1932

Abstract

Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-014723
2022-06-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-014723.html?itemId=/content/journals/10.1146/annurev-anchem-061020-014723&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:11780–82
    [Google Scholar]
  2. 2.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:57931642–45
    [Google Scholar]
  3. 3.
    Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:10793–95
    [Google Scholar]
  4. 4.
    Huang B, Bates M, Zhuang X. 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  5. 5.
    Leung BO, Chou KC. 2011. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65:9967–80
    [Google Scholar]
  6. 6.
    Nobel Prize Outreach AB. 2014. The Nobel Prize in Chemistry 2014. Press Release, Oct. 8. NobelPrize.org. https://www.nobelprize.org/prizes/chemistry/2014/press-release/
    [Google Scholar]
  7. 7.
    Abbe E 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskopische Anat. 9:1413–68
    [Google Scholar]
  8. 8.
    Rayleigh L. 1874. XII. On the manufacture and theory of diffraction-gratings. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47:31081–93
    [Google Scholar]
  9. 9.
    Khater IM, Nabi IR, Hamarneh G. 2020. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1:3100038
    [Google Scholar]
  10. 10.
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:5864810–13
    [Google Scholar]
  11. 11.
    Hell SW. 2007. Far-field optical nanoscopy. Science 316:58281153–58
    [Google Scholar]
  12. 12.
    Klar TA, Hell SW. 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24:14954–56
    [Google Scholar]
  13. 13.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:72331159–62
    [Google Scholar]
  14. 14.
    Leutenegger M, Eggeling C, Hell SW. 2010. Analytical description of STED microscopy performance. Opt. Express 18:2526417–29
    [Google Scholar]
  15. 15.
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:6325606–12
    [Google Scholar]
  16. 16.
    Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J et al. 2021. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12:1478
    [Google Scholar]
  17. 17.
    Pape JK, Stephan T, Balzarotti F, Büchner R, Lange F et al. 2020. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. PNAS 117:3420607–14
    [Google Scholar]
  18. 18.
    Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW. 2018. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. PNAS 115:246117–22
    [Google Scholar]
  19. 19.
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:2217–24
    [Google Scholar]
  20. 20.
    Greenbaum L, Rothmann C, Lavie R, Malik Z. 2000. Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. J. Biol. Chem. 381:121251–58
    [Google Scholar]
  21. 21.
    Bernas T, Zarȩbski M, Cook RR, Dobrucki JW. 2004. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J. Microsc. 215:3281–96
    [Google Scholar]
  22. 22.
    Beliu G, Kurz AJ, Kuhlemann AC, Behringer-Pliess L, Meub M et al. 2019. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2:1261
    [Google Scholar]
  23. 23.
    Gahlmann A, Moerner WE. 2014. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12:19–22
    [Google Scholar]
  24. 24.
    Marcu L, French PMW, Elson DS. 2015. Fluorescence Lifetime Spectroscopy and Imaging Principles and Applications in Biomedical Diagnostics Boca Raton, FL: CRC Press. , 1st ed..
  25. 25.
    Berezin MY, Achilefu S. 2010. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110:52641–84
    [Google Scholar]
  26. 26.
    Shen Y, Lin T-C, Dai J, Markowicz P, Prasad PN. 2003. Near-field optical imaging of transient absorption dynamics in organic nanocrystals. J. Phys. Chem. B 107:4913551–53
    [Google Scholar]
  27. 27.
    Nechay BA, Siegner U, Achermann M, Bielefeldt H, Keller U. 1999. Femtosecond pump-probe near-field optical microscopy. Rev. Sci. Instrum. 70:62758–64
    [Google Scholar]
  28. 28.
    Jahng J, Brocious J, Fishman DA, Yampolsky S, Nowak D et al. 2015. Ultrafast pump-probe force microscopy with nanoscale resolution. Appl. Phys. Lett. 106:883113
    [Google Scholar]
  29. 29.
    Lu F, Jin M, Belkin MA 2014. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8:4307–12
    [Google Scholar]
  30. 30.
    Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. 2020. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11:12945
    [Google Scholar]
  31. 31.
    Blat A, Dybas J, Kaczmarska M, Chrabaszcz K, Bulat K et al. 2019. An analysis of isolated and intact RBC membranes—a comparison of a semiquantitative approach by means of FTIR, nano-FTIR, and Raman spectroscopies. Anal. Chem. 91:159867–74
    [Google Scholar]
  32. 32.
    Kochan K, Perez-Guaita D, Pissang J, Jiang J-H, Peleg AY et al. 2018. In vivo atomic force microscopy-infrared spectroscopy of bacteria. J. R. Soc. Interface 15:14020180115
    [Google Scholar]
  33. 33.
    Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA et al. 2013. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4:12890
    [Google Scholar]
  34. 34.
    Dazzi A, Prater CB. 2017. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117:75146–73
    [Google Scholar]
  35. 35.
    Wang X, Huang S-C, Huang T-X, Su H-S, Zhong J-H et al. 2017. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46:134020–41
    [Google Scholar]
  36. 36.
    Kumar N, Weckhuysen BM, Wain AJ, Pollard AJ. 2019. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat. Protoc. 14:41169–93
    [Google Scholar]
  37. 37.
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:745282–86
    [Google Scholar]
  38. 38.
    Lee J, Crampton KT, Tallarida N, Apkarian VA. 2019. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568:775078–82
    [Google Scholar]
  39. 39.
    Chen X, Liu P, Hu Z, Jensen L. 2019. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 10:12567
    [Google Scholar]
  40. 40.
    Nobel Prize Outreach AB. 2014. Eric Betzig biographical. NobelPrize.org https://www.nobelprize.org/prizes/chemistry/2014/betzig/biographical/
    [Google Scholar]
  41. 41.
    Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W. 2009. Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472:11–13
    [Google Scholar]
  42. 42.
    Pandya R, Chen RYS, Gu Q, Gorman J, Auras F et al. 2020. Femtosecond transient absorption microscopy of singlet exciton motion in side-chain engineered perylene-diimide thin films. J. Phys. Chem. A 124:132721–30
    [Google Scholar]
  43. 43.
    Yang G, Yang C, Chen Y, Yu B, Bi Y et al. 2021. Direct imaging of integrated circuits in CPU with 60 nm super-resolution optical microscope. Nano Lett 21:93887–93
    [Google Scholar]
  44. 44.
    Bi Y, Yang C, Tong L, Li H, Yu B et al. 2020. Far-field transient absorption nanoscopy with sub-50 nm optical super-resolution. Optica 7:101402–7
    [Google Scholar]
  45. 45.
    Li Z, Aleshire K, Kuno M, Hartland GV. 2017. Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B 121:378838–46Demonstrated significantly improved resolution for IR imaging of a cell sample using IR-PHI.
    [Google Scholar]
  46. 46.
    Bai Y, Zhang D, Lan L, Huang Y, Maize K et al. 2019. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv. 5:77127
    [Google Scholar]
  47. 47.
    Whaley-Mayda L, Guha A, Penwell SB, Tokmakoff A. 2021. Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity. J. Am. Chem. Soc. 143:83060–64Achieved single-molecule detection of an IR-active mode.
    [Google Scholar]
  48. 48.
    Gong L, Zheng W, Ma Y, Huang Z. 2020. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photon. 14:2115–22Resolution enhancement in CARS was achieved through the use of six-wave- and eight-wave-mixing pathways.
    [Google Scholar]
  49. 49.
    Gong L, Zheng W, Ma Y, Huang Z. 2019. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl. 11:3034041
    [Google Scholar]
  50. 50.
    Würthwein T, Irwin N, Fallnich C. 2019. Saturated Raman scattering for sub-diffraction-limited imaging. J. Chem. Phys. 151:19194201–6
    [Google Scholar]
  51. 51.
    Graefe CT, Punihaole D, Lynch MJ, Silva WR, Frontiera RR. 2020. Stimulated Raman imaging below the diffraction limit with a MHz laser. J. Raman Spectrosc. 52:2404–11
    [Google Scholar]
  52. 52.
    Xiong H, Qian N, Miao Y, Zhao Z, Chen C, Min W 2021. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci. Appl. 10:187Combined fluorescence-based vibrational spectroscopy with a STED beam for improved image resolution.
    [Google Scholar]
  53. 53.
    Qian C, Miao K, Lin L-E, Chen X, Du J, Wei L. 2021. Super-resolution label-free volumetric vibrational imaging. Nat. Commun. 12:13648
    [Google Scholar]
  54. 54.
    Ach T, Best G, Rossberger S, Heintzmann R, Cremer C, Dithmar S. 2012. Autofluorescence imaging of human RPE cell granules using structured illumination microscopy. Br. J. Ophthalmol. 96:81141–44
    [Google Scholar]
  55. 55.
    Gustafsson MGL. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102:3713081–86
    [Google Scholar]
  56. 56.
    Massaro ES, Hill AH, Grumstrup EM. 2016. Super-resolution structured pump-probe microscopy. ACS Photon 3:4501–6
    [Google Scholar]
  57. 57.
    Ertsgaard CT, McKoskey RM, Rich IS, Lindquist NC. 2014. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering. ACS Nano 8:1010941–46
    [Google Scholar]
  58. 58.
    Ayas S, Cinar G, Ozkan AD, Soran Z, Ekiz O et al. 2013. Label-free nanometer-resolution imaging of biological architectures through surface enhanced Raman scattering. Sci. Rep. 3:12624
    [Google Scholar]
  59. 59.
    Kassamakov I, Ylitalo T, Nolvi A, Raatikainen P, Paananen R, Hæggström E. 2019. Label-free 3D super-resolution nanoscope with large field-of-view. Proc. SPIE 10925, Photon. Instrum. Eng. VI 109250A. https://doi.org/10.1117/12.2505622
    [Crossref]
  60. 60.
    Gao Z, Wu P, Yin L, Kang B, Chen H-Y, Xu J-J. 2021. Super-resolution plasmonic imaging via scattering saturation STED. Chem. Commun. 57:283492–95
    [Google Scholar]
  61. 61.
    Willets KA. 2014. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43:113854–64
    [Google Scholar]
  62. 62.
    Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117:2313890–908
    [Google Scholar]
  63. 63.
    Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN et al. 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94:124957–70
    [Google Scholar]
  64. 64.
    Gustafsson MGL. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198:282–87One of the first super-resolution techniques published.
    [Google Scholar]
  65. 65.
    Rossberger S, Ach T, Best G, Cremer C, Heintzmann R, Dithmar S. 2013. High-resolution imaging of autofluorescent particles within drusen using structured illumination microscopy. Br. J. Ophthalmol. 97:4518–23
    [Google Scholar]
  66. 66.
    Watanabe K, Palonpon AF, Smith NI, Chiu L, Kasai A et al. 2015. Structured line illumination Raman microscopy. Nat. Commun. 6:1 ). 10095One of the first methods to combine super-resolution fluorescence concepts with label-free vibrational spectroscopy.
    [Google Scholar]
  67. 67.
    Lo SS, Devadas MS, Major TA, Hartland GV. 2013. Optical detection of single nano-objects by transient absorption microscopy. Analyst 138:125–31
    [Google Scholar]
  68. 68.
    Fu D, Ye T, Matthews TE, Chen BJ, Yurtserver G, Warren WS. 2007. High-resolution in vivo imaging of blood vessels without labeling. Opt. Lett. 32:182641–43
    [Google Scholar]
  69. 69.
    Zhu Y, Cheng J-X. 2020. Transient absorption microscopy: technological innovations and applications in materials science and life science. J. Chem. Phys. 152:220901
    [Google Scholar]
  70. 70.
    Dong P-T, Cheng J-X. 2017. Pump-probe microscopy: theory, instrumentation, and applications. Spectroscopy 32:424–36
    [Google Scholar]
  71. 71.
    Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO et al. 2013. Far-field imaging of non-fluorescent species with sub-diffraction resolution. Nat. Photon. 7:449–53Combined concepts from STED with TAM to achieve label-free super-resolution imaging.
    [Google Scholar]
  72. 72.
    Fathi A, Chung C-Y, Lee Y-P, Diau EW-G. 2020. Label-free optical microscope based on a phase-modulated femtosecond pump-probe approach with subdiffraction resolution. ACS Photon 7:3607–13
    [Google Scholar]
  73. 73.
    Pavlovetc IM, Aleshire K, Hartland GV, Kuno M. 2020. Approaches to mid-infrared, super-resolution imaging and spectroscopy. Phys. Chem. Chem. Phys. 22:84313–25
    [Google Scholar]
  74. 74.
    Spadea A, Denbigh J, Lawrence MJ, Kansiz M, Gardner P. 2021. Analysis of fixed and live single cells using optical photothermal infrared with concomitant Raman spectroscopy. Anal. Chem. 93:83938–50
    [Google Scholar]
  75. 75.
    Zhang D, Li C, Zhang C, Slipchenko MN, Eakins G, Cheng J-X. 2016. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2:91600521
    [Google Scholar]
  76. 76.
    Bai Y, Zhang D, Li C, Liu C, Cheng J-X. 2017. Bond-selective imaging of cells by mid-infrared photothermal microscopy in high wavenumber region. J. Phys. Chem. B 121:4410249–55
    [Google Scholar]
  77. 77.
    Klementieva O, Sandt C, Martinsson I, Kansiz M, Gouras GK, Borondics F. 2020. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv. Sci. 7:61903004
    [Google Scholar]
  78. 78.
    Bai Y, Yin J, Cheng J-X. 2021. Bond-selective imaging by optically sensing the mid-infrared photothermal effect. Sci. Adv. 7:201559
    [Google Scholar]
  79. 79.
    Chatterjee R, Pavlovetc IM, Aleshire K, Hartland GV, Kuno M. 2018. Subdiffraction infrared imaging of mixed cation perovskites: probing local cation heterogeneities. ACS Energy Lett 3:2469–75
    [Google Scholar]
  80. 80.
    Li X, Zhang D, Bai Y, Wang W, Liang J, Cheng J-X. 2019. Fingerprinting a living cell by Raman integrated mid-infrared photothermal microscopy. Anal. Chem. 91:1610750–56
    [Google Scholar]
  81. 81.
    Aleshire K, Pavlovetc IM, Collette R, Kong X-T, Rack PD et al. 2020. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. PNAS 117:52288–93
    [Google Scholar]
  82. 82.
    Pavlovetc IM, Podshivaylov EA, Chatterjee R, Hartland GV, Frantsuzov PA, Kuno M. 2020. Infrared photothermal heterodyne imaging: contrast mechanism and detection limits. J. Appl. Phys. 127:16165101
    [Google Scholar]
  83. 83.
    Mastron JN, Tokmakoff A. 2018. Fourier transform fluorescence-encoded infrared spectroscopy. J. Phys. Chem. A 122:2554–62
    [Google Scholar]
  84. 84.
    Prince RC, Frontiera RR, Potma EO. 2016. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117:75070–94
    [Google Scholar]
  85. 85.
    Graefe CT, Punihaole D, Harris CM, Lynch MJ et al. 2019. Far-field super-resolution vibrational spectroscopy. Anal. Chem. 91:148723–31
    [Google Scholar]
  86. 86.
    Potma EO, Xie XS. 2004. CARS microscopy for biology and medicine. Opt. Photon. News 15:1140–45
    [Google Scholar]
  87. 87.
    Nikolaenko A, Krishnamachari VV, Potma EO. 2009. Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy. Phys. Rev. A 79:113823
    [Google Scholar]
  88. 88.
    Kim H, Bryant GW, Stranick SJ. 2012. Superresolution four-wave mixing microscopy. Opt. Express 20:66042–51
    [Google Scholar]
  89. 89.
    Gasecka A, Daradich A, Dehez H, Piché M, Côté D. 2013. Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy. Opt. Lett. 38:214510–13
    [Google Scholar]
  90. 90.
    Cleff C, Groß P, Fallnich C, Offerhaus HL, Herek JL et al. 2013. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys. Rev. A 87:333830
    [Google Scholar]
  91. 91.
    Wang D, Liu S, Chen Y, Song J, Liu W et al. 2017. Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy. Opt. Express 25:910276–86
    [Google Scholar]
  92. 92.
    Gong L, Wang H. 2014. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study. Phys. Rev. A 90:113818
    [Google Scholar]
  93. 93.
    Beeker WP, Lee CJ, Boller KJ, Groß P, Cleff C et al. 2011. A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions. J. Raman Spectrosc. 42:101854–58
    [Google Scholar]
  94. 94.
    Rieger S, Fischedick M, Boller K-J, Fallnich C. 2016. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy. Opt. Express 24:1820745–54
    [Google Scholar]
  95. 95.
    Beeker WP, Lee CJ, Boller K-J, Groß P, Cleff C et al. 2010. Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy. Phys. Rev. A 81:112507
    [Google Scholar]
  96. 96.
    Kim D, Sik Choi D, Kwon J, Shim S-H, Rhee H, Cho M 2017. Selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering. J. Phys. Chem. Lett. 8:246118–23Demonstrated the linear suppression present by competition between two coherent Raman processes.
    [Google Scholar]
  97. 97.
    Lim S, Sik Choi D, Rhee H, Cho M 2020. An efficient switching-off of coherent anti-Stokes Raman scattering via double stimulated Raman scattering processes of heteromolecular vibrational modes. J. Phys. Chem. B 124:173583–90
    [Google Scholar]
  98. 98.
    Choi DS, Kim CH, Lee T, Nah S, Rhee H, Cho M. 2019. Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme. Opt. Express 27:1623558
    [Google Scholar]
  99. 99.
    Ruchira Silva W, Graefe CT, Frontiera RR 2016. Toward label-free super-resolution microscopy. ACS Photon 3:179–86Demonstrated nonlinear suppression of SRS signal resulting in enhanced image resolution.
    [Google Scholar]
  100. 100.
    Xiong H, Shi L, Wei L, Shen Y, Long R et al. 2019. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photon. 13:6412–17
    [Google Scholar]
  101. 101.
    Shou J, Ozeki Y. 2021. Photoswitchable stimulated Raman scattering spectroscopy and microscopy. Opt. Lett. 46:92176–79
    [Google Scholar]
  102. 102.
    Ao J, Fang X, Miao X, Ling J, Kang H et al. 2021. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat. Commun. 12:13089
    [Google Scholar]
  103. 103.
    Bi Y, Yang C, Chen Y, Yan S, Yang G et al. 2018. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7:181
    [Google Scholar]
  104. 104.
    Lee D, Qian C, Wang H, Li L, Miao K et al. 2021. Toward photoswitchable electronic pre-resonance stimulated Raman probes. J. Chem. Phys. 154:13135102
    [Google Scholar]
  105. 105.
    Lin L-E, Miao K, Qian C, Wei L. 2021. High spatial-resolution imaging of label-free in vivo protein aggregates by VISTA. Analyst 146:134135–45
    [Google Scholar]
  106. 106.
    Lackey HE, Nelson GL, Lines AM, Bryan SA. 2020. Reimagining pH measurement: utilizing Raman spectroscopy for enhanced accuracy in phosphoric acid systems. Anal. Chem. 92:85882–89
    [Google Scholar]
  107. 107.
    Marr JM, Schultz ZD. 2013. Imaging electric fields in SERS and TERS using the vibrational stark effect. J. Phys. Chem. Lett. 4:193268–72
    [Google Scholar]
  108. 108.
    Wu J, Wang S, Zheng H. 2016. The influence of ionic strength on carbonate-based spectroscopic barometry for aqueous fluids: an in-situ Raman study on Na2CO3-NaCl solutions. Sci. Rep. 6:139088
    [Google Scholar]
  109. 109.
    Hu Z, Wang X, Wang W, Zhang Z, Gao H, Mao Y. 2015. Raman spectroscopy for detecting supported planar lipid bilayers composed of ganglioside-GM1/sphingomyelin/cholesterol in the presence of amyloid-β. Phys. Chem. Chem. Phys. 17:3522711–20
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-014723
Loading
/content/journals/10.1146/annurev-anchem-061020-014723
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error