1932

Abstract

The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-092820-020354
2021-07-20
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-092820-020354.html?itemId=/content/journals/10.1146/annurev-biodatasci-092820-020354&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sullivan PF. 2010. The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 68:182–86
    [Google Scholar]
  2. 2. 
    Wang D, Liu S, Warrell J, Won H, Shi X et al. 2018. Comprehensive functional genomic resource and integrative model for the human brain. Science 362:eaat8464
    [Google Scholar]
  3. 3. 
    Schizophr. Work. Group Psychiatr. Genom. Consort 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27
    [Google Scholar]
  4. 4. 
    Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K et al. 2012. The Autism Sequencing Consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 76:1052–56
    [Google Scholar]
  5. 5. 
    Shen EH, Overly CC, Jones AR. 2012. The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 35:711–14
    [Google Scholar]
  6. 6. 
    Song L, Pan S, Zhang Z, Jia L, Chen W, Zhao X 2020. STAB: a spatio-temporal cell atlas of the human brain. Nucleic Acids Res In press. http://dx.doi.org/10.1093/nar/gkaa762
    [Crossref] [Google Scholar]
  7. 7. 
    Roadmap Epigenom. Consort., Kundaje A, Meuleman W, Ernst J, Bilenky M et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–30
    [Google Scholar]
  8. 8. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  9. 9. 
    Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S et al. 2015. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47:598–606
    [Google Scholar]
  10. 10. 
    Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J et al. 2016. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538:523–27
    [Google Scholar]
  11. 11. 
    Yang D, Jang I, Choi J, Kim MS, Lee AJ et al. 2018. 3DIV: A 3D-genome interaction viewer and database. Nucleic Acids Res 46:D52–57
    [Google Scholar]
  12. 12. 
    Jung I, Schmitt A, Diao Y, Lee AJ, Liu T et al. 2019. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat. Genet. 51:1442–49
    [Google Scholar]
  13. 13. 
    Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR et al. 2005. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66
    [Google Scholar]
  14. 14. 
    Schumann G, Loth E, Banaschewski T, Barbot A, Barker G et al. 2010. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15:1128–39
    [Google Scholar]
  15. 15. 
    Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA et al. 2014. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8:153–82
    [Google Scholar]
  16. 16. 
    Wang M, Beckmann ND, Roussos P, Wang E, Zhou X et al. 2018. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Sci. Data 5:180185
    [Google Scholar]
  17. 17. 
    Wang L, Alpert KI, Calhoun VD, Cobia DJ, Keator DB et al. 2016. SchizConnect: mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration. NeuroImage 124:1155–67
    [Google Scholar]
  18. 18. 
    Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO et al. 2018. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:eaat7615
    [Google Scholar]
  19. 19. 
    Zhao X, Chen J, Xiao P, Feng J, Qing N, Zhao X-M. 2020. Age-specific gene signatures underlying the transcriptomes and functional connectomes of human cerebral cortex. bioRxiv 2020.09.15.297754. https://doi.org/10.1101/2020.09.15.297754
    [Crossref]
  20. 20. 
    Luo Q, Chen Q, Wang W, Desrivieres S, Quinlan EB et al. 2019. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: a voxelwise and genome-wide association study. JAMA Psychiatry 76:435–45
    [Google Scholar]
  21. 21. 
    Sullivan PF, Geschwind DH. 2019. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177:162–83
    [Google Scholar]
  22. 22. 
    Demontis D, Walters RK, Martin J, Mattheisen M, Als TD et al. 2019. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51:63–75
    [Google Scholar]
  23. 23. 
    Lam M, Chen CY, Li Z, Martin AR, Bryois J et al. 2019. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51:1670–78
    [Google Scholar]
  24. 24. 
    Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S et al. 2015. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97:576–92
    [Google Scholar]
  25. 25. 
    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J et al. 2015. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47:291–95
    [Google Scholar]
  26. 26. 
    Brown BCAsian Genetic Epidemiol. Netw. Type 2 Diabetes Consort., Ye CJ, Price AL, Zaitlen N 2016. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99:76–88
    [Google Scholar]
  27. 27. 
    Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. 2019. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry 86:97–109
    [Google Scholar]
  28. 28. 
    Cross-Disord. Group Psychiatr. Genom. Consort 2019. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179:1469–82.e11
    [Google Scholar]
  29. 29. 
    Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK et al. 2018. Analysis of shared heritability in common disorders of the brain. Science 360:eaap8757
    [Google Scholar]
  30. 30. 
    Matoba N, Liang D, Sun H, Aygun N, McAfee JC et al. 2020. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl. Psychiatry 10:265
    [Google Scholar]
  31. 31. 
    de Leeuw CA, Mooij JM, Heskes T, Posthuma D. 2015. MAGMA: generalized gene-set analysis of GWAS data. PLOS Comput. Biol. 11:e1004219
    [Google Scholar]
  32. 32. 
    Gerring ZF, Mina-Vargas A, Derks EM. 2019. eMAGMA: an eQTL-informed method to identify risk genes using genome-wide association study summary statistics. bioRxiv 854315. https://doi.org/10.1101/854315
    [Crossref]
  33. 33. 
    Gerring ZF, Gamazon ER, Derks EM, Depress MajorDisorder Work. Group Psychiatr. Genom. Consort 2019. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLOS Genet 15:e1008245
    [Google Scholar]
  34. 34. 
    Sey NYA, Hu B, Mah W, Fauni H, McAfee JC et al. 2020. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23:583–93
    [Google Scholar]
  35. 35. 
    Yang A, Chen J, Zhao X-M. 2020. nMAGMA: a network enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. bioRxiv 2020.08.15.250282. https://doi.org/10.1101/2020.08.15.250282
    [Crossref]
  36. 36. 
    Scelsi MA, Khan RR, Lorenzi M, Christopher L, Greicius MD et al. 2018. Genetic study of multimodal imaging Alzheimer's disease progression score implicates novel loci. Brain 141:2167–80
    [Google Scholar]
  37. 37. 
    Du L, Liu K, Zhu L, Yao X, Risacher SL et al. 2019. Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort. Bioinformatics 35:i474–83
    [Google Scholar]
  38. 38. 
    Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL et al. 2018. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562:210–16
    [Google Scholar]
  39. 39. 
    Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J et al. 2020. The genetic architecture of the human cerebral cortex. Science 367:eaay6690
    [Google Scholar]
  40. 40. 
    GTEx Consort 2013. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45:580–85
    [Google Scholar]
  41. 41. 
    Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA et al. 2018. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50:920–27
    [Google Scholar]
  42. 42. 
    Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J et al. 2019. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22:343–52
    [Google Scholar]
  43. 43. 
    Xu J, Li Q, Qin W, Jun Li M, Zhuo C et al. 2018. Neurobiological substrates underlying the effect of genomic risk for depression on the conversion of amnestic mild cognitive impairment. Brain 141:3457–71
    [Google Scholar]
  44. 44. 
    Oh G, Ebrahimi S, Wang SC, Cortese R, Kaminsky ZA et al. 2016. Epigenetic assimilation in the aging human brain. Genome Biol 17:76
    [Google Scholar]
  45. 45. 
    Price AJ, Collado-Torres L, Ivanov NA, Xia W, Burke EE et al. 2019. Divergent neuronal DNA methylation patterns across human cortical development reveal critical periods and a unique role of CpH methylation. Genome Biol 20:196
    [Google Scholar]
  46. 46. 
    Erk S, Mohnke S, Ripke S, Lett TA, Veer IM et al. 2017. Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl. Psychiatry 7:e997
    [Google Scholar]
  47. 47. 
    Cao H, Zhou H, Cannon TD. 2020. Functional connectome-wide associations of schizophrenia polygenic risk. Mol. Psychiatry. https://doi.org/10.1038/s41380-020-0699-3
    [Crossref] [Google Scholar]
  48. 48. 
    Neilson E, Shen X, Cox SR, Clarke TK, Wigmore EM et al. 2019. Impact of polygenic risk for schizophrenia on cortical structure in UK Biobank. Biol. Psychiatry 86:536–44
    [Google Scholar]
  49. 49. 
    Warland A, Kendall KM, Rees E, Kirov G, Caseras X. 2020. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank. Mol. Psychiatry 25:854–62
    [Google Scholar]
  50. 50. 
    Gaiteri C, Dawe R, Mostafavi S, Blizinsky KD, Tasaki S et al. 2019. Gene expression and DNA methylation are extensively coordinated with MRI-based brain microstructural characteristics. Brain Imaging Behav 13:963–72
    [Google Scholar]
  51. 51. 
    Jia T, Chu C, Liu Y, van Dongen J, Papastergios E et al. 2019. Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. Mol. Psychiatry. https://doi.org/10.1038/s41380-019-0605-z
    [Crossref] [Google Scholar]
  52. 52. 
    Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE et al. 2019. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. PNAS 116:9604–9
    [Google Scholar]
  53. 53. 
    Fink HA, Linskens EJ, MacDonald R, Silverman PC, McCarten JR et al. 2020. Benefits and harms of prescription drugs and supplements for treatment of clinical Alzheimer-type dementia. Ann. Intern. Med. 172:656–68
    [Google Scholar]
  54. 54. 
    Ghai R, Nagarajan K, Arora M, Grover P, Ali N, Kapoor G 2020. Current strategies and novel drug approaches for Alzheimer disease. CNS Neurol. Disord. Drug Targets. 19:9676–90
    [Google Scholar]
  55. 55. 
    Wes PD, Sayed FA, Bard F, Gan L. 2016. Targeting microglia for the treatment of Alzheimer's disease. Glia 64:1710–32
    [Google Scholar]
  56. 56. 
    Kalin NH. 2019. Gaining ground on schizophrenia: conceptualizing how to use neuroimaging and genomics in its diagnosis and treatment. Am. J. Psychiatry 176:771–73
    [Google Scholar]
  57. 57. 
    Amare AT, Schubert KO, Hou L, Clark SR, Papiol S et al. 2020. Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol. Psychiatry. https://doi.org/10.1038/s41380-020-0689-5
    [Crossref] [Google Scholar]
  58. 58. 
    Chung US, Han DH, Shin YJ, Renshaw PF. 2016. A prosocial online game for social cognition training in adolescents with high-functioning autism: an fMRI study. Neuropsychiatr. Dis. Treat. 17:651–60
    [Google Scholar]
  59. 59. 
    Mehler DMA, Sokunbi MO, Habes I, Barawi K, Subramanian L et al. 2018. Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology 43:2578–85
    [Google Scholar]
  60. 60. 
    Nguyen TT, Hathaway H, Kosciolek T, Knight R, Jeste DV. 2019. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. In press. https://doi.org/10.1016/j.schres.2019.08.026
    [Crossref] [Google Scholar]
  61. 61. 
    Ridaura V, Belkaid Y. 2015. Gut microbiota: the link to your second brain. Cell 161:193–94
    [Google Scholar]
  62. 62. 
    Pennisi E. 2020. Meet the psychobiome. Science 368:570–73
    [Google Scholar]
  63. 63. 
    Shen Y, Xu J, Li Z, Huang Y, Yuan Y et al. 2018. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr. Res. 197:470–77
    [Google Scholar]
  64. 64. 
    Liu P, Wu L, Peng G, Han Y, Tang R et al. 2019. Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 80:633–43
    [Google Scholar]
  65. 65. 
    Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J et al. 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4:623–32
    [Google Scholar]
  66. 66. 
    Frolkis AD, Vallerand IA, Shaheen AA, Lowerison MW, Swain MG et al. 2019. Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut 68:1606–12
    [Google Scholar]
  67. 67. 
    Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N et al. 2017. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 5:49
    [Google Scholar]
  68. 68. 
    Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. 2018. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:71728–41
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-092820-020354
Loading
/content/journals/10.1146/annurev-biodatasci-092820-020354
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error