V to Al2O3 using Ni/Ti reactive multilayers. Metals 11:655
    [Google Scholar]
  133. 133.
    Rheingans B, Spies I, Schumacher A, Knappmann S, Furrer R et al. 2019. Joining with reactive nano-multilayers: influence of thermal properties of components on joint microstructure and mechanical performance. Appl. Sci. 9:2262
    [Google Scholar]
  134. 134.
    Ramos AS, Vieira MT, Simões S, Viana F, Vieira MF. 2008. Joining of superalloys to intermetallics using nanolayers. Adv. Mater. Res. 59:225–29
    [Google Scholar]
  135. 135.
    Duckham A, Subramanian JS, Newson J, Brown M, Lin Y, He Z. 2006. Room temperature solder bonding of sputtering targets to backing plates. Society of Vacuum Coaters 49th Annual Technical Conference Proceedings55–59 Albuquerque: NM: Soc. Vac. Coat.
    [Google Scholar]
  136. 136.
    Grieseler R, Welker T, Muller J, Schaaf P. 2012. Bonding of low temperature co-fired ceramics to copper and to ceramic blocks by reactive aluminum/nickel multilayers. Phys. Status Solidi A 209:3512–18
    [Google Scholar]
  137. 137.
    Braeuer J, Gessner T. 2014. A hermetic and room-temperature wafer bonding technique based on integrated reactive multilayer systems. J. Micromech. Microeng. 24:115002
    [Google Scholar]
  138. 138.
    Swiston AJ, Hufnagel TC, Weihs TP. 2003. Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 48:121575–80
    [Google Scholar]
  139. 139.
    Swiston AJ, Weihs TP, Knio OM, Hufnagel TC. 2003. Metallic glass fluid flow during welding using self-propagating reactive multilayer foils. Mater. Res. Soc. Symp. Proc. 806:121–26
    [Google Scholar]
  140. 140.
    Trenkle JC, Weihs TP, Hufnagel TC. 2008. Fracture toughness of bulk metallic glass welds made using nanostructured reactive multilayer foils. Scr. Mater. 58:315–18
    [Google Scholar]
  141. 141.
    Luo C, Zhang Y. 2021. Joining of copper foils via Al/Ni reactive multilayer nanofoils. J. Mater. Proc. Tech. 298:117294
    [Google Scholar]
  142. 142.
    Qiu X, Zhu J, Oiler J, Yu C, Wang Z, Yu H 2009. Localized Parylene-C bonding with reactive multilayer foils. J. Phys. D Appl. Phys. 42:185411
    [Google Scholar]
  143. 143.
    Hussein A, Alkhoori A, al Zaabi A, Stefanini C, Renda F et al. 2018. Underwater robotic welding of lap joints with sandwiched reactive multilayers: thermal, mechanical and material analysis. MRS Adv 3:17911–20
    [Google Scholar]
  144. 144.
    Miyake S, Ohtani K, Inoue S, Namazu T. 2016. Importance of bonding atmosphere for mechanical reliability of reactively bonded solder joints. J. Eng. Mater. Technol. Trans. ASME 138:011006
    [Google Scholar]
  145. 145.
    Wang J, Besnoin E, Knio OM, Weihs TP. 2004. Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater 52:5265–74
    [Google Scholar]
  146. 146.
    Namazu T, Inoue S. 2010. Al/Ni self-propagating exothermic film for MEMS application. Mater. Sci. Forum 638–642:2142–47
    [Google Scholar]
  147. 147.
    Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME et al. 2004. Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 95:248–56
    [Google Scholar]
  148. 148.
    Wang J, Besnoin E, Knio OM, Weihs TP. 2005. Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97:114307
    [Google Scholar]
  149. 149.
    Duckham A, Spey SJ, Wang J, Reiss ME, Weihs TP. 2004. Reactive nanostructured foil used as a heat source for joining titanium. J. Appl. Phys. 96:42336–42
    [Google Scholar]
  150. 150.
    Powers M, Subramanian J, Levin J, Rude T, van Heerden D, Knio O. 2006. Room temperature hermetic sealing of microelectronic packages with nanoscale multilayer reactive foils. Materials Science and Technology Conference and Exhibition1302–7 Cincinatti, OH: Mat. Sci. Tech.
    [Google Scholar]
  151. 151.
    van Heerden DP, Deger D, Weihs TP, Knio OM. 2006. Hermetically sealing a container with crushable material and reactive multilayer material US Patent 7,143,568 B2
  152. 152.
    Minnicino M, Sands JM. 2011. Reactive nanocomposites for controllable adhesive debonding Rep. ADA551765 Army Res. Lab. Aberdeen, MD:
  153. 153.
    Minnicino MA, Sands J, Hirvonen JK, Demaree JD. 2004. Reactive nano-layered bimetallics for non-destructive debonding of munition components Rep. ADA433174 Army Res. Lab. Aberdeen, MD:
  154. 154.
    Bement LJ, Multhaup HA. 1999. Determining functional reliability of pyrotechnic mechanical devices. AIAA J 37:3357–63
    [Google Scholar]
  155. 155.
    Baginski TA, Parker TS, Fahey WD. 2003. Electro-explosive device with laminate bridge. US Patent 6,772,692 B2
  156. 156.
    Danzi S, Schnabel V, Gabl J, Sologubenko A, Galinski H, Spolenak R. 2019. Rapid on-chip healing of metal thin films. Adv. Mater. Technol. 4:1800468
    [Google Scholar]
  157. 157.
    Tiernan J. 2006. Propellant for fracturing wells US Patent Appl. 2006/0075890 A1
  158. 158.
    Isert S, Lane CD, Gunduz IE, Son SF. 2017. Tailoring burning rates using reactive wires in composite solid rocket propellants. Proc. Combust. Inst. 36:22283–90
    [Google Scholar]
  159. 159.
    Ding MS, Krieger FC, Swank JA. 2013. Developing NanoFoil® -heated thin-film thermal battery Rep. ADA586188 Army Res. Lab. Adelphi, MD:
  160. 160.
    Wang A, Gallino I, Riegler SS, Lin Y, Isaac NA et al. 2021. Ultrafast formation of single phase B2 AlCoCrFeNi high entropy alloy films by reactive Ni/Al multilayers as heat source. Mater. Des. 206:109790
    [Google Scholar]
  161. 161.
    Grieseler R, Kups T, Wilke M, Hopfeld M, Schaaf P. 2012. Formation of Ti2AlN nanolaminate films by multilayer-deposition and subsequent rapid thermal annealing. Mater. Lett. 82:74–77
    [Google Scholar]
  162. 162.
    Zhu Y, Geng J, Wang F, Yan S, Zhao P et al. 2020. Preparation of Al/Ni reactive multilayer foils and its application in thermal battery. J. Inorg. Gen. Chem. 646:200–6
    [Google Scholar]
  163. 163.
    Ding M, Krieger F, Swank J, Poret J, McMullan C, Chen G. 2008. Use of NanoFoil® as a new heat source in thermal batteries Rep. ARL-TR-6141, Army Res. Lab Adelphi, MD: Army Res. Lab
  164. 164.
    Nathani H, Wang J, Weihs TP. 2007. Long-term stability of nanostructured systems with negative heats of mixing. J. Appl. Phys. 101:10104315
    [Google Scholar]
  165. 165.
    Vohra M, Winokur J, Overdeep KR, Marcello P, Weihs TP, Knio OM. 2014. Development of a reduced model of formation reactions in Zr-Al nanolaminates. J. Appl. Phys. 116:233501
    [Google Scholar]
  166. 166.
    Paisley DL, Luo S, Greenfield SR, Koskelo AC. 2008. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications. Rev. Sci. Instrum. 79:023902
    [Google Scholar]
  167. 167.
    Morris CJ, Mary B, Zakar E, Barron SC, Fritz G et al. 2010. Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering. J. Phys. Chem. Solids 71:284–89
    [Google Scholar]
  168. 168.
    Wang Y, Zhou Q, Jiang H, Xing Z, Li Y et al. 2020. Influence of interface layer on the properties of exploding foil flyer generator by integrating Al/Ni multilayers. Phys. Status Solidi A 217:2000112
    [Google Scholar]
  169. 169.
    Wang Y, Qin W, Li Y, Tang D, Wang L. 2021. Al/Ni reactive multilayer films enhancing the properties of plasma induced by nanosecond pulsed laser. Energ. Mater. Front. 2:2147–53
    [Google Scholar]
  170. 170.
    Wang Y, Guo F, Wang W, Li Y, Zhou Q et al. 2020. Improved exploding properties of Al/Cu multilayer initiators. Propellants Explos. Pyrotechn 45:111698–704
    [Google Scholar]
  171. 171.
    Stamatis D, Wainwright ER, Vummidi S, Kessler MS, Weihs TP. 2020. Combustion of explosively dispersed Al-Mg-Zr composite particles. Combust. Flame 217:93–102
    [Google Scholar]
  172. 172.
    Wainwright ER. 2020. Ball milled Al/Zr reactive composites for bio-agent defeat: from synthesis to application PhD Diss. Johns Hopkins Univ. Baltimore, MD:
  173. 173.
    Wainwright ER, Schmauss TA, Lakshman SV, Overdeep KR, Weihs TP. 2018. Observations during Al:Zr composite particle combustion in varied gas environments. Combust. Flame 196:487–99
    [Google Scholar]
  174. 174.
    Wainwright ER, Mueller MA, Overdeep KR, Lakshman SV, Weihs TP. 2020. Measuring heat production from burning Al/Zr and Al/Mg/Zr composite particles in a custom micro-bomb calorimeter. Materials 13:2745
    [Google Scholar]
  175. 175.
    Lakshman SV, Gibbins JD, Wainwright ER, Weihs TP, Vummidi Lakshman S et al. 2019. The effect of chemical composition and milling conditions on composite microstructure and ignition thresholds of Al-Zr ball milled powders. Powder Technol 343:87–94
    [Google Scholar]
  176. 176.
    Yetter RA, Risha GA, Son SF. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32:21819–38
    [Google Scholar]
  177. 177.
    Gill RJ, Mohan S, Dreizin EL. 2009. Sizing and burn time measurements of micron-sized metal powders. Rev. Sci. Instrum. 80:064101
    [Google Scholar]
  178. 178.
    Cabral C, Fritz GM, Murray CE, Rodbell KP 2018. Activating reactions in integrated circuits through electrical discharge US Patent 9,991,214 B2
  179. 179.
    Afzali-Ardakani A, de Souza JP, Hekmatshoartabari B, Kuchta DM, Sadana DK. 2017. Semiconductor chip having tampering feature US Patent 9,553,056
  180. 180.
    Arlington SQ, Chen J, Weihs TP 2020. Environmentally friendly chemical time delays based on interrupted reaction of reactive nanolaminates. ACS Sustain. Chem. Eng. 8:4617262–71
    [Google Scholar]
  181. 181.
    Koch EC. 2001. Review on pyrotechnic aerial infrared decoys. Propellants Explos. Pyrotechn. 26:13–11
    [Google Scholar]
  182. 182.
    Wainwright ER, Inouye M, Niu M, Chintersingh K, Weihs TP et al. 2021. Comparing the ignition and combustion characteristics of ball-milled Al-based composites with Ti, Zr, and Mg additives. J. Energ. Mater. In press. https://doi.org/10.1080/07370652.2021.1915429
    [Crossref] [Google Scholar]
  183. 183.
    Shoshin YL, Trunov MA, Zhu X, Schoenitz M, Dreizin EL. 2006. Ignition of aluminum-rich Al-Ti mechanical alloys in air. Combust. Flame 144:688–97
    [Google Scholar]
  184. 184.
    Conkling JA, Mocella CJ. 2019. Heat compositions: ignition mixes, delays, and thermites. Chemistry of Pyrotechnics: Basic Principles and Theory197–212 Boca Raton, FL: CRC Press. , 3rd ed..
    [Google Scholar]
  185. 185.
    Miklaszewski EJ, Son SF, Groven LJ, Poret JC, Shaw AP, Chen G. 2012. Combustion characteristics of condensed phase reactions in sub-centimeter geometries. Proceedings of the 38th International Pyrotechnics Seminar276–84 Marshall, TX: Int. Pyrotech. Sem .
    [Google Scholar]
  186. 186.
    Grapes MD, Santala MK, Campbell GH, Lavan DA, Weihs TP. 2017. A detailed study of the Al3Ni formation reaction using nanocalorimetry. Thermochim. Acta 658:72–83
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-124041
Loading
/content/journals/10.1146/annurev-matsci-081720-124041
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error