1932

Abstract

Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. Perturb a population and it evolves toward a fitness peak. We review quantitative models of the forces of adaptation and their visualizations on landscapes. While some adaptations result from single mutations or few-gene effects, others are more cooperative, more delocalized in the genome, and more universal and physical. For example, homeostasis and evolution depend on protein folding and aggregation, energy and protein production, protein diffusion, molecular motor speeds and efficiencies, and protein expression levels. Models provide a way to learn about the fitness of cells and cell populations by making and testing hypotheses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-011720-103410
2020-06-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-011720-103410.html?itemId=/content/journals/10.1146/annurev-chembioeng-011720-103410&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Blanco C, Janzen E, Pressman A, Saha R, Chen IA 2019. Molecular fitness landscapes from high-coverage sequence profiling. Annu. Rev. Biophys. 48:1–18
    [Google Scholar]
  2. 2. 
    Kussell E 2013. Evolution in microbes. Annu. Rev. Biophys. 42:493–514
    [Google Scholar]
  3. 3. 
    de Vos MG, Poelwijk FJ, Tans SJ 2013. Optimality in evolution: new insights from synthetic biology. Curr. Opin. Biotechnol. 24:797–802
    [Google Scholar]
  4. 4. 
    Poelwijk FJ, De Vos MG, Tans SJ 2011. Tradeoffs and optimality in the evolution of gene regulation. Cell 146:462–70
    [Google Scholar]
  5. 5. 
    Acar M, Mettetal JT, van Oudenaarden A 2008. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40:471–75
    [Google Scholar]
  6. 6. 
    Barrick JE, Lenski RE 2013. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14:827–39
    [Google Scholar]
  7. 7. 
    Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G 2015. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519:181–86
    [Google Scholar]
  8. 8. 
    Van Kampen NG 1992. Stochastic Processes in Physics and Chemistry, Vol. 1. Amsterdam: Elsevier. 2nd ed.
    [Google Scholar]
  9. 9. 
    Hu G 1994. Stochastic Forces and Nonlinear Systems. Shanghai: Shanghai Sci. Technol. Educ.
    [Google Scholar]
  10. 10. 
    Gardiner CW 1985. Handbook of Stochastic Methods, Vol. 3. Berlin: Springer
    [Google Scholar]
  11. 11. 
    Risken H 1996. Fokker-Planck equation. In The Fokker-Planck Equation, pp. 63–95. Berlin: Springer
    [Google Scholar]
  12. 12. 
    Graham R 1989. Macroscopic potentials, bifurcations and noise in dissipative systems. In Noise in Nonlinear Dynamical Systems, Vol. 1: Theory of Continuous Fokker–Planck Systems, ed. F Moss, PVE McClintock, pp. 225–78. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13. 
    Sasai M, Wolynes PG 2003. Stochastic gene expression as a many-body problem. PNAS 100:2374–79
    [Google Scholar]
  14. 14. 
    Qian H 2009. Entropy demystified: the “thermo”-dynamics of stochastically fluctuating systems. Methods Enzymol. 467:111–34
    [Google Scholar]
  15. 15. 
    Ao P 2008. Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys. 49:1073–90
    [Google Scholar]
  16. 16. 
    Wang J, Xu L, Wang E 2008. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. PNAS 105:12271–76
    [Google Scholar]
  17. 17. 
    Wang J, Zhang K, Wang E 2010. Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. J. Chem. Phys. 133:09B613
    [Google Scholar]
  18. 18. 
    Feng H, Wang J 2011. Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem. J. Chem. Phys. 135:234511
    [Google Scholar]
  19. 19. 
    Wang J, Zhang K, Xu L, Wang E 2011. Quantifying the Waddington landscape and biological paths for development and differentiation. PNAS 108:8257–62
    [Google Scholar]
  20. 20. 
    Feng H, Zhang K, Wang J 2014. Non-equilibrium transition state rate theory. Chem. Sci. 5:3761–69
    [Google Scholar]
  21. 21. 
    Qian H 2014. The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping. Phys. Lett. A 378:609–16
    [Google Scholar]
  22. 22. 
    Wang J 2015. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv. Phys. 64:1–137
    [Google Scholar]
  23. 23. 
    Shav-Tal Y, Singer RH, Darzacq X 2004. Imaging gene expression in single living cells. Nat. Rev. Mol. Cell Biol. 5:855–61
    [Google Scholar]
  24. 24. 
    Gardner TS, Cantor CR, Collins JJ 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–42
    [Google Scholar]
  25. 25. 
    Elowitz MB, Leibler S 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  26. 26. 
    Becskei A, Serrano L 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–93
    [Google Scholar]
  27. 27. 
    Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LL et al. 2005. Engineering Escherichia coli to see light. Nature 438:441–42
    [Google Scholar]
  28. 28. 
    Hooshangi S, Thiberge S, Weiss R 2005. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102:3581–86
    [Google Scholar]
  29. 29. 
    Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J 2008. A fast, robust and tunable synthetic gene oscillator. Nature 456:516–19
    [Google Scholar]
  30. 30. 
    Gonzalez C, Ray JC, Manhart M, Adams RM, Nevozhay D et al. 2015. Stress-response balance drives the evolution of a network module and its host genome. Mol. Syst. Biol. 11:827
    [Google Scholar]
  31. 31. 
    Poelwijk FJ, de Vos MG, Tans SJ 2011. Tradeoffs and optimality in the evolution of gene regulation. Cell 146:462–70
    [Google Scholar]
  32. 32. 
    Farquhar KS, Charlebois DA, Szenk M, Cohen J, Nevozhay D, Balazsi G 2019. Role of network-mediated stochasticity in mammalian drug resistance. Nat. Commun. 10:2766
    [Google Scholar]
  33. 33. 
    Sleight SC, Bartley BA, Lieviant JA, Sauro HM 2010. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4:12
    [Google Scholar]
  34. 34. 
    Ferea TL, Botstein D, Brown PO, Rosenzweig RF 1999. Systematic changes in gene expression patterns following adaptive evolution in yeast. PNAS 96:9721–26
    [Google Scholar]
  35. 35. 
    Lind PA, Libby E, Herzog J, Rainey PB 2019. Predicting mutational routes to new adaptive phenotypes. eLife 8:e38822
    [Google Scholar]
  36. 36. 
    Arnold FH 2015. The nature of chemical innovation: new enzymes by evolution. Q. Rev. Biophys. 48:404–10
    [Google Scholar]
  37. 37. 
    Zhang F, Xu L, Zhang K, Wang E, Wang J 2012. The potential and flux landscape theory of evolution. J. Chem. Phys. 137:065102
    [Google Scholar]
  38. 38. 
    Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN et al. 2004. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys. Biol. 16:031002
    [Google Scholar]
  39. 39. 
    MacNeil LT, Walhout AJM 2011. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21:645–57
    [Google Scholar]
  40. 40. 
    Wright S 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proceedings of the Sixth International Congress of Genetics, Vol. 1, ed. DF Jones, pp. 356–66. Menasha, WI: Brooklyn Bot. Gard.
    [Google Scholar]
  41. 41. 
    Kuchner O, Arnold FH 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15:523–30
    [Google Scholar]
  42. 42. 
    Jiménez JI, Xulvi-Brunet R, Campbell GW, Turk-MacLeod R, Chen IA 2013. Comprehensive experimental fitness landscape and evolutionary network for small RNA. PNAS 110:14984–89
    [Google Scholar]
  43. 43. 
    Sailer ZR, Harms MJ 2017. Molecular ensembles make evolution unpredictable. PNAS 114:11938–43
    [Google Scholar]
  44. 44. 
    Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ 2007. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–86
    [Google Scholar]
  45. 45. 
    Harms MJ, Thornton JW 2014. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512:203–7
    [Google Scholar]
  46. 46. 
    Sailer ZR, Harms MJ 2017. High-order epistasis shapes evolutionary trajectories. PLOS Comput. Biol. 13:e1005541
    [Google Scholar]
  47. 47. 
    Aharoni A, Gaidukov L, Khersonsky O, Gould SM, Roodveldt C, Tawfik DS 2005. The “evolvability” of promiscuous protein functions. Nat. Genet. 37:73–76
    [Google Scholar]
  48. 48. 
    Becskei A, Séraphin B, Serrano L 2001. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20:2528–35
    [Google Scholar]
  49. 49. 
    Ferrell JE Jr 2012. Bistability, bifurcations, and Waddington's epigenetic landscape. Curr. Biol. 22:R458–66
    [Google Scholar]
  50. 50. 
    Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G 2012. Mapping the environmental fitness landscape of a synthetic gene circuit. PLOS Comput. Biol. 8:e1002480
    [Google Scholar]
  51. 51. 
    Acar M, Becskei A, van Oudenaarden A 2005. Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–32
    [Google Scholar]
  52. 52. 
    Isaacs FJ, Hasty J, Cantor CR, Collins JJ 2003. Prediction and measurement of an autoregulatory genetic module. PNAS 100:7714–19
    [Google Scholar]
  53. 53. 
    Jackson EA 1992. Perspectives of Nonlinear Dynamics, Vol. 1. Cambridge, UK: Cambridge Univ. Press Arch.
    [Google Scholar]
  54. 54. 
    Wang J, Li C, Wang E 2010. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. PNAS 107:8195–200
    [Google Scholar]
  55. 55. 
    Wu W, Wang J 2014. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems. J. Chem. Phys. 141:105104
    [Google Scholar]
  56. 56. 
    Xu L, Shi H, Feng H, Wang J 2012. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. J. Chem. Phys. 136:165102
    [Google Scholar]
  57. 57. 
    Xu L, Zhang F, Wang E, Wang J 2013. The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca2+ oscillation. Nonlinearity 26:2
    [Google Scholar]
  58. 58. 
    Xu L, Zhang F, Zhang K, Wang E, Wang J 2014. The potential and flux landscape theory of ecology. PLOS ONE 9:e86746
    [Google Scholar]
  59. 59. 
    Sella G, Hirsh AE 2005. The application of statistical physics to evolutionary biology. PNAS 102:9541–46
    [Google Scholar]
  60. 60. 
    Barton N, Coe J 2009. On the application of statistical physics to evolutionary biology. J. Theor. Biol. 259:317–24
    [Google Scholar]
  61. 61. 
    de Vladar HP, Barton NH 2011. The contribution of statistical physics to evolutionary biology. Trends Ecol. Evol. 26:424–32
    [Google Scholar]
  62. 62. 
    Echave J, Wilke CO 2017. Biophysical models of protein evolution: understanding the patterns of evolutionary sequence divergence. Annu. Rev. Biophys. 46:85–103
    [Google Scholar]
  63. 63. 
    Agozzino L, Dill KA 2018. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. PNAS 115:9092–97
    [Google Scholar]
  64. 64. 
    Orr HA 2009. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10:531–39
    [Google Scholar]
  65. 65. 
    Orr HA 2015. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:119–27
    [Google Scholar]
  66. 66. 
    Sawle L, Ghosh K 2011. How do thermophilic proteins and proteomes withstand high temperature? BiophysJ. 101:217–27.
    [Google Scholar]
  67. 67. 
    Dill KA, Ghosh K, Schmit JD 2011. Physical limits of cells and proteomes. PNAS 108:17876–82
    [Google Scholar]
  68. 68. 
    Ghosh K, de Graff AM, Sawle L, Dill KA 2016. Role of proteome physical chemistry in cell behavior. J. Phys. Chem. B 120:9549–63
    [Google Scholar]
  69. 69. 
    Levy SF, Ziv N, Siegal ML 2012. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLOS Biol. 1:e1001325
    [Google Scholar]
  70. 70. 
    Charlebois DA, Hauser K, Marshall S, Balazsi G 2018. Multiscale effects of heating and cooling on genes and gene networks. PNAS 115:E10797–806
    [Google Scholar]
  71. 71. 
    Blaby IK, Lyons BJ, Wroclawska-Hughes E, Phillips GC, Pyle TP et al. 2012. Experimental evolution of a facultative thermophile from a mesophilic ancestor. Appl. Environ. Microbiol. 78:144–55
    [Google Scholar]
  72. 72. 
    Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH 2005. Why highly expressed proteins evolve slowly. PNAS 102:14338–43
    [Google Scholar]
  73. 73. 
    Zeldovich KB, Chen P, Shakhnovich EI 2007. Protein stability imposes limits on organism complexity and speed of molecular evolution. PNAS 104:16152–57
    [Google Scholar]
  74. 74. 
    Drummond DA, Wilke CO 2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–52
    [Google Scholar]
  75. 75. 
    Yang JR, Zhuang SM, Zhang J 2010. Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Mol. Syst. Biol. 6:421
    [Google Scholar]
  76. 76. 
    Serohijos AWR, Lee SYR, Shakhnovich EI 2013. Highly abundant proteins favor more stable 3D structures in yeast. Biophys. J. 104:L1–3
    [Google Scholar]
  77. 77. 
    Sikosek T, Chan HS 2014. Biophysics of protein evolution and evolutionary protein biophysics. J. R. Soc. Interface 11:20140419
    [Google Scholar]
  78. 78. 
    Serohijos AWR, Rimas Z, Shakhnovich EI 2012. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2:249–56
    [Google Scholar]
  79. 79. 
    Yang JR, Liao BY, Zhuang SM, Zhang J 2012. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. PNAS 109:E831–40
    [Google Scholar]
  80. 80. 
    Levy ED, De S, Teichmann SA 2012. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. PNAS 109:20461–66
    [Google Scholar]
  81. 81. 
    Wylie CS, Shakhnovich EI 2011. A biophysical protein folding model accounts for most mutational fitness effects in viruses. PNAS 108:9916–21
    [Google Scholar]
  82. 82. 
    Santra M, Farrell DW, Dill KA 2017. Bacterial proteostasis balances energy and chaperone utilization efficiently. PNAS 114:E2654–61
    [Google Scholar]
  83. 83. 
    Maitra A, Dill KA 2015. Bacterial growth laws reflect the evolutionary importance of energy efficiency. PNAS 112:406–11
    [Google Scholar]
  84. 84. 
    Maitra A, Dill KA 2016. Modeling the overproduction of ribosomes when antibacterial drugs act on cells. Biophys. J. 110:743–48
    [Google Scholar]
  85. 85. 
    Wagoner JA, Dill KA 2019. Mechanisms for achieving high speed and efficiency in biomolecular machines. PNAS 116:5902–7
    [Google Scholar]
  86. 86. 
    Wagoner JA, Dill KA 2019. Opposing pressures of speed and efficiency guide the evolution of molecular machines. Mol. Biol. Evol. 36:2813–22
    [Google Scholar]
  87. 87. 
    Schuech R, Hoehfurtner T, Smith DJ, Humphries S 2019. Motile curved bacteria are Pareto-optimal. PNAS 116:14440–47
    [Google Scholar]
  88. 88. 
    Eames M, Kortemme T 2012. Cost-benefit tradeoffs in engineered lac operons. Science 336:911–15
    [Google Scholar]
  89. 89. 
    Perfeito L, Ghozzi S, Berg J, Schnetz K, Lässig M 2011. Nonlinear fitness landscape of a molecular pathway. PLOS Genet. 7:e1002160
    [Google Scholar]
  90. 90. 
    Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balazsi G 2012. Mapping the environmental fitness landscape of a synthetic gene circuit. PLOS Comput. Biol. 8:e1002480
    [Google Scholar]
  91. 91. 
    Tan C, Marguet P, You L 2009. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5:842–48
    [Google Scholar]
  92. 92. 
    Gill G, Ptashne M 1988. Negative effect of the transcriptional activator GAL4. Nature 334:721–24
    [Google Scholar]
  93. 93. 
    Nikolados EM, Weiße AY, Ceroni F, Oyarzun DA 2019. Growth defects and loss-of-function in synthetic gene circuits. ACS Synth. Biol. 8:1231–40
    [Google Scholar]
  94. 94. 
    Deris JB, Kim M, Zhang Z, Okano H, Hermsen R et al. 2013. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342:1237435
    [Google Scholar]
  95. 95. 
    Hasty J, McMillen D, Collins JJ 2002. Engineered gene circuits. Nature 420:224–30
    [Google Scholar]
  96. 96. 
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5:593–99
    [Google Scholar]
  97. 97. 
    Goldsmith M, Tawfik DS 2017. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47:140–50
    [Google Scholar]
  98. 98. 
    Ray JC, Wickersheim ML, Jalihal AP, Adeshina YO, Cooper TF, Balazsi G 2016. Cellular growth arrest and persistence from enzyme saturation. PLOS Comput. Biol. 12:e1004825
    [Google Scholar]
  99. 99. 
    González C, Ray JCJ, Manhart M, Adams RM, Nevozhay D et al. 2015. Stress-response balance drives the evolution of a network module and its host genome. Mol. Syst. Biol. 11:827
    [Google Scholar]
  100. 100. 
    Van Valen L 1973. A new evolutionary law. Evol. Theory 1:1–30
    [Google Scholar]
  101. 101. 
    Rice SH 2004. Evolutionary Theory: Mathematical and Conceptual Foundations Sunderland, MA: Sinauer
  102. 102. 
    Waddington CH 2014 (1957). The Strategy of the Genes London: Routledge
  103. 103. 
    Zhang B, Wolynes PG 2015. Topology, structures, and energy landscapes of human chromosomes. PNAS 112:6062–67
    [Google Scholar]
  104. 104. 
    Huang S, Guo Y, May G, Enver T 2007. Bifurcation dynamics of cell fate decision in bipotent progenitor cells. Dev. Biol. 305:695–713
    [Google Scholar]
  105. 105. 
    Feng H, Wang J 2012. A new mechanism of stem cell differentiation through slow binding/unbinding of regulators to genes. Sci. Rep. 2:550
    [Google Scholar]
  106. 106. 
    Li C, Wang J 2013. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths. PLOS Comput. Biol. 9:e1003165
    [Google Scholar]
  107. 107. 
    Li C, Wang J 2013. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. J. R. Soc. Interface 10:20130787
    [Google Scholar]
  108. 108. 
    Xu L, Zhang K, Wang J 2014. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PLOS ONE 9:e105216
    [Google Scholar]
  109. 109. 
    Huang S 2009. Reprogramming cell fates: reconciling rarity with robustness. Bioessays 31:546–60
    [Google Scholar]
  110. 110. 
    Wang J, Xu L, Wang E, Huang S 2010. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99:29–39
    [Google Scholar]
  111. 111. 
    Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981–87
    [Google Scholar]
  112. 112. 
    Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L et al. 2018. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360:eaar5780
    [Google Scholar]
  113. 113. 
    Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF 2018. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360:eaar3131
    [Google Scholar]
  114. 114. 
    Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V et al. 2019. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176:928–43
    [Google Scholar]
  115. 115. 
    La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H et al. 2018. RNA velocity of single cells. Nature 560:494–98
    [Google Scholar]
  116. 116. 
    Li C, Wang J 2014. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. PNAS 111:14130–35
    [Google Scholar]
  117. 117. 
    Fisher R 1958 (1930). The Genetical Theory of Natural Selection Oxford, UK: Clarendon
/content/journals/10.1146/annurev-chembioeng-011720-103410
Loading
/content/journals/10.1146/annurev-chembioeng-011720-103410
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error