1932

Abstract

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE–SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-081820-103615
2021-06-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-081820-103615.html?itemId=/content/journals/10.1146/annurev-biochem-081820-103615&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rothman JE. 2014. The principle of membrane fusion in the cell (Nobel lecture). Angew. Chem. Int. Ed. 53:12676–94
    [Google Scholar]
  2. 2. 
    Südhof TC. 2014. The molecular machinery of neurotransmitter release (Nobel lecture). Angew. Chem. Int. Ed. 53:12696–717
    [Google Scholar]
  3. 3. 
    Südhof TC, Rothman JE. 2009. Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–77
    [Google Scholar]
  4. 4. 
    Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M et al. 2016. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology 86:954–62
    [Google Scholar]
  5. 5. 
    Rebane AA, Wang B, Ma L, Qu H, Coleman J et al. 2018. Two disease-causing SNAP-25B mutations selectively impair SNARE C-terminal assembly. J. Mol. Biol. 430:479–90
    [Google Scholar]
  6. 6. 
    Rorsman P, Ashcroft FM. 2018. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98:117–214
    [Google Scholar]
  7. 7. 
    zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S et al. 2009. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am. J. Hum. Genet. 85:482–92
    [Google Scholar]
  8. 8. 
    Fasshauer D, Sutton RB, Brunger AT, Jahn R 1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. PNAS 95:15781–86
    [Google Scholar]
  9. 9. 
    Kloepper TH, Kienle CN, Fasshauer D. 2007. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18:3463–71
    [Google Scholar]
  10. 10. 
    Fasshauer D, Eliason WK, Brunger AT, Jahn R. 1998. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37:10354–62
    [Google Scholar]
  11. 11. 
    Liang BY, Kiessling V, Tamm LK 2013. Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate. PNAS 110:19384–89
    [Google Scholar]
  12. 12. 
    Lakomek NA, Yavuz H, Jahn R, Perez-Lara A 2019. Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion. PNAS 116:8699–708
    [Google Scholar]
  13. 13. 
    Wang C, Tu J, Zhang S, Cai B, Liu Z et al. 2020. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nat. Commun. 11:1531
    [Google Scholar]
  14. 14. 
    Sutton RB, Fasshauer D, Jahn R, Brunger AT. 1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–53
    [Google Scholar]
  15. 15. 
    Stein A, Weber G, Wahl MC, Jahn R. 2009. Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–28
    [Google Scholar]
  16. 16. 
    Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. 1997. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–35
    [Google Scholar]
  17. 17. 
    Gao Y, Zorman S, Gundersen G, Xi Z, Ma L et al. 2012. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–43
    [Google Scholar]
  18. 18. 
    Kesavan J, Borisovska M, Bruns D. 2007. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131:351–63
    [Google Scholar]
  19. 19. 
    Oelkers M, Witt H, Halder P, Jahn R, Janshoff A 2016. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. PNAS 113:13051–56
    [Google Scholar]
  20. 20. 
    Zorman S, Rebane AA, Ma L, Yang G, Molski MA et al. 2014. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife 3:e03348
    [Google Scholar]
  21. 21. 
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M et al. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:759–72
    [Google Scholar]
  22. 22. 
    Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. 1993. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–18
    [Google Scholar]
  23. 23. 
    Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ et al. 2015. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61–67
    [Google Scholar]
  24. 24. 
    Ma L, Rebane AA, Yang G, Xi Z, Kang Y et al. 2015. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 4:e09580
    [Google Scholar]
  25. 25. 
    Zhang Y. 2017. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci. 26:1252–65
    [Google Scholar]
  26. 26. 
    Baker RW, Hughson FM. 2016. Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell Biol. 17:465–79
    [Google Scholar]
  27. 27. 
    Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM. 2015. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:1111–14
    [Google Scholar]
  28. 28. 
    Jiao J, He M, Port SA, Baker RW, Xu Y et al. 2018. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. eLife 7:e41771
    [Google Scholar]
  29. 29. 
    Ma C, Su L, Seven AB, Xu Y, Rizo J. 2013. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–25
    [Google Scholar]
  30. 30. 
    Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94
    [Google Scholar]
  31. 31. 
    Hosono R, Hekimi S, Kamiya Y, Sassa T, Murakami S et al. 1992. The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J. Neurochem. 58:1517–25
    [Google Scholar]
  32. 32. 
    Novick P, Field C, Schekman R. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–15
    [Google Scholar]
  33. 33. 
    Novick P, Schekman R 1979. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. PNAS 76:1858–62
    [Google Scholar]
  34. 34. 
    Hata Y, Slaughter CA, Südhof TC. 1993. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–51
    [Google Scholar]
  35. 35. 
    Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH et al. 2000. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–69
    [Google Scholar]
  36. 36. 
    Hong W. 2005. SNAREs and traffic. Biochim. Biophys. Acta Mol. Cell Res. 1744:120–44
    [Google Scholar]
  37. 37. 
    Hong W, Lev S 2014. Tethering the assembly of SNARE complexes. Trends Cell Biol. 24:35–43
    [Google Scholar]
  38. 38. 
    Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. 2007. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–95
    [Google Scholar]
  39. 39. 
    Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q. 2019. The pre-synaptic fusion machinery. Curr. Opin. Struct. Biol. 54:179–88
    [Google Scholar]
  40. 40. 
    Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. 2018. Molecular mechanisms of fast neurotransmitter release. Annu. Rev. Biophys. 47:469–97
    [Google Scholar]
  41. 41. 
    Rizo J. 2018. Mechanism of neurotransmitter release coming into focus. Protein Sci. 27:1364–91
    [Google Scholar]
  42. 42. 
    Yang X, Wang S, Sheng Y, Zhang M, Zou W et al. 2015. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 22:547–54
    [Google Scholar]
  43. 43. 
    Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C et al. 2017. Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95:591–607.e10
    [Google Scholar]
  44. 44. 
    Sitarska E, Xu J, Park S, Liu X, Quade B et al. 2017. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. eLife 6:e24278
    [Google Scholar]
  45. 45. 
    Shu T, Jin H, Rothman JE, Zhang Y 2020. Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex. PNAS 117:1036–41
    [Google Scholar]
  46. 46. 
    Wang S, Li Y, Gong J, Ye S, Yang X et al. 2019. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat. Commun. 10:69
    [Google Scholar]
  47. 47. 
    Wang X, Gong J, Zhu L, Wang S, Yang X et al. 2020. Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly. EMBO J. 39:e103631
    [Google Scholar]
  48. 48. 
    Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S et al. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–24
    [Google Scholar]
  49. 49. 
    Fernandez I, Ubach J, Dulubova I, Zhang X, Südhof TC, Rizo J. 1998. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94:841–49
    [Google Scholar]
  50. 50. 
    Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. 2002. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Biol. 9:107–11
    [Google Scholar]
  51. 51. 
    Fasshauer D, Otto H, Eliason WK, Jahn R, Brünger AT. 1997. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272:28036–41
    [Google Scholar]
  52. 52. 
    Li F, Tiwari N, Rothman JE, Pincet F 2016. Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion. PNAS 113:10536–41
    [Google Scholar]
  53. 53. 
    Pobbati AV, Stein A, Fasshauer D. 2006. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–76
    [Google Scholar]
  54. 54. 
    Fasshauer D, Margittai M. 2004. A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 279:7613–21
    [Google Scholar]
  55. 55. 
    Fasshauer D, Antonin W, Subramaniam V, Jahn R 2002. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat. Struct. Biol. 9:144–51
    [Google Scholar]
  56. 56. 
    Rebane AA, Ma L, Zhang YL. 2016. Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys. J. 110:441–54
    [Google Scholar]
  57. 57. 
    Bustamante C, Alexander L, Maciuba K, Kaiser CM. 2020. Single-molecule studies of protein folding with optical tweezers. Annu. Rev. Biochem. 89:443–70
    [Google Scholar]
  58. 58. 
    Zhang X, Rebane AA, Ma L, Li F, Jiao J et al. 2016. Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. PNAS 113:E8031–40
    [Google Scholar]
  59. 59. 
    Zhou Q, Zhou P, Wang AL, Wu D, Zhao M et al. 2017. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis. Nature 548:420–25
    [Google Scholar]
  60. 60. 
    Li F, Pincet F, Perez E, Eng WS, Melia TJ et al. 2007. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–96
    [Google Scholar]
  61. 61. 
    Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY. 2013. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4:1705
    [Google Scholar]
  62. 62. 
    Shon MJ, Kim H, Yoon TY. 2018. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nat. Commun. 9:3639
    [Google Scholar]
  63. 63. 
    Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R. 1999. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99:713–22
    [Google Scholar]
  64. 64. 
    Das D, Bao H, Courtney KC, Wu LX, Chapman ER. 2020. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Nat. Commun. 11:231
    [Google Scholar]
  65. 65. 
    Li F, Kummel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. 2014. A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J. Am. Chem. Soc. 136:3456–64
    [Google Scholar]
  66. 66. 
    Walter AM, Wiederhold K, Bruns D, Fasshauer D, Sorensen JB. 2010. Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. J. Cell Biol. 188:401–13
    [Google Scholar]
  67. 67. 
    McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ et al. 2000. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150:105–17
    [Google Scholar]
  68. 68. 
    Zhou P, Bacaj T, Yang X, Pang ZP, Sudhof TC. 2013. Lipid-anchored snares lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 80:470–83
    [Google Scholar]
  69. 69. 
    Rathore SS, Liu YH, Yu HJ, Wan C, Lee M et al. 2019. Intracellular vesicle fusion requires a membrane-destabilizing peptide located at the juxtamembrane region of the v-SNARE. Cell Rep. 29:4583–92
    [Google Scholar]
  70. 70. 
    Dhara M, Martinez MM, Makke M, Schwarz Y, Mohrmann R, Bruns D. 2020. Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release. eLife 9:e55152
    [Google Scholar]
  71. 71. 
    Chang CW, Chiang CW, Gaffaney JD, Chapman ER, Jackson MB. 2016. Lipid-anchored synaptobrevin provides little or no support for exocytosis or liposome fusion. J. Biol. Chem. 291:2848–57
    [Google Scholar]
  72. 72. 
    Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER 2016. Exocytotic fusion pores are composed of both lipids and proteins. Nat. Struct. Mol. Biol. 23:67–73
    [Google Scholar]
  73. 73. 
    Ngatchou AN, Kisler K, Fang QH, Walter AM, Zhao Y et al. 2010. Role of the synaptobrevin C terminus in fusion pore formation. PNAS 107:18463–68
    [Google Scholar]
  74. 74. 
    Han X, Wang CT, Bai JH, Chapman ER, Jackson MB. 2004. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–92
    [Google Scholar]
  75. 75. 
    Brunger AT. 2005. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38:1–47
    [Google Scholar]
  76. 76. 
    Lerman JC, Robblee J, Fairman R, Hughson FM. 2000. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39:8470–79
    [Google Scholar]
  77. 77. 
    Misura KM, Scheller RH, Weis WI. 2001. Self-association of the H3 region of syntaxin 1A. Implications for intermediates in SNARE complex assembly. J. Biol. Chem. 276:13273–82
    [Google Scholar]
  78. 78. 
    Xiao W, Poirier MA, Bennett MK, Shin YK. 2001. The neuronal t-SNARE complex is a parallel four-helix bundle. Nat. Struct. Biol. 8:308–11
    [Google Scholar]
  79. 79. 
    Dawidowski D, Cafiso DS. 2016. Munc18-1 and the Syntaxin-1 N terminus regulate open-closed states in a t-SNARE complex. Structure 24:392–400
    [Google Scholar]
  80. 80. 
    Weninger K, Bowen ME, Chu S, Brunger AT 2003. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. PNAS 100:14800–5
    [Google Scholar]
  81. 81. 
    Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R 1999. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274:15440–46
    [Google Scholar]
  82. 82. 
    Yang B, Gonzalez L Jr., Prekeris R, Steegmaier M, Advani RJ, Scheller RH. 1999. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274:5649–53
    [Google Scholar]
  83. 83. 
    Baker RW, Jeffrey PD, Hughson FM. 2013. Crystal structures of the Sec1/Munc18 (SM) protein Vps33, alone and bound to the homotypic fusion and vacuolar protein sorting (HOPS) subunit Vps16. PLOS ONE 8:e67409
    [Google Scholar]
  84. 84. 
    Bracher A, Weissenhorn W. 2001. Crystal structures of neuronal squid Sec1 implicate inter-domain hinge movement in the release of t-SNAREs. J. Mol. Biol. 306:7–13
    [Google Scholar]
  85. 85. 
    Bracher A, Weissenhorn W. 2002. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 21:6114–24
    [Google Scholar]
  86. 86. 
    Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D. 2008. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27:923–33
    [Google Scholar]
  87. 87. 
    Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C et al. 2011. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. PNAS 108:15264–69
    [Google Scholar]
  88. 88. 
    Colbert KN, Hattendorf DA, Weiss TM, Burkhardt P, Fasshauer D, Weis WI 2013. Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation. PNAS 110:12637–42
    [Google Scholar]
  89. 89. 
    Eisemann TJ, Allen F, Lau K, Shimamura GR, Jeffrey PD, Hughson FM. 2020. The Sec1/Munc18 protein Vps45 holds the Qa-SNARE Tlg2 in an open conformation. eLife 9:e60724
    [Google Scholar]
  90. 90. 
    Graham SC, Wartosch L, Gray SR, Scourfield EJ, Deane JE et al. 2013. Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. PNAS 110:13345–50
    [Google Scholar]
  91. 91. 
    Hackmann Y, Graham SC, Ehl S, Honing S, Lehmberg K et al. 2013. Syntaxin binding mechanism and disease-causing mutations in Munc18-2. PNAS 110:E4482–91
    [Google Scholar]
  92. 92. 
    Hu SH, Christie MP, Saez NJ, Latham CF, Jarrott R et al. 2011. Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. PNAS 108:1040–45
    [Google Scholar]
  93. 93. 
    Hu SH, Latham CF, Gee CL, James DE, Martin JL 2007. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. PNAS 104:8773–78
    [Google Scholar]
  94. 94. 
    Misura KM, Scheller RH, Weis WI. 2000. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404:355–62
    [Google Scholar]
  95. 95. 
    Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I et al. 2002. How Tlg2p/syntaxin 16 ‘snares’ Vps45. EMBO J. 21:3620–31
    [Google Scholar]
  96. 96. 
    Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Südhof TC. 2002. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2:295–305
    [Google Scholar]
  97. 97. 
    Demircioglu FE, Burkhardt P, Fasshauer D 2014. The SM protein Sly1 accelerates assembly of the ER–Golgi SNARE complex. PNAS 111:13828–33
    [Google Scholar]
  98. 98. 
    Morey C, Kienle CN, Klopper TH, Burkhardt P, Fasshauer D. 2017. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. J. Biol. Chem. 292:20449–60
    [Google Scholar]
  99. 99. 
    Medine CN, Rickman C, Chamberlain LH, Duncan RR. 2007. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J. Cell Sci. 120:4407–15
    [Google Scholar]
  100. 100. 
    Carpp LN, Ciufo LF, Shanks SG, Boyd A, Bryant NJ. 2006. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes. J. Cell Biol. 173:927–36
    [Google Scholar]
  101. 101. 
    Parisotto D, Pfau M, Scheutzow A, Wild K, Mayer MP et al. 2014. An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. J. Biol. Chem. 289:9639–50
    [Google Scholar]
  102. 102. 
    Shen C, Liu Y, Yu H, Gulbranson DR, Kogut I et al. 2018. The N-peptide-binding mode is critical to Munc18-1 function in synaptic exocytosis. J. Biol. Chem. 293:18309–17
    [Google Scholar]
  103. 103. 
    Xu Y, Su L, Rizo J. 2010. Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49:1568–76
    [Google Scholar]
  104. 104. 
    Munch AS, Kedar GH, van Weering JR, Vazquez-Sanchez S, He E et al. 2016. Extension of helix 12 in Munc18-1 induces vesicle priming. J. Neurosci. 36:6881–91
    [Google Scholar]
  105. 105. 
    Andre T, Classen J, Brenner P, Betts MJ, Dorr B et al. 2020. The interaction of Munc18-1 Helix 11 and 12 with the central region of the VAMP2 SNARE motif is essential for SNARE templating and synaptic transmission. eNeuro 7:ENEURO.0278–20.2020
    [Google Scholar]
  106. 106. 
    Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J 2010. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. PNAS 107:22399–406
    [Google Scholar]
  107. 107. 
    Shen J, Rathore SS, Khandan L, Rothman JE. 2010. SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J. Cell Biol. 190:55–63
    [Google Scholar]
  108. 108. 
    Meijer M, Burkhardt P, de Wit H, Toonen RF, Fasshauer D, Verhage M. 2012. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J. 31:2156–68
    [Google Scholar]
  109. 109. 
    Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C et al. 2013. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 32:159–71
    [Google Scholar]
  110. 110. 
    Park S, Bin NR, Rajah MM, Kim B, Chou TC et al. 2016. Conformational states of syntaxin-1 govern the necessity of N-peptide binding in exocytosis of PC12 cells and Caenorhabditis elegans. Mol. Biol. Cell 27:669–85
    [Google Scholar]
  111. 111. 
    Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J 2007. Munc18-1 binds directly to the neuronal SNARE complex. PNAS 104:2697–702
    [Google Scholar]
  112. 112. 
    Jakhanwal S, Lee CT, Urlaub H, Jahn R. 2017. An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO J. 36:1788–1802
    [Google Scholar]
  113. 113. 
    Peng R, Gallwitz D. 2004. Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J. 23:3939–49
    [Google Scholar]
  114. 114. 
    Ma C, Li W, Xu Y, Rizo J. 2011. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18:542–49
    [Google Scholar]
  115. 115. 
    Laidlaw KME, Livingstone R, Al-Tobi M, Bryant NJ, Gould GW 2017. SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochem. Soc. Trans. 45:1271–77
    [Google Scholar]
  116. 116. 
    Meijer M, Dorr B, Lammertse HC, Blithikioti C, van Weering JR et al. 2018. Tyrosine phosphorylation of Munc18-1 inhibits synaptic transmission by preventing SNARE assembly. EMBO J. 37:300–20
    [Google Scholar]
  117. 117. 
    Genc O, Kochubey O, Toonen RF, Verhage M, Schneggenburger R. 2014. Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. eLife 3:e01715
    [Google Scholar]
  118. 118. 
    Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS et al. 2011. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J. Cell Biol. 193:185–99
    [Google Scholar]
  119. 119. 
    Malmersjo S, Di Palma S, Diao J, Lai Y, Pfuetzner RA et al. 2016. Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion. EMBO J. 35:1810–21
    [Google Scholar]
  120. 120. 
    Augustin I, Rosenmund C, Südhof TC, Brose N. 1999. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457–61
    [Google Scholar]
  121. 121. 
    Li W, Ma C, Guan R, Xu Y, Tomchick DR, Rizo J. 2011. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19:1443–55
    [Google Scholar]
  122. 122. 
    Xu J, Camacho M, Xu Y, Esser V, Liu X et al. 2017. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. eLife 6:e22567
    [Google Scholar]
  123. 123. 
    Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T et al. 2019. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. eLife 8:e42806
    [Google Scholar]
  124. 124. 
    Liu XX, Seven AB, Camacho M, Esser V, Xu JJ et al. 2016. Functional synergy between the Munc13 C-terminal C1 and C2 domains. eLife 5:e13696
    [Google Scholar]
  125. 125. 
    Shin OH, Lu J, Rhee JS, Tomchick DR, Pang ZPP et al. 2010. Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat. Struct. Mol. Biol. 17:280–88
    [Google Scholar]
  126. 126. 
    Rothman JE, Krishnakumar SS, Grushin K, Pincet F. 2017. Hypothesis—buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. FEBS Lett. 591:3459–80
    [Google Scholar]
  127. 127. 
    Li F, Sundaram VK, Gatta AT, Coleman J, Krishnakumar S et al. 2021. Vesicle capture by discrete self-assembled clusters of membrane-bound Munc13. bioRxiv 2020.08.17.254821. https://doi.org/10.1101/2020.08.17.254821
    [Crossref]
  128. 128. 
    Sakamoto H, Ariyoshi T, Kimpara N, Sugao K, Taiko I et al. 2018. Synaptic weight set by Munc13-1 supramolecular assemblies. Nat. Neurosci. 21:41–49
    [Google Scholar]
  129. 129. 
    Michelassi F, Liu H, Hu Z, Dittman JS. 2017. A C1–C2 module in munc13 inhibits calcium-dependent neurotransmitter release. Neuron 95:577–90.e5
    [Google Scholar]
  130. 130. 
    Camacho M, Basu J, Trimbuch T, Chang SW, Pulido-Lozano C et al. 2017. Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming. Nat. Commun. 8:15293
    [Google Scholar]
  131. 131. 
    Wang S, Choi UB, Gong J, Yang X, Li Y et al. 2017. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. EMBO J. 36:816–29
    [Google Scholar]
  132. 132. 
    Kalyana Sundaram RV, Jin H, Li F, Shu T, Coleman J et al. 2020. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett. 595:297–309
    [Google Scholar]
  133. 133. 
    Richmond JE, Weimer RM, Jorgensen EM. 2001. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–41
    [Google Scholar]
  134. 134. 
    Magdziarek M, Bolembach AA, Stepien KP, Quade B, Liu XX, Rizo J. 2020. Re-examining how Munc13-1 facilitates opening of syntaxin-1. Protein Sci. 29:1440–58
    [Google Scholar]
  135. 135. 
    Choi UB, Zhao ML, White KI, Pfuetzner RA, Esquivies L et al. 2018. NSF-mediated disassembly of on- and off-pathway SNARE complexes and inhibition by complexin. eLife 7:e36497
    [Google Scholar]
  136. 136. 
    Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. 2019. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. eLife 8:e38880
    [Google Scholar]
  137. 137. 
    Stepien KP, Prinslow EA, Rizo J. 2019. Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by αSNAP. Nat. Commun. 10:4326
    [Google Scholar]
  138. 138. 
    Lobingier BT, Nickerson DP, Lo SY, Merz AJ. 2014. SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. eLife 3:e02272
    [Google Scholar]
  139. 139. 
    Xu H, Jun Y, Thompson J, Yates J, Wickner W. 2010. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29:1948–60
    [Google Scholar]
  140. 140. 
    Ungermann C, Kummel D. 2019. Structure of membrane tethers and their role in fusion. Traffic 20:479–90
    [Google Scholar]
  141. 141. 
    Laufman O, Kedan A, Hong W, Lev S 2009. Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J. 28:2006–17
    [Google Scholar]
  142. 142. 
    Morgera F, Sallah MR, Dubuke ML, Gandhi P, Brewer DN et al. 2012. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1.. Mol. Biol. Cell 23:337–46
    [Google Scholar]
  143. 143. 
    Travis SM, DAmico K, Yu IM, McMahon C, Hamid S et al. 2020. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. J. Biol. Chem. 295:10125–35
    [Google Scholar]
  144. 144. 
    Yue P, Zhang Y, Mei K, Wang S, Lesigang J et al. 2017. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 8:14236
    [Google Scholar]
  145. 145. 
    Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H et al. 2008. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat. Genet. 40:782–88
    [Google Scholar]
  146. 146. 
    Shen XM, Selcen D, Brengman J, Engel AG. 2014. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 83:2247–55
    [Google Scholar]
  147. 147. 
    Bryceson YT, Rudd E, Zheng C, Edner J, Ma D et al. 2007. Defective cytotoxic lymphocyte degranulation in syntaxin-11-deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:1906–15
    [Google Scholar]
  148. 148. 
    Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C et al. 2009. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J. Clin. Investig. 119:3765–73
    [Google Scholar]
  149. 149. 
    Al Hawas R, Ren Q, Ye S, Karim ZA, Filipovich AH, Whiteheart SW 2012. Munc18b/STXBP2 is required for platelet secretion. Blood 120:2493–500
    [Google Scholar]
  150. 150. 
    Ye S, Karim ZA, Al Hawas R, Pessin JE, Filipovich AH, Whiteheart SW 2012. Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood 120:2484–92
    [Google Scholar]
  151. 151. 
    Gissen P, Johnson CA, Gentle D, Hurst LD, Doherty AJ et al. 2005. Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum. Mol. Genet. 14:1261–70
    [Google Scholar]
  152. 152. 
    Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T et al. 2004. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome. Nat. Genet. 36:400–4
    [Google Scholar]
  153. 153. 
    Lo B, Li L, Gissen P, Christensen H, McKiernan PJ et al. 2005. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet α-granule biogenesis. Blood 106:4159–66
    [Google Scholar]
  154. 154. 
    Chen W, Cai ZL, Chao ES, Chen H, Longley CM et al. 2020. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. eLife 9:e48705
    [Google Scholar]
  155. 155. 
    Guiberson NGL, Pineda A, Abramov D, Kharel P, Carnazza KE et al. 2018. Mechanism-based rescue of Munc18-1 dysfunction in varied encephalopathies by chemical chaperones. Nat. Commun. 9:3986
    [Google Scholar]
  156. 156. 
    Gorenberg EL, Chandra SS. 2017. The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front. Neurosci. 11:248
    [Google Scholar]
  157. 157. 
    Hunn BH, Cragg SJ, Bolam JP, Spillantini MG, Wade-Martins R. 2015. Impaired intracellular trafficking defines early Parkinson's disease. Trends Neurosci. 38:178–88
    [Google Scholar]
  158. 158. 
    Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. 2010. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–67
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-081820-103615
Loading
/content/journals/10.1146/annurev-biochem-081820-103615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error