1932

Abstract

A significant advantage of organic semiconductors over many of their inorganic counterparts is solution processability. However, solution processing commonly yields heterogeneous films with properties that are highly sensitive to the conditions and parameters of casting and processing. Measuring the key properties of these materials in situ, during film production, can provide new insight into the mechanism of these processing steps and how they lead to the emergence of the final organic film properties. The excited-state dynamics is often of import in photovoltaic, electronic, and light-emitting devices. This review focuses on single-shot transient absorption, which measures a transient spectrum in a single shot, enabling the rapid measurement of unstable chemical systems such as organic films during their casting and processing. We review the principles of instrument design and provide examples of the utility of this spectroscopy for measuring organic films during their production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-102722-041313
2023-04-24
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-102722-041313.html?itemId=/content/journals/10.1146/annurev-physchem-102722-041313&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mainville M, Leclerc M. 2020. Recent progress on indoor organic photovoltaics: from molecular design to production scale. ACS Energy Lett. 5:41186–97
    [Google Scholar]
  2. 2.
    Ng LWT, Lee SW, Chang DW, Hodgkiss JM, Vak D. 2022. Organic photovoltaics’ new renaissance: advances toward roll-to-roll manufacturing of non-fullerene acceptor organic photovoltaics. Adv. Mater. Technol. 7:102101556
    [Google Scholar]
  3. 3.
    Sampaio PGV, González MOA, de Oliveira Ferreira P, da Cunha Jácome Vidal P, Pereira JPP et al. 2020. Overview of printing and coating techniques in the production of organic photovoltaic cells. Int. J. Energy Res. 44:139912–31
    [Google Scholar]
  4. 4.
    Salehi A, Fu X, Shin D, So F. 2019. Recent advances in OLED optical design. Adv. Funct. Mater. 29:151808803
    [Google Scholar]
  5. 5.
    Wadsworth A, Moser M, Marks A, Little MS, Gasparini N et al. 2019. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48:61596–625
    [Google Scholar]
  6. 6.
    Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. 2020. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 32:382001763
    [Google Scholar]
  7. 7.
    Luscombe CK, Maitra U, Walter M, Wiedmer SK. 2021. Theoretical background on semiconducting polymers and their applications to OSCs and OLEDs. Chem. Teach. Int. 3:2169–83
    [Google Scholar]
  8. 8.
    Chen D, Li W, Gan L, Wang Z, Li M, Su S-J. 2020. Non-noble-metal-based organic emitters for OLED applications. Mater. Sci. Eng. R Rep. 142:100581
    [Google Scholar]
  9. 9.
    Mahoro GU, Fernandez-Cestau J, Renaud J, Coto PB, Costa RD, Gaillard S. 2020. Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism. Adv. Opt. Mater. 8:162000260
    [Google Scholar]
  10. 10.
    Meredith P, Li W, Armin A. 2020. Nonfullerene acceptors: a renaissance in organic photovoltaics?. Adv. Energy Mater. 10:332001788
    [Google Scholar]
  11. 11.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y et al. 2017. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139:217148–51
    [Google Scholar]
  12. 12.
    Zhu L, Zhang M, Xu J, Li C, Yan J et al. 2022. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21:6656–63
    [Google Scholar]
  13. 13.
    Hong G, Gan X, Leonhardt C, Zhang Z, Seibert J et al. 2021. A brief history of OLEDs—emitter development and industry milestones. Adv. Mater. 33:92005630
    [Google Scholar]
  14. 14.
    Song J, Lee H, Jeong EG, Choi KC, Yoo S. 2020. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32:351907539
    [Google Scholar]
  15. 15.
    Huang Y, Hsiang E-L, Deng M-Y, Wu S-T. 2020. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9:1105
    [Google Scholar]
  16. 16.
    Diao Y, Shaw L, Bao Z, Mannsfeld SCB 2014. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7:72145–59
    [Google Scholar]
  17. 17.
    Larson RG. 2017. Twenty years of drying droplets. Nature 550:7677466–67
    [Google Scholar]
  18. 18.
    Hall DB, Underhill P, Torkelson JM. 1998. Spin coating of thin and ultrathin polymer films. Polym. Eng. Sci. 38:122039–45
    [Google Scholar]
  19. 19.
    Yang F, Huang Y, Li Y, Li Y. 2021. Large-area flexible organic solar cells. NPJ Flex Electron. 5:130
    [Google Scholar]
  20. 20.
    Wang G, Adil MA, Zhang J, Wei Z. 2019. Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 31:451805089
    [Google Scholar]
  21. 21.
    Carlé JE, Helgesen M, Hagemann O, Hösel M, Heckler IM et al. 2017. Overcoming the scaling lag for polymer solar cells. Joule 1:2274–89
    [Google Scholar]
  22. 22.
    Seifrid MT, Oosterhout SD, Toney MF, Bazan GC. 2018. Kinetic versus thermodynamic orientational preferences for a series of isomorphic molecular semiconductors. ACS Omega 3:810198–204
    [Google Scholar]
  23. 23.
    Rivnay J, Steyrleuthner R, Jimison LH, Casadei A, Chen Z et al. 2011. Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44:135246–55
    [Google Scholar]
  24. 24.
    Miller S, Fanchini G, Lin Y-Y, Li C, Chen C-W et al. 2008. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem. 18:3306–12
    [Google Scholar]
  25. 25.
    Marsh RA, Hodgkiss JM, Albert-Seifried S, Friend RH 2010. Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy. Nano Lett. 10:3923–30
    [Google Scholar]
  26. 26.
    Zhang Y, Sajjad MT, Blaszczyk O, Parnell AJ, Ruseckas A et al. 2019. Large crystalline domains and an enhanced exciton diffusion length enable efficient organic solar cells. Chem. Mater. 31:176548–57
    [Google Scholar]
  27. 27.
    Cui C, Li Y. 2021. Morphology optimization of photoactive layers in organic solar cells. Aggregate 2:e31
    [Google Scholar]
  28. 28.
    Serbenta A, Kozlov OV, Portale G, van Loosdrecht PHM, Pshenichnikov MS. 2016. Bulk heterojunction morphology of polymer:fullerene blends revealed by ultrafast spectroscopy. Sci. Rep. 6:136236
    [Google Scholar]
  29. 29.
    Markov DE, Amsterdam E, Blom PWM, Sieval AB, Hummelen JC. 2005. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109:245266–74
    [Google Scholar]
  30. 30.
    Berera R, van Grondelle R, Kennis JTM. 2009. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101:2–3105–18
    [Google Scholar]
  31. 31.
    Bakulin AA, Dimitrov SD, Rao A, Chow PCY, Nielsen CB et al. 2013. Charge-transfer state dynamics following hole and electron transfer in organic photovoltaic devices. J. Phys. Chem. Lett. 4:1209–15
    [Google Scholar]
  32. 32.
    Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S et al. 2008. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc. 130:103030–42
    [Google Scholar]
  33. 33.
    Kandada ARS, Grancini G, Petrozza A, Perissinotto S, Fazzi D et al. 2013. Ultrafast energy transfer in ultrathin organic donor/acceptor blend. Sci. Rep. 3:12073
    [Google Scholar]
  34. 34.
    Hartnett PE, Dyar SM, Margulies EA, Shoer LE, Cook AW et al. 2015. Long-lived charge carrier generation in ordered films of a covalent perylenediimide-diketopyrrolopyrrole-perylenediimide molecule. Chem. Sci. 6:1402–11
    [Google Scholar]
  35. 35.
    Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M et al. 2014. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344:61871001–5
    [Google Scholar]
  36. 36.
    Rana A, Sharma C, Prabhu DD, Kumar M, Karuvath Y et al. 2018. Revealing charge carrier dynamics in squaraine:[6, 6]-phenyl-C 71-butyric acid methyl ester based organic solar cells. AIP Adv. 8:4045302
    [Google Scholar]
  37. 37.
    Hinrichsen TF, Chan CCS, Ma C, Paleček D, Gillett A et al. 2020. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nat. Commun. 11:15617
    [Google Scholar]
  38. 38.
    Dong Y, Cha H, Bristow HL, Lee J, Kumar A et al. 2021. Correlating charge-transfer state lifetimes with material energetics in polymer:non-fullerene acceptor organic solar cells. J. Am. Chem. Soc. 143:207599–603
    [Google Scholar]
  39. 39.
    Dimitriev OP, Blank DA, Ganser C, Teichert C. 2018. Effect of the polymer chain arrangement on exciton and polaron dynamics in P3HT and P3HT:PCBM films. J. Phys. Chem. C 122:3017096–109
    [Google Scholar]
  40. 40.
    Wilson KS, Mapile AN, Wong CY. 2020. Broadband single-shot transient absorption spectroscopy. Opt. Express 28:811339–55
    [Google Scholar]
  41. 41.
    Malley MM, Rentzepis PM. 1969. Picosend molecular relaxation displayed with crossed laser beams. Chem. Phys. Lett. 3:7534–36
    [Google Scholar]
  42. 42.
    Salin F, Georges P, Roger G, Brun A. 1987. Single-shot measurement of a 52-fs pulse. Appl. Opt. 26:214528–31
    [Google Scholar]
  43. 43.
    Dhar L, Fourkas JT, Nelson KA. 1994. Pulse-length-limited ultrafast pump-probe spectroscopy in a single laser shot. Opt. Lett. 19:9643–45
    [Google Scholar]
  44. 44.
    Fujimoto M, Aoshima S, Tsuchiya Y. 2002. Ultrafast imaging to measure instantaneous intensity distributions of femtosecond optical pulses propagating in a medium. Meas. Sci. Technol. 13:111698–709
    [Google Scholar]
  45. 45.
    Furukawa N, Mair CE, Kleiman VD, Takeda J. 2004. Femtosecond real-time pump-probe imaging spectroscopy. Appl. Phys. Lett. 85:204645
    [Google Scholar]
  46. 46.
    Makishima Y, Furukawa N, Ishida A, Takeda J. 2006. Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis. Jpn. J. Appl. Phys. 45:7R5986
    [Google Scholar]
  47. 47.
    Ferrari R, D'Andrea C, Bassi A, Valentini G, Cubeddu R 2007. Time-gated real-time pump-probe imaging spectroscopy. Proc. SPIE6631
    [Google Scholar]
  48. 48.
    Wilson KS, Wong CY. 2018. Single-shot transient absorption spectroscopy with a 45 ps pump-probe time delay range. Opt. Lett. 43:3371–74
    [Google Scholar]
  49. 49.
    Topp MR, Rentzepis PM, Jones RP. 1971. Time-resolved absorption spectroscopy in the 10−12-sec range. J. Appl. Phys. 42:93415–19
    [Google Scholar]
  50. 50.
    Wakeham GP, Nelson KA. 2000. Dual-echelon single-shot femtosecond spectroscopy. Opt. Lett. 25:7505–7
    [Google Scholar]
  51. 51.
    Wakeham GP, Chung DD, Nelson KA. 2002. Femtosecond time-resolved spectroscopy of energetic materials. Thermochim. Acta 384:17–21
    [Google Scholar]
  52. 52.
    Poulin PR, Nelson KA. 2006. Irreversible organic crystalline chemistry monitored in real time. Science 313:57941756–60
    [Google Scholar]
  53. 53.
    Katayama I, Sakaibara H, Takeda J. 2011. Real-time time-frequency imaging of ultrashort laser pulses using an echelon mirror. Jpn. J. Appl. Phys. 50:10R102701
    [Google Scholar]
  54. 54.
    Minami Y, Yamaki H, Katayama I, Takeda J. 2014. Broadband pump-probe imaging spectroscopy applicable to ultrafast single-shot events. Appl. Phys. Express 7:2022402
    [Google Scholar]
  55. 55.
    Shin T, Wolfson JW, Teitelbaum SW, Kandyla M, Nelson KA. 2014. Dual echelon femtosecond single-shot spectroscopy. Rev. Sci. Instrum. 85:8083115
    [Google Scholar]
  56. 56.
    Yang J, Zhou W, Wang F, Deng K, Yi T et al. 2020. Single-shot pump-probe technique using mirror array. Appl. Phys. B 126:598
    [Google Scholar]
  57. 57.
    Wilson KS, Walbrun ZS, Wong CY. 2021. Single-shot transient absorption spectroscopy techniques and design principles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 253:119557
    [Google Scholar]
  58. 58.
    Whaley KB, Kocherzhenko AA, Nitzan A. 2014. Coherent and diffusive time scales for exciton dissociation in bulk heterojunction photovoltaic cells. J. Phys. Chem. C 118:4727235–44
    [Google Scholar]
  59. 59.
    Piris J, Dykstra TE, Bakulin AA, van Loosdrecht PHM, Knulst W et al. 2009. Photogeneration and ultrafast dynamics of excitons and charges in P3HT/PCBM blends. J. Phys. Chem. C 113:3214500–6
    [Google Scholar]
  60. 60.
    Stevens MA, Silva C, Russell DM, Friend RH. 2001. Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63:16165213
    [Google Scholar]
  61. 61.
    Zarrabi N, Burn PL, Meredith P, Shaw PE 2016. Acceptor and excitation density dependence of the ultrafast polaron absorption signal in donor-acceptor organic solar cell blends. J. Phys. Chem. Lett. 7:142640–46
    [Google Scholar]
  62. 62.
    Guo J, Ohkita H, Benten H, Ito S. 2009. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J. Am. Chem. Soc. 131:4616869–80
    [Google Scholar]
  63. 63.
    Kaake LG, Moses D, Heeger AJ. 2013. Coherence and uncertainty in nanostructured organic photovoltaics. J. Phys. Chem. Lett. 4:142264–68
    [Google Scholar]
  64. 64.
    Couairon A, Mysyrowicz A. 2007. Femtosecond filamentation in transparent media. Phys. Rep. 441:247–189
    [Google Scholar]
  65. 65.
    Uteza O, Bussière B, Canova F, Chambaret J-P, Delaporte P et al. 2007. Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes. Appl. Surf. Sci. 254:4799–803
    [Google Scholar]
  66. 66.
    Fork RL, Tomlinson WJ, Shank CV, Hirlimann C, Yen R 1983. Femtosecond white-light continuum pulses. Opt. Lett. 8:11–3
    [Google Scholar]
  67. 67.
    Tcypkin AN, Putilin SE, Melnik MV, Makarov EA, Bespalov VG, Kozlov SA. 2016. Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet. Appl. Opt. 55:298390–94
    [Google Scholar]
  68. 68.
    Dharmadhikari JA, Steinmeyer G, Gopakumar G, Mathur D, Dharmadhikari AK. 2016. Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Opt. Lett. 41:153475–78
    [Google Scholar]
  69. 69.
    Corkum PB, Rolland C, Srinivasan-Rao T. 1986. Supercontinuum generation in gases. Phys. Rev. Lett. 57:182268–71
    [Google Scholar]
  70. 70.
    Kosma K, Trushin SA, Fuß W, Schmid WE. 2008. Characterization of the supercontinuum radiation generated by self-focusing of few-cycle 800 nm pulses in argon. J. Mod. Opt. 55:132141–77
    [Google Scholar]
  71. 71.
    Wilson KS, Scott MN, Wong CY. 2019. Excited state dynamics of organic semiconductors measured with shot-to-shot correction of scatter and photoluminescence. Synth. Metals 250:115–20
    [Google Scholar]
  72. 72.
    Wilson KS, Wong CY. 2018. In situ measurement of exciton dynamics during thin-film formation using single-shot transient absorption. J. Phys. Chem. A 122:316438–44
    [Google Scholar]
  73. 73.
    Abdelsamie M, Zhao K, Niazi MR, Chou KW, Amassian A. 2014. In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. J. Mater. Chem. C 2:173373–81
    [Google Scholar]
  74. 74.
    Buchhorn M, Wedler S, Panzer F. 2018. Setup to study the in situ evolution of both photoluminescence and absorption during the processing of organic or hybrid semiconductors. J. Phys. Chem. A 122:469115–22
    [Google Scholar]
  75. 75.
    Zomerman D, Kong J, McAfee SM, Welch GC, Kelly TL. 2018. Control and characterization of organic solar cell morphology through variable-pressure solvent vapor annealing. ACS Appl. Energy Mater. 1:105663–74
    [Google Scholar]
  76. 76.
    Walbrun ZS, Leibfried LC, Hoban ÁR, Rasmussen BC, Wiegand TJ et al. 2022. Effect of thermal annealing on aggregation of a squaraine thin film. MRS Adv. 7:12239–44
    [Google Scholar]
  77. 77.
    van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ. 2015. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6:16229
    [Google Scholar]
  78. 78.
    Shin N, Richter LJ, Herzing AA, Kline RJ, DeLongchamp DM. 2013. Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 3:7938–48
    [Google Scholar]
  79. 79.
    Güldal NS, Kassar T, Berlinghof M, Ameri T, Osvet A et al. 2016. Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup. J. Mater. Chem. C 4:112178–86
    [Google Scholar]
  80. 80.
    Sims M, Zheng K, Quiles MC, Xia R, Stavrinou PN et al. 2005. On the use of optical probes to monitor the thermal transitions in spin-coated poly(9,9-dioctylfluorene) films. J. Phys. Condens. Matter 17:416307–18
    [Google Scholar]
  81. 81.
    Engmann S, Bokel FA, Ro HW, DeLongchamp DM, Richter LJ. 2016. Real-time photoluminescence studies of structure evolution in organic solar cells. Adv. Energy Mater. 6:101502011
    [Google Scholar]
  82. 82.
    Campoy-Quiles M, Alonso MI, Bradley DDC, Richter LJ. 2014. Advanced ellipsometric characterization of conjugated polymer films. Adv. Funct. Mater. 24:152116–34
    [Google Scholar]
  83. 83.
    Ando M, Yoneya M, Kehoe TB, Ishii H, Minakata T et al. 2019. Disorder and localization dynamics in polymorphs of the molecular semiconductor pentacene probed by in situ micro-Raman spectroscopy and molecular dynamics simulations. Phys. Rev. Mater. 3:2025601
    [Google Scholar]
  84. 84.
    Schönherr H, Frank CW. 2003. Ultrathin films of poly(ethylene oxides) on oxidized silicon. 1. Spectroscopic characterization of film structure and crystallization kinetics. Macromolecules 36:41188–98
    [Google Scholar]
  85. 85.
    Kim Y-J, Lee S, Niazi MR, Hwang K, Tang M-C et al. 2020. Systematic study on the morphological development of blade-coated conjugated polymer thin films via in situ measurements. ACS Appl. Mater. Interfaces 12:3236417–27
    [Google Scholar]
  86. 86.
    Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N et al. 2017. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16:3363–69
    [Google Scholar]
  87. 87.
    Jiang X, Chotard P, Luo K, Eckmann F, Tu S et al. 2022. Revealing donor-acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv. Energy Mater. 12:2103977
    [Google Scholar]
  88. 88.
    Posselt D, Zhang J, Smilgies D-M, Berezkin AV, Potemkin II, Papadakis CM. 2017. Restructuring in block copolymer thin films: in situ GISAXS investigations during solvent vapor annealing. Prog. Polym. Sci. 66:80–115
    [Google Scholar]
  89. 89.
    Sosa ML, Wong CY. 2020. Revealing the evolving mixture of molecular aggregates during organic film formation using simulations of in situ absorbance. J. Chem. Phys. 153:21214902
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-102722-041313
Loading
/content/journals/10.1146/annurev-physchem-102722-041313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error