1932

Abstract

Gel matrices are fundamental to electrophoresis analyses of biopolymers in microscale channels. Both capillary gel and microchannel gel electrophoresis systems have produced fundamental advances in the scientific community. These analytical techniques remain as foundational tools in bioanalytical chemistry and are indispensable in the field of biotherapeutics. This review summarizes the current state of gels in microscale channels and provides a brief description of electrophoretic transport in gels. In addition to the discussion of traditional polymers, several nontraditional gels are introduced. Advances in gel matrices highlighted include selective polymers modified to contain added functionality as well as thermally responsive gels formed through self-assembly. This review discusses cutting-edge applications to challenging areas of discovery in DNA, RNA, protein, and glycan analyses. Finally, emerging techniques that result in multifunctional assays for real-time biochemical processing in capillary and three-dimensional channels are identified.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091522-080207
2023-06-14
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091522-080207.html?itemId=/content/journals/10.1146/annurev-anchem-091522-080207&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tiselius A. 1937. A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 33:524–31
    [Google Scholar]
  2. 2.
    Righetti PG. 2005. Electrophoresis: the march of pennies, the march of dimes. J. Chromatogr. 1079:24–40
    [Google Scholar]
  3. 3.
    Jorgenson JW, Lukacs KD. 1983. Capillary zone electrophoresis. Science 222:266–72
    [Google Scholar]
  4. 4.
    Jorgenson JW, Lukacs KD. 1981. Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53:1298–302
    [Google Scholar]
  5. 5.
    Cohen AS, Najarian DR, Paulus A, Guttman A, Smith JA, Karger BL. 1988. Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. PNAS 85:9660–63
    [Google Scholar]
  6. 6.
    Cohen AS, Paulus A, Karger BL. 1987. High-performance capillary electrophoresis using open tubes and gels. Chromatographia 24:15–24
    [Google Scholar]
  7. 7.
    Zhu M, Hansen DL, Burd S, Gannon F. 1989. Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis. J. Chromatogr. 480:311–19
    [Google Scholar]
  8. 8.
    Grossman PD, Soane DS. 1991. Experimental and theoretical studies of DNA separations by capillary electrophoresis in entangled polymer solutions. Biopolymers 31:1221–28
    [Google Scholar]
  9. 9.
    Quesada MA. 1997. Replaceable polymers in DNA sequencing by capillary electrophoresis. Curr. Opin. Biotechnol. 8:82–93
    [Google Scholar]
  10. 10.
    Chiari M, Melis A. 1998. Low viscosity DNA sieving matrices for capillary electrophoresis. Trends Anal. Chem. 17:623–32
    [Google Scholar]
  11. 11.
    Luckey JA, Drossman H, Kostichka AJ, Mead DA, D'Cunha J et al. 1990. High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res. 18:4417–21
    [Google Scholar]
  12. 12.
    Drossman H, Luckey JA, Kostichka AJ, D'Cunha J, Smith LM 1990. High-speed separations of DNA sequencing reactions by capillary electrophoresis. Anal. Chem. 62:900–3
    [Google Scholar]
  13. 13.
    Cohen AS, Najarian DR, Karger BL. 1990. Separation and analysis of DNA sequence reaction products by capillary gel electrophoresis. J. Chromatogr. 516:49–60
    [Google Scholar]
  14. 14.
    Swerdlow H, Wu S, Harke H, Dovichi NJ. 1990. Capillary gel electrophoresis for DNA sequencing: laser-induced fluorescence detection with the sheath flow cuvette. J. Chromatogr. 516:61–67
    [Google Scholar]
  15. 15.
    Mathies RA, Huang XC. 1992. Capillary array electrophoresis: an approach to high-speed, high-throughput DNA sequencing. Nature 359:167–69
    [Google Scholar]
  16. 16.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:1304–51
    [Google Scholar]
  17. 17.
    Butler JM, Buel E, Crivellente F, McCord BR. 2004. Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25:1397–412
    [Google Scholar]
  18. 18.
    Viovy J-L. 2000. Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev. Mod. Phys. 72:813–72
    [Google Scholar]
  19. 19.
    Righetti PG. 1995. Macroporous gels: facts and misfacts. J. Chromatogr. 698:3–17
    [Google Scholar]
  20. 20.
    Sartori A, Barbier V, Viovy J-L. 2003. Sieving mechanisms in polymeric matrices. Electrophoresis 24:421–40
    [Google Scholar]
  21. 21.
    Guttman A, Hajba L. 2022. Basic principles of capillary gel electrophoresis. Capillary Gel Electrophoresis A Guttman, L Hajba 21–56. Boston: Elsevier
    [Google Scholar]
  22. 22.
    Chung M, Kim D, Herr AE. 2014. Polymer sieving matrices in microanalytical electrophoresis. Analyst 139:5635–54
    [Google Scholar]
  23. 23.
    White CM, Luo R, Archer-Hartmann SA, Holland LA 2007. Electrophoretic screening of ligands under suppressed EOF with an inert phospholipid coating. Electrophoresis 28:3049–55
    [Google Scholar]
  24. 24.
    Wells SS, De La Toba E, Harrison CR. 2016. Metal cation control of electroosmotic flow magnitude in phospholipid-coated capillaries. Electrophoresis 37:1303–9
    [Google Scholar]
  25. 25.
    Cunliffe JM, Baryla NE, Lucy CA. 2002. Phospholipid bilayer coatings for the separation of proteins in capillary electrophoresis. Anal. Chem. 74:776–83
    [Google Scholar]
  26. 26.
    Harroun TA, Koslowsky M, Nieh M-P, de Lannoy C-F, Raghunathan VA, Katsaras J. 2005. Comprehensive examination of mesophases formed by DMPC and DHPC mixtures. Langmuir 21:5356–61
    [Google Scholar]
  27. 27.
    Nieh MP, Raghunathan VA, Glinka CJ, Harroun TA, Pabst G, Katsaras J. 2004. Magnetically alignable phase of phospholipid “bicelle” mixtures is a chiral nematic made up of wormlike micelles. Langmuir 20:7893–97
    [Google Scholar]
  28. 28.
    Wu C, Liu T, Chu B, Schneider DK, Graziano V. 1997. Characterization of the PEO–PPO–PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 30:4574–83
    [Google Scholar]
  29. 29.
    Pappas T, Holland L. 2008. Fluid steering in a microfluidic chip by means of thermally responsive phospholipids. Sens. Actuators B 128:427–34
    [Google Scholar]
  30. 30.
    Wu X, Langan TJ, Durney BC, Holland LA. 2012. Thermally responsive phospholipid preparations for fluid steering and separation in microfluidics. Electrophoresis 33:2674–81
    [Google Scholar]
  31. 31.
    Ferguson KA. 1964. Starch-gel electrophoresis—application to the classification of pituitary proteins and polypeptides. Metabolism 13:985–100
    [Google Scholar]
  32. 32.
    Durney BC, Lounsbury JA, Poe BL, Landers JP, Holland LA. 2013. A thermally responsive phospholipid pseudogel: tunable DNA sieving with capillary electrophoresis. Anal. Chem. 85:6617–25
    [Google Scholar]
  33. 33.
    Durney BC, Crihfield CL, Holland LA. 2015. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009–2014). Anal. Bioanal. Chem. 407:6923–38
    [Google Scholar]
  34. 34.
    Gutzweiler L, Gleichmann T, Koltay P, Zengerle R, Riegger L et al. 2017. Open microfluidic gel electrophoresis: rapid and low cost separation and analysis of DNA at the nanoliter scale. Electrophoresis 38:1764–70
    [Google Scholar]
  35. 35.
    Hong T, Zheng R, Qiu L, Zhou S, Chao H et al. 2021. Fluorescence coupled capillary electrophoresis as a strategy for tetrahedron DNA analysis. Talanta 228:122225
    [Google Scholar]
  36. 36.
    Hügle M, Behrmann O, Raum M, Hufert FT, Urban GA, Dame G. 2020. A lab-on-a-chip for free-flow electrophoretic preconcentration of viruses and gel electrophoretic DNA extraction. Analyst 145:2554–61
    [Google Scholar]
  37. 37.
    Agrawal P, Dorfman KD. 2019. Microfluidic long DNA sample preparation from cells. Lab Chip 19:281–90
    [Google Scholar]
  38. 38.
    Gomez Martinez AE, Herr AE 2021. Programmed cell-death mechanism analysis using same-cell, multimode DNA and proteoform electrophoresis. ACS Meas. Sci. Au 1:139–46
    [Google Scholar]
  39. 39.
    Wang M, Liu J-K, Gao T, Xu L-L, Zhang X-X et al. 2022. A platform method for plasmid isoforms analysis by capillary gel electrophoresis. Electrophoresis 43:1174–82
    [Google Scholar]
  40. 40.
    Holland LA, He Y, Guerrette JR, Crihfield CL, Bwanali L. 2022. Simple, rapid, and reproducible capillary gel electrophoresis separation and laser-induced fluorescence detection of DNA topoisomers with unmodified fused silica separation capillaries. Anal. Bioanal. Chem. 414:713–20
    [Google Scholar]
  41. 41.
    Lu T, Klein LJ, Ha S, Rustandi RR. 2020. High-resolution capillary electrophoresis separation of large RNA under non-aqueous conditions. J. Chromatogr. A 1618:460875
    [Google Scholar]
  42. 42.
    De Scheerder L, Sparen A, Nilsson GA, Norrby P-O, Oernskov E. 2018. Designing flexible low-viscous sieving media for capillary electrophoresis analysis of ribonucleic acids. J. Chromatogr. A 1562:108–14
    [Google Scholar]
  43. 43.
    Burton JB, Ward CL, Klemet DM, Linz TH. 2019. Incorporation of thermal gels for facile microfluidic transient isotachophoresis. Anal. Methods 11:4733–40
    [Google Scholar]
  44. 44.
    Cornejo MA, Linz TH. 2022. Multiplexed miRNA quantitation using injectionless microfluidic thermal gel electrophoresis. Anal. Chem. 94:5674–81
    [Google Scholar]
  45. 45.
    Reynolds JA, Tanford C. 1970. Binding of dodecyl sulfate to proteins at high binding ratios. possible implications for the state of proteins in biological membranes. PNAS 66:1002–7
    [Google Scholar]
  46. 46.
    Beckman J, Song Y, Gu Y, Voronov S, Chennamsetty N et al. 2018. Purity determination by capillary electrophoresis sodium hexadecyl sulfate (CE-SHS): a novel application for therapeutic protein characterization. Anal. Chem. 90:2542–47
    [Google Scholar]
  47. 47.
    Guan Q, Atsma J, Tulsan R, Voronov S, Ding J et al. 2020. Minimization of artifact protein aggregation using tetradecyl sulfate and hexadecyl sulfate in capillary gel electrophoresis under reducing conditions. Electrophoresis 41:1245–52
    [Google Scholar]
  48. 48.
    Guan Q, Knihtila R, Atsma J, Tulsan R, Singh S et al. 2020. Enhancement of covalent aggregate quantification of protein therapeutics by non-reducing capillary gel electrophoresis using sodium hexadecyl sulfate (CE-SHS). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1152:122230
    [Google Scholar]
  49. 49.
    Guttman A, Nolan JA, Cooke N. 1993. Capillary sodium dodecyl sulfate gel electrophoresis of proteins. J. Chromatogr. 632:171–75
    [Google Scholar]
  50. 50.
    Wiesner R, Scheller C, Krebs F, Watzig H, Oltmann-Norden I. 2021. A comparative study of CE-SDS, SDS-PAGE, and Simple Western: influences of sample preparation on molecular weight determination of proteins. Electrophoresis 42:206–18
    [Google Scholar]
  51. 51.
    Scheller C, Krebs F, Wiesner R, Watzig H, Oltmann-Norden I. 2021. A comparative study of CE-SDS, SDS-PAGE, and Simple Western—precision, repeatability, and apparent molecular mass shifts by glycosylation. Electrophoresis 42:1521–31
    [Google Scholar]
  52. 52.
    Wang AL, Paciolla M, Palmieri MJ, Hao GG. 2020. Comparison of glycoprotein separation reveals greater impact of carbohydrates and disulfides on electrophoretic mobility for CE-SDSs versus SDS-PAGE. J. Pharm. Biomed. 180:113006
    [Google Scholar]
  53. 53.
    Kahle J, Maul KJ, Wätzig H 2018. The next generation of capillary electrophoresis instruments: performance of CE-SDS protein analysis. Electrophoresis 39:311–25
    [Google Scholar]
  54. 54.
    Tan KY, Herr AE. 2020. Ferguson analysis of protein electromigration during single-cell electrophoresis in an open microfluidic device. Analyst 145:3732–41
    [Google Scholar]
  55. 55.
    Guttman A, Filep C, Karger BL. 2021. Fundamentals of capillary electrophoretic migration and separation of SDS proteins in borate cross-linked dextran gels. Anal. Chem. 93:9267–76
    [Google Scholar]
  56. 56.
    Filep C, Guttman A. 2021. Capillary sodium dodecyl sulfate gel electrophoresis of proteins: introducing the three dimensional Ferguson method. Anal. Chim. Acta 1183:338958
    [Google Scholar]
  57. 57.
    Crihfield CL, Holland LA. 2021. Protein sieving with capillary nanogel electrophoresis. Anal. Chem. 93:1537–43
    [Google Scholar]
  58. 58.
    Ouimet CM, D'Amico CI, Kennedy RT 2019. Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions. Anal. Bioanal. Chem. 411:6155–63
    [Google Scholar]
  59. 59.
    Booth PPM, Lamb DT, Anderson JP, Furtaw MD, Kennedy RT. 2022. Capillary electrophoresis western blot using inkjet transfer to membrane. J. Chromatogr. A 1679:463389
    [Google Scholar]
  60. 60.
    Kaur H, Beckman J, Zhang Y, Li ZJ, Szigeti M, Guttman A. 2021. Capillary electrophoresis and the biopharmaceutical industry: therapeutic protein analysis and characterization. Trends Anal. Chem. 144:116407
    [Google Scholar]
  61. 61.
    Zhu Z, Lies M, Silzel J. 2022. Sodium dodecyl sulfate-capillary gel electrophoresis with native fluorescence detection for analysis of therapeutic proteins. J. Pharm. Biomed. Anal. 213:114689
    [Google Scholar]
  62. 62.
    Zhang L, Fei M, Tian Y, Li S, Zhu X et al. 2020. Characterization and elimination of artificial non-covalent light chain dimers in reduced CE-SDS analysis of pertuzumab. J. Pharm. Biomed. Anal. 190:113527
    [Google Scholar]
  63. 63.
    Szabo M, Sarkozy D, Szigeti M, Farsang R, Kardos Z et al. 2022. Introduction of a capillary gel electrophoresis-based workflow for biotherapeutics characterization: size, charge, and N-glycosylation variant analysis of bamlanivimab, an anti-SARS-CoV-2 product. Front. Bioeng. Biotechnol. 10:839374
    [Google Scholar]
  64. 64.
    Smith MT, Zhang S, Adams T, Di Paolo B, Dally J. 2017. Establishment and validation of a microfluidic capillary gel electrophoresis platform method for purity analysis of therapeutic monoclonal antibodies. Electrophoresis 38:1353–65
    [Google Scholar]
  65. 65.
    Schiel JE, Turner A, Mouchahoir T, Yandrofski K, Turner A et al. 2018. The NISTmAB Reference Material 8671 value assignment, homogeneity, and stability. Anal. Bioanal. Chem. 410:2127–39
    [Google Scholar]
  66. 66.
    Turner A, Yandrofski K, Schiel JE, Turner A, Telikepalli S et al. 2018. Development of orthogonal NISTmAB size heterogeneity control methods. Anal. Bioanal. Chem. 410:2095–110
    [Google Scholar]
  67. 67.
    Geurink L, van Tricht E, Dudink J, Pajic B, Sänger-van de Griend CE. 2021. Four-step approach to efficiently develop capillary gel electrophoresis methods for viral vaccine protein analysis. Electrophoresis 42:10–18
    [Google Scholar]
  68. 68.
    Peli Thanthri SH, Ward CL, Cornejo MA, Linz TH 2020. Simultaneous preconcentration and separation of native protein variants using thermal gel electrophoresis. Anal. Chem. 92:6741–47
    [Google Scholar]
  69. 69.
    Yamamoto S. 2021. In situ photopolymerization of functionalized polyacrylamide-based preconcentrators for highly sensitive specific detection of various analytes by microchip electrophoresis. Chromatography 42:29–36
    [Google Scholar]
  70. 70.
    Yamamoto S, Himeno M, Kobayashi M, Akamatsu M, Satoh R et al. 2017. Microchip electrophoresis utilizing an in situ photopolymerized Phos-tag binding polyacrylamide gel for specific entrapment and analysis of phosphorylated compounds. Analyst 142:3416–23
    [Google Scholar]
  71. 71.
    Yamamoto S, Kawaguchi Y, Kinoshita M, Suzuki S. 2021. Microchip electrophoresis utilizing in situ photopolymerized thrombin-immobilized preconcentrator gels for specific entrapment and analysis of thrombin aptamers. Chromatography 42:37–42
    [Google Scholar]
  72. 72.
    Abdel-Sayed P, Yamauchi KA, Gerver RE, Herr AE 2017. Fabrication of an open microfluidic device for immunoblotting. Anal. Chem. 89:9643–48
    [Google Scholar]
  73. 73.
    Tan KY, Desai S, Raja E, Etienne C, Webb B, Herr AE 2021. Comparison of photoactivatable crosslinkers for in-gel immunoassays. Analyst 146:6621–30
    [Google Scholar]
  74. 74.
    Vlassakis J, Herr AE. 2017. Joule heating-induced dispersion in open microfluidic electrophoretic cytometry. Anal. Chem. 89:12787–96
    [Google Scholar]
  75. 75.
    Pan Q, Yamauchi KA, Herr AE. 2018. Controlling dispersion during single-cell polyacrylamide-gel electrophoresis in open microfluidic devices. Anal. Chem. 90:13419–26
    [Google Scholar]
  76. 76.
    Gopal A, Herr AE. 2019. Multiplexed in-gel microfluidic immunoassays: characterizing protein target loss during reprobing of benzophenone-modified hydrogels. Sci. Rep. 9:15389
    [Google Scholar]
  77. 77.
    Sinkala E, Sollier-Christen E, Renier C, Rosàs-Canyelles E, Che J et al. 2017. Profiling protein expression in circulating tumour cells using microfluidic Western blotting. Nat. Commun. 8:14622
    [Google Scholar]
  78. 78.
    Rosàs-Canyelles E, Dai T, Li S, Herr AE. 2018. Mouse-to-mouse variation in maturation heterogeneity of smooth muscle cells. Lab Chip 18:1875–83
    [Google Scholar]
  79. 79.
    Zhang Y, Herr AE, Naguro I. 2019. In situ single-cell Western blot on adherent cell culture. Angew. Chem. Int. Ed. 58:13929–34
    [Google Scholar]
  80. 80.
    Lin J-MG, Kang C-C, Zhou Y, Huang H, Herr AE, Kumar S. 2018. Linking invasive motility to protein expression in single tumor cells. Lab Chip 18:371–84
    [Google Scholar]
  81. 81.
    Rosàs-Canyelles E, Modzelewski AJ, Gomez Martinez AE, Geldert A, Gopal A et al. 2021. Multimodal detection of protein isoforms and nucleic acids from low starting cell numbers. Lab Chip 21:2427–36
    [Google Scholar]
  82. 82.
    Gumuscu B, Herr AE. 2020. Separation-encoded microparticles for single-cell Western blotting. Lab Chip 20:64–73
    [Google Scholar]
  83. 83.
    Filep C, Guttman A. 2020. The effect of temperature in sodium dodecyl sulfate capillary gel electrophoresis of protein therapeutics. Anal. Chem. 92:4023–28
    [Google Scholar]
  84. 84.
    Filep C, Guttman A. 2021. Effect of the monomer cross-linker ratio on the separation selectivity of monoclonal antibody subunits in sodium dodecyl sulfate capillary gel electrophoresis. Anal. Chem. 93:3535–41
    [Google Scholar]
  85. 85.
    Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. 2018. Capillary electrophoresis separations of glycans. Chem. Rev. 118:7867–85
    [Google Scholar]
  86. 86.
    Filep C, Borza B, Jarvas G, Guttman A. 2020. N-glycosylation analysis of biopharmaceuticals by multicapillary gel electrophoresis: generation and application of a new glucose unit database. J. Pharm. Biomed. Anal. 178:112892
    [Google Scholar]
  87. 87.
    Szabo M, Filep C, Nagy M, Sarkozy D, Szigeti M et al. 2022. N-glycosylation structure–function characterization of omalizumab, an anti-asthma biotherapeutic product. J. Pharm. Biomed. Anal. 209:114483
    [Google Scholar]
  88. 88.
    Szigeti M, Chapman J, Borza B, Guttman A. 2018. Quantitative assessment of Mab Fc glycosylation of CQA importance by capillary electrophoresis. Electrophoresis 39:2340–43
    [Google Scholar]
  89. 89.
    Borza B, Szigeti M, Szekrenyes A, Hajba L, Guttman A. 2018. Glycosimilarity assessment of biotherapeutics 1: quantitative comparison of the N-glycosylation of the innovator and a biosimilar version of etanercept. J. Pharm. Biomed. Anal. 153:182–85
    [Google Scholar]
  90. 90.
    Evangelista RA, Liu M-S, Chen F-TA. 1995. Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 67:2239–45
    [Google Scholar]
  91. 91.
    Mitra I, Marczak SP, Jacobson SC. 2014. Microchip electrophoresis at elevated temperatures and high separation field strengths. Electrophoresis 35:374–78
    [Google Scholar]
  92. 92.
    Mitra I, Alley WR, Goetz JA, Vasseur JA, Novotny MV, Jacobson SC. 2013. Comparative profiling of N-glycans isolated from serum samples of ovarian cancer patients and analyzed by microchip electrophoresis. J. Proteome Res. 12:4490–96
    [Google Scholar]
  93. 93.
    Song W, Zhou X, Benktander JD, Gaunitz S, Zou G et al. 2019. In-depth compositional and structural characterization of N-glycans derived from human urinary exosomes. Anal. Chem. 91:13528–37
    [Google Scholar]
  94. 94.
    Liénard-Mayor T, Yang B, Tran NT, Bruneel A, Guttman A et al. 2021. High sensitivity capillary electrophoresis with fluorescent detection for glycan mapping. J. Chromatogr. 1657:462593
    [Google Scholar]
  95. 95.
    Lageveen-Kammeijer GSM, de Haan N, Mohaupt P, Wagt S, Filius M et al. 2019. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples. Nat. Commun. 10:2137
    [Google Scholar]
  96. 96.
    Marie A-L, Ray S, Lu S, Jones J, Ghiran I, Ivanov AR. 2021. High-sensitivity glycan profiling of blood-derived immunoglobulin G, plasma, and extracellular vesicle isolates with capillary zone electrophoresis-mass spectrometry. Anal. Chem. 93:1991–2002
    [Google Scholar]
  97. 97.
    Gomes FP, Yates JR 3rd. 2019. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. Mass Spectrom. Rev. 38:445–60
    [Google Scholar]
  98. 98.
    Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E et al. 2018. Recent advances in the mass spectrometry methods for glycomics and cancer. Anal. Chem. 90:208–24
    [Google Scholar]
  99. 99.
    Guttman A, Chen FTA, Evangelista RA. 1996. Separation of 1-aminopyrene-3,6,8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis. Electrophoresis 17:412–17
    [Google Scholar]
  100. 100.
    Mittermayr S, Guttman A. 2012. Influence of molecular configuration and conformation on the electromigration of oligosaccharides in narrow bore capillaries. Electrophoresis 33:1000–7
    [Google Scholar]
  101. 101.
    Guttman A, Kerekgyarto M, Jarvas G. 2015. Effect of separation temperature on structure specific glycan migration in capillary electrophoresis. Anal. Chem. 87:11630–34
    [Google Scholar]
  102. 102.
    Kerékgyártó M, Járvás G, Novák L, Guttman A. 2016. Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes. Electrophoresis 37:573–78
    [Google Scholar]
  103. 103.
    Szigeti M, Guttman A. 2017. High-resolution glycan analysis by temperature gradient capillary electrophoresis. Anal. Chem. 89:2201–4
    [Google Scholar]
  104. 104.
    Kawai T, Ota N, Imasato A, Shirasaki Y, Otsuka K, Tanaka Y. 2018. Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J. Chromatogr. A 1565:138–44
    [Google Scholar]
  105. 105.
    Kovacs Z, Simon A, Szabo Z, Nagy Z, Varoczy L et al. 2017. Capillary electrophoresis analysis of N-glycosylation changes of serum paraproteins in multiple myeloma. Electrophoresis 38:2115–23
    [Google Scholar]
  106. 106.
    Donczo B, Kiraly G, Guttman A. 2019. Effect of the elapsed time between sampling and formalin fixation on the N-glycosylation profile of mouse tissue specimens. Electrophoresis 40:3057–61
    [Google Scholar]
  107. 107.
    Meszaros B, Jarvas G, Farkas A, Szigeti M, Kovacs Z et al. 2020. Comparative analysis of the human serum N-glycome in lung cancer, COPD and their comorbidity using capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1137:121913
    [Google Scholar]
  108. 108.
    Jarvas G, Szigeti M, Chapman J, Guttman A. 2016. Triple-internal standard based glycan structural assignment method for capillary electrophoresis analysis of carbohydrates. Anal. Chem. 88:11364–67
    [Google Scholar]
  109. 109.
    Rossdam C, Konze SA, Oberbeck A, Rapp E, Gerardy-Schahn R et al. 2019. Approach for profiling of glycosphingolipid glycosylation by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to identify cell-surface markers of human pluripotent stem cells and derived cardiomyocytes. Anal. Chem. 91:6413–18
    [Google Scholar]
  110. 110.
    Gattu S, Crihfield CL, Holland LA. 2017. Microscale measurements of Michaelis-Menten constants of neuraminidase with nanogel capillary electrophoresis for the determination of the sialic acid linkage. Anal. Chem. 89:929–36
    [Google Scholar]
  111. 111.
    Yamagami M, Matsui Y, Hayakawa T, Yamamoto S, Kinoshita M, Suzuki S. 2017. Plug-plug kinetic capillary electrophoresis for in-capillary exoglycosidase digestion as a profiling tool for the analysis of glycoprotein glycans. J. Chromatogr. 1496:157–62
    [Google Scholar]
  112. 112.
    Bwanali L, Holland LA. 2021. Capillary nanogel electrophoresis for the determination of the β1–4 galactosyltransferase Michaelis–Menten constant and real-time addition of galactose residues to N-glycans and glycoprotein. Anal. Chem. 93:11843–51
    [Google Scholar]
  113. 113.
    Lu G, Holland LA. 2019. Profiling the N-glycan composition of IgG with lectins and capillary nanogel electrophoresis. Anal. Chem. 91:1375–83
    [Google Scholar]
  114. 114.
    Holland LA, Gattu S, Crihfield CL, Bwanali L. 2017. Capillary electrophoresis with stationary nanogel zones of galactosidase and Erythrina cristagalli lectin for the determination of β(1–3)-linked galactose in glycans. J. Chromatogr. 1523:90–96
    [Google Scholar]
  115. 115.
    Bwanali L, Crihfield CL, Newton EO, Zeger VR, Gattu S, Holland LA. 2020. Quantification of the α2–6 sialic acid linkage in branched N-glycan structures with capillary nanogel electrophoresis. Anal. Chem. 92:1518–24
    [Google Scholar]
  116. 116.
    Grist SM, Mourdoukoutas AP, Herr AE. 2020. 3D projection electrophoresis for single-cell immunoblotting. Nat. Commun. 11:6237
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091522-080207
Loading
/content/journals/10.1146/annurev-anchem-091522-080207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error