1932

Abstract

Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021021-041830
2022-08-26
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021021-041830.html?itemId=/content/journals/10.1146/annurev-phyto-021021-041830&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Achtman M. 2016. How old are bacterial pathogens?. Proc. R. Soc. B 283:20160990
    [Google Scholar]
  2. 2.
    Al Rwahnih M, Rowhani A, Golino D 2015. First report of grapevine red blotch-associated virus in archival grapevine material from Sonoma County, California. Plant Dis. 99:150127132800003
    [Google Scholar]
  3. 3.
    Allentoft ME, Collins M, Harker D, Haile J, Oskam CL et al. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279:4724–33
    [Google Scholar]
  4. 4.
    Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  5. 5.
    Antonovics J, Hood ME, Thrall PH, Abrams JY, Duthie GM. 2003. Herbarium studies on the distribution of anther-smut fungus (Microbotryumviolaceum) and Silene species (Caryophyllaceae) in the eastern United States. Am. J. Bot. 90:1522–31
    [Google Scholar]
  6. 6.
    Appelt S, Fancello L, Le Bailly M, Raoult D, Drancourt M, Desnues C 2014. Viruses in a 14th-century coprolite. Appl. Environ. Microbiol. 80:2648–55
    [Google Scholar]
  7. 7.
    Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E et al. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. PNAS 102:7766–71
    [Google Scholar]
  8. 8.
    Arning N, Wilson DJ. 2020. The past, present and future of ancient bacterial DNA. Microb. Genom. 6:7mgen000384
    [Google Scholar]
  9. 9.
    Barreiro FS, Vieira FG, Martin MD, Haile J, Gilbert MTP, Wales N. 2017. Characterizing restriction enzyme-associated loci in historic ragweed (Ambrosia artemisiifolia) voucher specimens using custom-designed RNA probes. Mol. Ecol. Resour. 17:2209–20
    [Google Scholar]
  10. 10.
    Battillo J. 2018. The role of corn fungus in Basketmaker II diet: a paleonutrition perspective on early corn farming adaptations. J. Archaeol. Sci. Rep. 21:64–70
    [Google Scholar]
  11. 11.
    Battistuzzi FU, Feijao A, Hedges SB. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4:44
    [Google Scholar]
  12. 12.
    Baudrimont A, Voegeli S, Viloria EC, Stritt F, Lenon M et al. 2017. Multiplexed gene control reveals rapid mRNA turnover. Sci. Adv. 3:e1700006
    [Google Scholar]
  13. 13.
    Bentancourt JL, Schuster WS, Mitton JB, Anderson RS. 1991. Fossil and genetic history of a Pinyon pine (Pinus edulis) isolate. Ecology 72:1685–97
    [Google Scholar]
  14. 14.
    Berg G, Koberl M, Rybakova D, Muller H, Grosch R, Smalla K. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 93:fix050
    [Google Scholar]
  15. 15.
    Bieker VC, Battlay P, Petersen B, Sun X, Wilson J et al. 2022. Uncovering the hologenomic basis of an extraordinary plant invasion. bioRxiv 478494. https://doi.org/10.1101/2022.02.03.478494
    [Crossref]
  16. 16.
    Bieker VC, Sanchez Barreiro F, Rasmussen JA, Brunier M, Wales N, Martin MD 2020. Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community. Mol. Ecol. Resour. 20:1206–19
    [Google Scholar]
  17. 17.
    Bradshaw M, Braun U, Elliott M, Kruse J, Liu SY et al. 2021. A global genetic analysis of herbarium specimens reveals the invasion dynamics of an introduced plant pathogen. Fungal Biol 125:585–95
    [Google Scholar]
  18. 18.
    Bradshaw M, Tobin PC. 2020. Sequencing herbarium specimens of a common detrimental plant disease (powdery mildew). Phytopathology 110:1248–54
    [Google Scholar]
  19. 19.
    Campos PE, Groot Crego C, Boyer K, Gaudeul M, Baider C et al. 2021. First historical genome of a crop bacterial pathogen from herbarium specimen: insights into citrus canker emergence. PLOS Pathog 17:e1009714
    [Google Scholar]
  20. 20.
    Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D et al. 2019. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574:103–7
    [Google Scholar]
  21. 21.
    Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME et al. 2013. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93:852–64
    [Google Scholar]
  22. 22.
    Carranza-Rojas J, Goëau H, Bonnet P, Mata-Montero E, Joly A 2017. Going deeper in the automated identification of herbarium specimens. BMC Evol. Biol. 17:181
    [Google Scholar]
  23. 23.
    Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L et al. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol 22:207–12
    [Google Scholar]
  24. 24.
    Choi YJ, Hong SB, Shin HD. 2007. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol. Res. 111:381–91
    [Google Scholar]
  25. 25.
    Crouch JA, Szabo LJ. 2011. Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and Puccinia sorghi. Plant Dis 95:624–32
    [Google Scholar]
  26. 26.
    Dark P, Gent H. 2001. Pests and diseases of prehistoric crops: a yield ‘honeymoon’ for early grain crops in Europe?. Oxford J. Archaeol. 20:59–78
    [Google Scholar]
  27. 27.
    Douglas AE, Werren JH. 2016. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7:e02099
    [Google Scholar]
  28. 28.
    Duchene S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. 2020. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 30:R1215–31
    [Google Scholar]
  29. 29.
    Duchene S, Lemey P, Stadler T, Ho SYW, Duchene DA et al. 2020. Bayesian evaluation of temporal signal in measurably evolving populations. Mol. Biol. Evol. 37:3363–79
    [Google Scholar]
  30. 30.
    Enard D, Petrov DA. 2020. Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philos. Trans. R. Soc. B 375:20190575
    [Google Scholar]
  31. 31.
    Fargette D, Pinel A, Rakotomalala M, Sangu E, Traore O et al. 2008. Rice yellow mottle virus, an RNA plant virus, evolves as rapidly as most RNA animal viruses. J. Virol. 82:3584–89
    [Google Scholar]
  32. 32.
    Fawcett HS, Jenkins AE. 1933. Records of citrus canker from herbarium specimens of the genus Citrus in England and the United States. Phytopathology 23:820–24
    [Google Scholar]
  33. 33.
    Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC et al. 2018. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627:1018–38
    [Google Scholar]
  34. 34.
    Forrest LL, Hart ML, Hughes M, Wilson HP, Chung K-F et al. 2019. The limits of Hyb-Seq for herbarium specimens: impact of preservation techniques. Front. Ecol. Evol. 7:439
    [Google Scholar]
  35. 35.
    Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, Garcia-Arenal F. 1997. A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J. Virol. 71:8316–20
    [Google Scholar]
  36. 36.
    François O, Jay F 2020. Factor analysis of ancient population genomic samples. Nat. Commun. 11:4661
    [Google Scholar]
  37. 37.
    Fulton TL, Shapiro B 2019. Setting up an ancient DNA laboratory. Ancient DNA: Methods and Protocols B Shapiro, A Barlow, P Heintzman, M Hofreiter, J Paijmans, A Soares 1–13 New York: Humana Press
    [Google Scholar]
  38. 38.
    Gao H, Feldman MW. 2009. Complementation and epistasis in viral coinfection dynamics. Genetics 182:251–63
    [Google Scholar]
  39. 39.
    Gayral P, Blondin L, Guidolin O, Carreel F, Hippolyte I et al. 2010. Evolution of endogenous sequences of banana streak virus: what can we learn from banana (Musa sp.) evolution?. J. Virol. 84:7346–59
    [Google Scholar]
  40. 40.
    Geering AD, Maumus F, Copetti D, Choisne N, Zwickl DJ et al. 2014. Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat. Commun. 5:5269
    [Google Scholar]
  41. 41.
    Gibbs AJ, Fargette D, Garcia-Arenal F, Gibbs MJ. 2010. Time: the emerging dimension of plant virus studies. J. Gen. Virol. 91:13–22
    [Google Scholar]
  42. 42.
    Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. 2011. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27:2153–55
    [Google Scholar]
  43. 43.
    Gluck-Thaler E, Cerutti A, Perez-Quintero AL, Butchacas J, Roman-Reyna V et al. 2020. Repeated gain and loss of a single gene modulates the evolution of vascular plant pathogen lifestyles. Sci. Adv. 6:eabc4516
    [Google Scholar]
  44. 44.
    Goëau H, Mora-Fallas A, Champ J, Love NLR, Mazer SJ et al. 2020. A new fine-grained method for automated visual analysis of herbarium specimens: a case study for phenological data extraction. Appl. Plant Sci. 8:e11368
    [Google Scholar]
  45. 45.
    Golyaev V, Candresse T, Rabenstein F, Pooggin MM. 2019. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. 9:19268
    [Google Scholar]
  46. 46.
    Gros-Balthazard M, Flowers JM, Hazzouri KM, Ferrand S, Aberlenc F et al. 2021. The genomes of ancient date palms germinated from 2,000 y old seeds. PNAS 118:19e2025337118
    [Google Scholar]
  47. 47.
    Harper KN, Armelagos GJ. 2013. Genomics, the origins of agriculture, and our changing microbe-scape: time to revisit some old tales and tell some new ones: genomics, agriculture, and human microbes. Am. J. Phys. Anthropol. 152:135–52
    [Google Scholar]
  48. 48.
    Hartung JS, Roy A, Fu S, Shao J, Schneider WL, Brlansky RH. 2015. History and diversity of citrus leprosis virus recorded in herbarium specimens. Phytopathology 105:1277–84
    [Google Scholar]
  49. 49.
    Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J et al. 2011. Time-dependent rates of molecular evolution. Mol. Ecol. 20:3087–101
    [Google Scholar]
  50. 50.
    Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592:726–31
    [Google Scholar]
  51. 51.
    Issaka S, Traoré O, Longué RDS, Pinel-Galzi A, Gill MS et al. 2021. Rivers and landscape ecology of a plant virus, Rice yellow mottle virus along the Niger Valley. Virus Evol. 7:2veab072
    [Google Scholar]
  52. 52.
    Jones RAC, Boonham N, Adams IP, Fox A. 2021. Historical virus isolate collections: an invaluable resource connecting plant virology's pre-sequencing and post-sequencing eras. Plant Pathol 70:235–48
    [Google Scholar]
  53. 53.
    Kates HR, Doby JR, Siniscalchi CM, LaFrance R, Soltis DE et al. 2021. The effects of herbarium specimen characteristics on short-read NGS sequencing success in nearly 8000 specimens: old, degraded samples have lower DNA yields but consistent sequencing success. Front. Plant Sci. 12:669064
    [Google Scholar]
  54. 54.
    Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S et al. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7
    [Google Scholar]
  55. 55.
    Lamichhane JR, Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci. 6:385
    [Google Scholar]
  56. 56.
    Lang PLM, Weiss CL, Kersten S, Latorre SM, Nagel S et al. 2020. Hybridization ddRAD-sequencing for population genomics of nonmodel plants using highly degraded historical specimen DNA. Mol. Ecol. Resour. 20:1228–47
    [Google Scholar]
  57. 57.
    Larsen BB, Cole KL, Worobey M. 2018. Ancient DNA provides evidence of 27,000-year-old papillomavirus infection and long-term codivergence with rodents. Virus Evol 4:vey014
    [Google Scholar]
  58. 58.
    Li W, Song Q, Brlansky RH, Hartung JS. 2007. Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens. PNAS 104:18427–32
    [Google Scholar]
  59. 59.
    Liu Y, Priscu JC, Yao T, Vick-Majors TJ, Michaud AB, Sheng L. 2019. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. J. Glaciol. 65:29–38
    [Google Scholar]
  60. 60.
    Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P et al. 2020. Illuminating an ecological blackbox: using high throughput sequencing to characterize the plant virome across scales. Front. Microbiol. 11:578064
    [Google Scholar]
  61. 61.
    Malmstrom CM, Hughes CC, Newton LA, Stoner CJ. 2005. Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol 168:217–30
    [Google Scholar]
  62. 62.
    Malmstrom CM, McCullough AJ, Johnson HA, Newton LA, Borer ET. 2005. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145:153–64
    [Google Scholar]
  63. 63.
    Malmstrom CM, Shu R, Linton EW, Newton LA, Cook MA. 2007. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. 95:1153–66
    [Google Scholar]
  64. 64.
    Marshall NT, Vanderploeg HA, Chaganti SR. 2021. Environmental RNA advances the reliability of eDNA by predicting its age. Sci. Rep. 11:2769
    [Google Scholar]
  65. 65.
    Martin MD, Cappellini E, Samaniego JA, Zepeda ML, Campos PF et al. 2013. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat. Commun. 4:2172
    [Google Scholar]
  66. 66.
    Martin MD, Ho SY, Wales N, Ristaino JB, Gilbert MT. 2014. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant new world Phytophthora infestans. Mol. Biol. Evol. 31:1414–20
    [Google Scholar]
  67. 67.
    Martin MD, Vieira FG, Ho SYW, Wales N, Schubert M et al. 2016. Genomic characterization of a South American Phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Mol. Biol. Evol. 33:478–91
    [Google Scholar]
  68. 68.
    Mauck KE, Sun P, Meduri VR, Hansen AK. 2019. New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci. Rep. 9:9530
    [Google Scholar]
  69. 69.
    Maynard Smith J, Feil EJ, Smith NH 2000. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22:1115–22
    [Google Scholar]
  70. 70.
    Maynard Smith J, Smith NH, O'Rourke M, Spratt BG 1993. How clonal are bacteria?. PNAS 90:4384–88
    [Google Scholar]
  71. 71.
    McCann HC. 2020. Skirmish or war: the emergence of agricultural plant pathogens. Curr. Opin. Plant Biol. 56:147–52
    [Google Scholar]
  72. 72.
    McDonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79
    [Google Scholar]
  73. 73.
    Meineke EK, Daru BH. 2021. Bias assessments to expand research harnessing biological collections. Trends Ecol. Evol. 36:1071–82
    [Google Scholar]
  74. 74.
    Merda D, Briand M, Bosis E, Rousseau C, Portier P et al. 2017. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol. Ecol. 26:5939–52
    [Google Scholar]
  75. 75.
    Miller S, Masuya H, Zhang J, Walsh E, Zhang N 2016. Real-time PCR detection of dogwood anthracnose fungus in historical herbarium specimens from Asia. PLOS ONE 11:e0154030
    [Google Scholar]
  76. 76.
    Mira A, Pushker R, Rodriguez-Valera F. 2006. The Neolithic revolution of bacterial genomes. Trends Microbiol 14:200–6
    [Google Scholar]
  77. 77.
    Montes-Borrego M, Munoz Ledesma FJ, Jimenez-Diaz RM, Landa BB 2009. A nested-polymerase chain reaction protocol for detection and population biology studies of Peronospora arborescens, the downy mildew pathogen of opium poppy, using herbarium specimens and asymptomatic, fresh plant tissues. Phytopathology 99:73–81
    [Google Scholar]
  78. 78.
    Moore G, Tessler M, Cunningham SW, Betancourt J, Harbert R. 2020. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10:2530–44
    [Google Scholar]
  79. 79.
    Morris CE, Moury B. 2019. Revisiting the concept of host range of plant pathogens. Annu. Rev. Phytopathol. 57:63–90
    [Google Scholar]
  80. 80.
    Murray DC, Pearson SG, Fullagar R, Chase BM, Houston J et al. 2012. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens. Quat. Sci. Rev. 58:135–45
    [Google Scholar]
  81. 81.
    Murray GG, Kosakovsky Pond SL, Obbard DJ 2013. Suppressors of RNAi from plant viruses are subject to episodic positive selection. Proc. R. Soc. B 280:20130965
    [Google Scholar]
  82. 82.
    Ng TF, Chen LF, Zhou Y, Shapiro B, Stiller M et al. 2014. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. PNAS 111:16842–47
    [Google Scholar]
  83. 83.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–34
    [Google Scholar]
  84. 84.
    O'Gorman DT, Sholberg PL, Stokes SC, Ginns J. 2008. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100:227–35
    [Google Scholar]
  85. 85.
    Peyambari M, Warner S, Stoler N, Rainer D, Roossinck MJ 2018. A 1,000-year-old RNA virus. J. Virol. 93:e01188–18
    [Google Scholar]
  86. 86.
    Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA et al. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–6
    [Google Scholar]
  87. 87.
    Poinar HN, Kuch M, Sobolik KD, Barnes I, Stankiewicz AB et al. 2001. A molecular analysis of dietary diversity for three archaic Native Americans. PNAS 98:4317–22
    [Google Scholar]
  88. 88.
    Priscu J, Christner B, Foreman C, Royston-Bishop G 2007. Biological material in ice cores. Encyclopaedia of Quaternary Sciences SA Elias 1156–66 London: Elsevier
    [Google Scholar]
  89. 89.
    Rieux A, Balloux F. 2016. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol. Ecol. 25:1911–24
    [Google Scholar]
  90. 90.
    Rieux A, Campos P, Duvermy A, Scussel S, Martin D et al. 2022. Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history. Sci. Rep. 11:21280
    [Google Scholar]
  91. 91.
    Ristaino JB. 1998. The importance of archival and herbarium materials in understanding the role of oospores in late blight epidemics of the past. Phytopathology 88:1120–30
    [Google Scholar]
  92. 92.
    Ristaino JB. 2020. The importance of mycological and plant herbaria in tracking plant killers. Front. Ecol. Evol. 7:521
    [Google Scholar]
  93. 93.
    Ristaino JB, Groves CT, Parra GR. 2001. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411:695–97
    [Google Scholar]
  94. 94.
    Rivera-Perez JI, Cano RJ, Narganes-Storde Y, Chanlatte-Baik L, Toranzos GA. 2015. Retroviral DNA sequences as a means for determining ancient diets. PLOS ONE 10:e0144951
    [Google Scholar]
  95. 95.
    Roossinck MJ, Saha P, Wiley GB, Quan J, White JD et al. 2010. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 19:81–88
    [Google Scholar]
  96. 96.
    Rosenzweig N, Tiedje JM, Quensen JF 3rd, Meng Q, Hao JJ. 2012. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis 96:718–25
    [Google Scholar]
  97. 97.
    Ruehle GD. 1931. New apple-rot fungi from Washington. Phytopathology 21:1141–51
    [Google Scholar]
  98. 98.
    Saville AC, Martin MD, Ristaino JB. 2016. Historic late blight outbreaks caused by a widespread dominant lineage of Phytophthora infestans (Mont.) de Bary. PLOS ONE 11:e0168381
    [Google Scholar]
  99. 99.
    Schubert M, Ermini L, Sarkissian CD, Jonsson H, Ginolhac A et al. 2014. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9:51056–82
    [Google Scholar]
  100. 100.
    Shillito LM, Blong JC, Green EJ, van Asperen EN. 2020. The what, how and why of archaeological coprolite analysis. Earth-Sci. Rev. 207:103196
    [Google Scholar]
  101. 101.
    Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG 2014. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological barley stripe mosaic virus. Sci. Rep. 4:4003
    [Google Scholar]
  102. 102.
    Smith O, Dunshea G, Sinding MS, Fedorov S, Germonpre M et al. 2019. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLOS Biol 17:e3000166
    [Google Scholar]
  103. 103.
    Spyrou MA, Bos KI, Herbig A, Krause J. 2019. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20:323–40
    [Google Scholar]
  104. 104.
    Staats M, Cuenca A, Richardson JE, Vrielink-van Ginkel R, Petersen G et al. 2011. DNA damage in plant herbarium tissue. PLOS ONE 6:e28448
    [Google Scholar]
  105. 105.
    Stefanaki A, Porck H, Grimaldi IM, Thurn N, Pugliano V et al. 2019. Breaking the silence of the 500-year-old smiling garden of everlasting flowers: the En Tibi book herbarium. PLOS ONE 14:e0217779
    [Google Scholar]
  106. 106.
    Steffan JJ, Derby JA, Brevik EC. 2020. Soil pathogens that may potentially cause pandemics, including severe acute respiratory syndrome (SARS) coronaviruses. Curr. Opin. Environ. Sci. Health 17:35–40
    [Google Scholar]
  107. 107.
    Stouvenakers G, Massart S, Depireux P, Jijakli MH. 2020. Microbial origin of aquaponic water suppressiveness against Pythium aphanidermatum lettuce root rot disease. Microorganisms 8:1683
    [Google Scholar]
  108. 108.
    Stukenbrock EH, Bataillon T. 2012. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLOS Pathog 8:e1002893
    [Google Scholar]
  109. 109.
    Stukenbrock EH, McDonald BA. 2008. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46:75–100
    [Google Scholar]
  110. 110.
    Thilliez GJA, Armstrong MR, Lim TY, Baker K, Jouet A et al. 2019. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytol 221:1634–48
    [Google Scholar]
  111. 111.
    Thines M. 2019. An evolutionary framework for host shifts: jumping ships for survival. New Phytol 224:605–17
    [Google Scholar]
  112. 112.
    Uematsu S, Kageyama K, Moriwaki J, Sato T. 2012. Colletotrichum carthami comb. nov., an anthracnose pathogen of safflower, garland chrysanthemum and pot marigold, revived by molecular phylogeny with authentic herbarium specimens. J. Gen. Plant Pathol. 78:316–30
    [Google Scholar]
  113. 114.
    van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J et al. 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591:265–69
    [Google Scholar]
  114. 115.
    Vinatzer BA, Monteil CL, Clarke CR. 2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43
    [Google Scholar]
  115. 116.
    Waits A, Emelyanova A, Oksanen A, Abass K, Rautio A. 2018. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121:703–13
    [Google Scholar]
  116. 117.
    Weiss CL, Pais M, Cano LM, Kamoun S, Burbano HA. 2018. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19:122
    [Google Scholar]
  117. 118.
    Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B et al. 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:357–61
    [Google Scholar]
  118. 119.
    Wibowo MC, Yang Z, Borry M, Hubner A, Huang KD et al. 2021. Reconstruction of ancient microbial genomes from the human gut. Nature 594:234–39
    [Google Scholar]
  119. 120.
    Wood JR, Díaz FP, Latorre C, Wilmshurst JM, Burge OR, Gutiérrez RA. 2018. Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile. Sci. Rep. 8:17208
    [Google Scholar]
  120. 121.
    Yarzábal LA, Salazar LMB, Batista-García RA. 2021. Climate change, melting cryosphere and frozen pathogens: Should we worry…?. Environ. Sustain. 4:489–501
    [Google Scholar]
  121. 122.
    Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. 2012. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. PNAS 109:4008–13
    [Google Scholar]
  122. 123.
    Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B et al. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2:e00731
    [Google Scholar]
  123. 124.
    Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL et al. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLOS Biol 4:e3
    [Google Scholar]
  124. 125.
    Zhang Y, Jalan N, Zhou X, Goss E, Jones JB et al. 2015. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas. ISME J 9:2128–38
    [Google Scholar]
  125. 126.
    Zheng Y, Gao S, Padmanabhan C, Li R, Galvez M et al. 2017. VirusDetect: an automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 500:130–38
    [Google Scholar]
  126. 127.
    Zhong ZP, Tian F, Roux S, Gazitua MC, Solonenko NE et al. 2021. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9:160
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021021-041830
Loading
/content/journals/10.1146/annurev-phyto-021021-041830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error