1932

Abstract

Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when →0 are obtained by optimizing the cooling current. All refrigerators as →0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as →0 of the relaxation rate γ and heat capacity of the cold bath.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103724
2014-04-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103724.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103724&mimeType=html&fmt=ahah

Literature Cited

  1. Carnot S. 1.  1824. Réflections sur la Puissance Motrice du Feu et sur les Machines propres à Développer cette Puissance Paris: Bachelier
  2. Curzon F, Ahlborn B. 2.  1975. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43:22–24 [Google Scholar]
  3. Salamon P, Nulton J, Siragusa G, Andersen TR, Limon A. 3.  2001. Principles of control thermodynamics. Energy 26:307–19 [Google Scholar]
  4. Landsberg PT. 4.  1956. Foundations of thermodynamics. Rev. Mod. Phys. 28:363–92 [Google Scholar]
  5. Einstein A. 5.  1905. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann. Phys. 17:132–48 [Google Scholar]
  6. Scovil HED, Schulz-DuBois EO. 6.  1959. Three-level masers as heat engines. Phys. Rev. Lett. 2:262–63 [Google Scholar]
  7. Geusic J, Schulz-Du Bois EO, Scovil HED. 7.  1967. Quantum equivalence of the Carnot cycle. Phys. Rev. 156:343–51 [Google Scholar]
  8. Kosloff R. 8.  1984. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 80:1625–31 [Google Scholar]
  9. Geva E, Kosloff R. 9.  1996. The quantum heat engine and heat pump: an irreversible thermodynamic analysis of the three-level amplifier. J. Chem. Phys. 104:7681–98 [Google Scholar]
  10. Partovi M. 10.  1989. Quantum thermodynamics. Phys. Lett. A 137:440–44 [Google Scholar]
  11. Kosloff R, Geva E, Gordon JM. 11.  2000. The quantum refrigerator in quest of the absolute zero. J. Appl. Phys. 87:8093–97 [Google Scholar]
  12. Palao JP, Kosloff R, Gordon JM. 12.  2001. Quantum thermodynamic cooling cycle. Phys. Rev. E 64:056130 [Google Scholar]
  13. Lloyd S. 13.  1997. Quantum-mechanical Maxwell's demon. Phys. Rev. A 56:3374–82 [Google Scholar]
  14. He J, Chen J, Hua B. 14.  2002. Quantum refrigeration cycles using spin-1/2 systems as the working substance. Phys. Rev. E 65:036145 [Google Scholar]
  15. Lieb EH, Yngvason J. 15.  1999. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310:1–96 [Google Scholar]
  16. Bender CM, Brody DC, Meister BK. 16.  2002. Entropy and temperature of a quantum Carnot engine. Proc. R. Soc. Lond. A 458:1519–26 [Google Scholar]
  17. Kieu TD. 17.  2004. The second law, Maxwell's demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93:140403 [Google Scholar]
  18. Segal D, Nitzan A. 18.  2006. Molecular heat pump. Phys. Rev. E 73:026109 [Google Scholar]
  19. Bushev P, Rotter D, Wilson A, Dubin F, Becher C. 19.  et al. 2006. Feedback cooling of a single trapped ion. Phys. Rev. Lett. 96:60010 [Google Scholar]
  20. Quan HT, Liu YX, Sun CP, Nori F. 20.  2007. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76:031105 [Google Scholar]
  21. Boukobza E, Tannor DJ. 21.  2008. Thermodynamic analysis of quantum light purification. Phys. Rev. A 78:013825 [Google Scholar]
  22. Birjukov J, Jahnke T, Mahler G. 22.  2008. Quantum thermodynamic processes: a control theory for machine cycles. Eur. Phys. J. B 64:105–18 [Google Scholar]
  23. Jahnke T, Birjukov J, Mahler G. 23.  2008. On the nature of thermodynamic extremum principles: the case of maximum efficiency and maximum work. Ann. Phys. 17:88–100 [Google Scholar]
  24. Allahverdyan AE, Johal RS, Mahler G. 24.  2008. Work extremum principle: structure and function of quantum heat engines. Phys. Rev. E 77:041118 [Google Scholar]
  25. Segal D. 25.  2009. Vibrational relaxation in the Lubo oscillator: stochastic pumping of heat. J. Chem. Phys. 130:134510 [Google Scholar]
  26. Wang H, Liu S, He J. 26.  2009. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79:041113 [Google Scholar]
  27. Maruyama K, Nori F, Vedral V. 27.  2009. Colloquium: the physics of Maxwell's demon and information. Rev. Mod. Phys. 81:1–23 [Google Scholar]
  28. Gemmer J, Michel M, Mahler G. 28.  2009. Quantum Thermodynamics New York: Springer
  29. Olshanii M. 29.  2012. Geometry of quantum observables and thermodynamics of small systems. ArXiv1208.0582
  30. Anders J, Giovannetti V. 30.  2013. Thermodynamics of discrete quantum processes. New J. Phys. 15:033022 [Google Scholar]
  31. Kosloff R. 31.  2013. Quantum thermodynamics: a dynamical viewpoint. Entropy 15:2100–28 [Google Scholar]
  32. Mandal D, Quan HT, Jarzynski C. 32.  2013. Maxwell's refrigerator: an exactly solvable model. Phys. Rev. Lett. 111:030602 [Google Scholar]
  33. Allahverdyan AE, Hovhannisyan KV, Melkikh AV, Gevorkian SG. 33.  2013. Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111:050601 [Google Scholar]
  34. Boukobza E, Ritsch H. 34.  2013. Breaking the Carnot limit without violating the second law: a thermodynamic analysis of off-resonant quantum light generation. Phys. Rev. A 87:063845 [Google Scholar]
  35. Levy A, Alicki R, Kosloff R. 35.  2012. Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85:061126 [Google Scholar]
  36. Linden N, Popescu S, Skrzypczyk P. 36.  2010. How small can thermal machines be? Towards the smallest possible refrigerator. Phys. Rev. Lett. 105:130401 [Google Scholar]
  37. Correa LA, Palao JP, Adesso G, Alonso D. 37.  2013. Performance bound for quantum absorption refrigerators. Phys. Rev. E 87:042131 [Google Scholar]
  38. Martinez EA, Paz JP. 38.  2013. Dynamics and thermodynamics of linear quantum open systems. Phys. Rev. Lett. 110:130406 [Google Scholar]
  39. Clausius R. 39.  1850. Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. Phys. 79:68 [Google Scholar]
  40. Lindblad G. 40.  1976. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48:119–30 [Google Scholar]
  41. Gorini V, Kossakowski A, Sudarshan E. 41.  1976. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17:821–25 [Google Scholar]
  42. Spohn H, Lebowitz J. 42.  1979. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38:109–42 [Google Scholar]
  43. Kosloff R, Ratner M. 43.  1984. Beyond linear response: lineshapes for coupled spins or oscillators via direct calculation of dissipated power. J. Chem. Phys. 80:2352–62 [Google Scholar]
  44. Davis EB. 44.  1974. Markovian master equations. Commun. Math. Phys. 39:91–110 [Google Scholar]
  45. Geva E, Kosloff R, Skinner J. 45.  1995. On the relaxation of a two-level system driven by a strong electromagnetic field. J. Chem. Phys. 102:8541–61 [Google Scholar]
  46. Gorini V, Kossakowski A. 46.  1976. N-level system in contact with a singular reservoir. J. Math. Phys. 17:1298–305 [Google Scholar]
  47. Lamb W. 47.  1964. Theory of an optical maser. Phys. Rev. 134:1429–50 [Google Scholar]
  48. Louisell WH. 48.  1990. Quantum Statistical Properties of Radiation New York: Wiley
  49. Digonnet MJF. 49.  1990. Closed-form expressions for the gain in three- and four-level laser fibers. IEEE J. Quantum Electron. 26:1788–96 [Google Scholar]
  50. Scully MO, Zubairy MS, Agarwal GS, Walther H. 50.  2003. Extracting work from a single heat bath via vanishing quantum coherence. Science 299:862–64 [Google Scholar]
  51. Scully MO. 51.  2010. Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104:207701 [Google Scholar]
  52. Svidzinsky AA, Dorfman KE, Scully MO. 52.  2011. Enhancing photovoltaic power by Fano-induced coherence. Phys. Rev. A 84:053818 [Google Scholar]
  53. Scully MO, Chapin KR, Dorfman KE, Kim MB, Svidzinsky A. 53.  2011. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 108:15097–100 [Google Scholar]
  54. Harbola U, Rahav S, Mukamel S. 54.  2012. Quantum heat engines: a thermodynamic analysis of power and efficiency. Eur. Phys. Lett. 99:50005 [Google Scholar]
  55. Rahav S, Harbola U, Mukamel S. 55.  2012. Heat fluctuations and coherences in a quantum heat engines. Phys. Rev. A 86:043843 [Google Scholar]
  56. Goswami HP, Harbola U. 56.  2013. Thermodynamics of quantum heat engines. Phys. Rev. A 88:013842 [Google Scholar]
  57. Szczygielski K, Gelbwaser-Klimovsky D, Alicki R. 57.  2013. Markovian master equation and thermodynamics of a two-level system in a strong laser field. Phys. Rev. E 87:012120 [Google Scholar]
  58. Gelbwaser-Klimovsky D, Alicki R, Kurizki G. 58.  2013. Minimal universal quantum heat machine. Phys. Rev. E 87:012140 [Google Scholar]
  59. Boukobza E, Tannor DJ. 59.  2007. Three-level systems as amplifiers and attenuators: a thermodynamic analysis. Phys. Rev. Lett. 98:240601 [Google Scholar]
  60. Alicki R, Fannes M. 60.  2013. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87:042123 [Google Scholar]
  61. Gelbwaser-Klimovsky D, Alicki R, Kurizki G. 61.  2013. How much work can a quantum device extract from a heat engine?. ArXiv1302.3468
  62. Nernst W. 62.  1906. Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachr. Königlichen Ges. Wiss. Göttingen 1:1–39 [Google Scholar]
  63. Nernst W. 63.  1906. Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. Ber. Kgl. Pr. Akad. Wiss. 52:933–40 [Google Scholar]
  64. Nernst W. 64.  1918. Die Theoretischen und Experimentellen Grundlagen des Neuen Wärmesatzes. Halle: W. Knapp
  65. Fowler RH, Guggenheim EA. 65.  1939. Statistical Thermodynamics Cambridge, UK: Cambridge Univ. Press
  66. Landsberg PT. 66.  1989. A comment on Nernst's theorem. J. Phys. A 22:139–41 [Google Scholar]
  67. Belgiorno F. 67.  2003. Notes on the third law of thermodynamics I. J. Phys. A 36:8165–93 [Google Scholar]
  68. Belgiorno F. 68.  2003. Notes on the third law of thermodynamics II. J. Phys. A 36:8195–221 [Google Scholar]
  69. Levy A, Alicki R, Kosloff R. 69.  2012. Comment on cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 109:248901 [Google Scholar]
  70. Geusic JE, Schulz-DuBois EO, De Grasse RW, Scovil HED. 70.  1959. Three level spin refrigeration and maser action at 1500 mc/sec. J. App. Phys. 30:1113–14 [Google Scholar]
  71. Tsujikawa I, Murao T. 71.  1962. Possibility of optical cooling of ruby. J. Phys. Soc. Jpn. 18:503–10 [Google Scholar]
  72. Dousmanis GC, Mueller CW, Nelson H, Petzinger KG. 72.  1964. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Phys. Rev. 133:A316–18 [Google Scholar]
  73. Kushida T, Geusic JE. 73.  1968. Optical refrigeration in Nd-doped yittrium aluminum garnet. Phys. Rev. Lett. 20:1172–75 [Google Scholar]
  74. Wineland DJ, Dehmelt H. 74.  1975. Proposed 1014δν/ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III. Bull. Am. Phys. Soc. 20:637 [Google Scholar]
  75. Hänsch TW, Schawlow AL. 75.  1975. Cooling of gases by laser radiation. Opt. Commun. 13:68–69 [Google Scholar]
  76. Lett PD, Watts RN, Westbrook CI, Phillips WD, Gould PL, Metcalf HJ. 76.  1988. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61:169–72 [Google Scholar]
  77. Shevy Y, Weiss DS, Ungar PJ, Chu S. 77.  1989. Bimodal speed distributions in laser-cooled atoms. Phys. Rev. Lett. 62:1118–21 [Google Scholar]
  78. Dalibard J, Cohen-Tannoudji C. 78.  1989. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 79:2023–45 [Google Scholar]
  79. Steck DA. 79.  2003. Sodium D line data http://steck.us/alkalidata/sodiumnumbers.1.6.pdf
  80. Gordon JM, Ng KC. 80.  2000. Cool Thermodynamics Cambridge, UK: Cambridge Int. Sci.
  81. Einstein A, Szilárd L. 81.  1930. Refrigeration. US Patent No. 1,781,541
  82. Mari A, Eisert J. 82.  2012. Cooling by heating: Very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett. 108:120602 [Google Scholar]
  83. Cleuren B, Rutten B, Van den Broeck C. 83.  2012. Cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 108:120603 [Google Scholar]
  84. Venturelli D, Fazio R, Giovannetti V. 84.  2013. Minimal self-contained quantum refrigeration machine based on four quantum dots. Phys. Rev. Lett. 110:256801 [Google Scholar]
  85. Pekola JP, Hekking FWJ. 85.  2007. Normal-metal-superconductor tunnel junction as a Brownian refrigerator. Phys. Rev. Lett. 98:210604 [Google Scholar]
  86. Correa LA, Palao JP, Alonso D, Adesso G. 86.  2013. Quantum-enhanced absorption refrigerators. ArXiv1308.4174
  87. Levy A, Kosloff R. 87.  2012. Quantum absorption refrigerator. Phys. Rev. Lett. 108:070604 [Google Scholar]
  88. Skrzypczyk P, Brunner N, Linden N, Popescu S. 88.  2011. The smallest refrigerators can reach maximal efficiency. J. Phys. A 44:492002 [Google Scholar]
  89. Brunner N, Linden N, Popescu S, Skrzypczyk P. 89.  2012. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85:051117 [Google Scholar]
  90. Breuer HP, Petruccione F. 90.  2002. Open Quantum Systems New York: Oxford Univ. Press
  91. Ĺuczka J, Niemeic M. 91.  1991. A master equation for quantum systems driven by Poisson white noise. J. Phys. A 24:L1021–24 [Google Scholar]
  92. Alicki R, Lidar DA, Zanardi P. 92.  2006. Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit. Phys. Rev. A 73:052311 [Google Scholar]
  93. Cohen-Tannoudji C, Dupont-Roc JA, Grynberg G. 93.  1987. Atom-Photon Interaction New York: Wiley
  94. Kolář M, Gelbwaser-Klimovsky D, Alicki R, Kurizki G. 94.  2012. Quantum bath refrigeration towards absolute zero: unattainability principle challenged. Phys. Rev. Lett. 108:090601 [Google Scholar]
  95. Alhassid Y, Levine R. 95.  1978. Connection between maximal entropy and the scattering theoretic analyses of collision processes. Phys. Rev. A 18:89–116 [Google Scholar]
  96. Kosloff R, Feldmann T. 96.  2002. A discrete four stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65:055102 [Google Scholar]
  97. Feldmann T, Kosloff R. 97.  2003. The quantum four stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68:016101 [Google Scholar]
  98. Rezek Y, Kosloff R. 98.  2006. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8:83 [Google Scholar]
  99. Ashkenazi G, Kosloff R, Ratner MA. 99.  1999. Photoexcited electron transfer: short-time dynamics and turnover control by dephasing, relaxation, and mixing. J. Am. Chem. Soc. 121:3386–95 [Google Scholar]
  100. Bartana A, Kosloff R, Tannor DJ. 100.  1993. Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. J. Chem. Phys. 99:196–210 [Google Scholar]
  101. Wu L, Segal D, Brumer P. 101.  2013. No-go theorem for ground state cooling given initial system-thermal bath factorization. Sci. Rep. 3:1824 [Google Scholar]
  102. Skrzypczyk P, Short AJ, Popescu S. 102.  2013. Extracting work from quantum systems. ArXiv1302.2811
  103. Hovhannisyan KV, Perarnau-Llobet M, Huber M, Acín A. 103.  2013. The role of entanglement in work extraction. ArXiv1303.4686
  104. Brunner N, Huber M, Linden N, Popescu S, Silva R, Skrzypczyk P. 104.  2013. Entanglement enhances performance in microscopic quantum fridges. ArXiv1305.6009
  105. Geva E, Kosloff R. 105.  1992. A quantum mechanical heat engine operating in finite time: a model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96:3054–67 [Google Scholar]
  106. Geva E, Kosloff R. 106.  1992. On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 97:4398–412 [Google Scholar]
  107. Feldmann T, Geva E, Kosloff R, Salamon P. 107.  1996. Heat engines in finite time governed by master equations. Am. J. Phys. 64:485–92 [Google Scholar]
  108. He JZ, He X, Tang W. 108.  2009. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle. Sci. China G 52:1317–23 [Google Scholar]
  109. Wang H. 109.  2013. Quantum-mechanical Brayton engine working with a particle in a one-dimensional harmonic trap. Phys. Scripta 87:055009 [Google Scholar]
  110. Wang R, Wang J, He J, Ma Y. 110.  2013. Efficiency at maximum power of a heat engine working with a two-level atomic system. Phys. Rev. E 87:042119 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103724
Loading
/content/journals/10.1146/annurev-physchem-040513-103724
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error