1932

Abstract

Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-010920
2021-06-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-092120-010920.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-010920&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Taylor HS. 1925. A theory of the catalytic surface. Proc. R. Soc. Lond. A 108:745105–11
    [Google Scholar]
  2. 2. 
    Boudart M, Aldag A, Benson JE, Dougharty NA, Girvin Harkins C 1966. On the specific activity of platinum catalysts. J. Catal. 6:192–99
    [Google Scholar]
  3. 3. 
    Boudart M. 1995. Turnover rates in heterogeneous catalysis. Chem. Rev. 95:3661–66
    [Google Scholar]
  4. 4. 
    Hinshelwood CN. 1940. The Kinetics of Chemical Change Oxford, UK: Clarendon
  5. 5. 
    Langmuir I. 1922. Part II.—“Heterogeneous reactions.” Chemical reactions on surfaces. Trans. Faraday Soc. 17:607–20
    [Google Scholar]
  6. 6. 
    Hougen OA, Watson KM. 1943. Solid catalysts and reaction rates—general principles. Ind. Eng. Chem. 35:5529–41
    [Google Scholar]
  7. 7. 
    Wintterlin J, Völkening S, Janssens TVW, Zambelli T, Ertl G. 1997. Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278:53451931–34
    [Google Scholar]
  8. 8. 
    Topsøe H, Mavrikakis M. 2012. A conversation with Haldor Topsøe. Annu. Rev. Chem. Biomol. Eng. 3:1–10
    [Google Scholar]
  9. 9. 
    Weckhuysen BM. 2003. Determining the active site in a catalytic process: Operando spectroscopy is more than a buzzword. Phys. Chem. Chem. Phys. 5:204351–60
    [Google Scholar]
  10. 10. 
    Topsøe H. 2003. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216:1–2155–64
    [Google Scholar]
  11. 11. 
    Kondrat SA, van Bokhoven JA. 2019. A perspective on counting catalytic active sites and rates of reaction using X-ray spectroscopy. Top. Catal. 62:171218–27
    [Google Scholar]
  12. 12. 
    Zhang Z, Zandkarimi B, Alexandrova AN. 2020. Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces. Acc. Chem. Res. 53:2447–58
    [Google Scholar]
  13. 13. 
    Zugic B, Wang L, Heine C, Zakharov DN, Lechner BAJ et al. 2017. Dynamic restructuring drives catalytic activity on nanoporous gold-silver alloy catalysts. Nat. Mater. 16:5558–64
    [Google Scholar]
  14. 14. 
    Wang Y-G, Mei D, Glezakou V-A, Li J, Rousseau R 2015. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6:6511
    [Google Scholar]
  15. 15. 
    Resasco J, Dai S, Graham G, Pan X, Christopher P. 2018. Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J. Phys. Chem. C 122:4425143–57
    [Google Scholar]
  16. 16. 
    Tang Y, Asokan C, Xu M, Graham GW, Pan X et al. 2019. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10:4488
    [Google Scholar]
  17. 17. 
    Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ et al. 2017. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357:6354898–903
    [Google Scholar]
  18. 18. 
    Madon RJ, O'Connell JP, Boudart M 1978. Catalytic hydrogenation of cyclohexene: part II. Liquid phase reaction on supported platinum in a gradientless slurry reactor. AIChE J 24:5904–11
    [Google Scholar]
  19. 19. 
    Shekhar M, Wang J, Lee W-S, Williams WD, Kim SM et al. 2012. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134:104700–8
    [Google Scholar]
  20. 20. 
    Flytzani-Stephanopoulos M, Gates BC. 2012. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3:545–74
    [Google Scholar]
  21. 21. 
    Wang A, Li J, Zhang T. 2018. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2:665–81
    [Google Scholar]
  22. 22. 
    Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. 2020. Single-atom alloy catalysis. Chem. Rev. 120:2112044–88
    [Google Scholar]
  23. 23. 
    Copéret C. 2019. Single-sites and nanoparticles at tailored interfaces prepared via surface organometallic chemistry from thermolytic molecular precursors. Acc. Chem. Res. 52:61697–708
    [Google Scholar]
  24. 24. 
    Liu L, Corma A. 2020. Evolution of isolated atoms and clusters in catalysis. Trends Chem 2:4383–400
    [Google Scholar]
  25. 25. 
    Kosinov N, Liu C, Hensen EJM, Pidko EA. 2018. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30:103177–98
    [Google Scholar]
  26. 26. 
    Haag WO, Lago RM, Weisz PB. 1984. The active site of acidic aluminosilicate catalysts. Nature 309:5969589–91
    [Google Scholar]
  27. 27. 
    Haag WO. 1994. Catalysis by zeolites—science and technology. Stud. Surf. Sci. Catal. 84:1375–94
    [Google Scholar]
  28. 28. 
    Gounder R, Iglesia E. 2012. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45:2229–38
    [Google Scholar]
  29. 29. 
    Gounder R, Iglesia E. 2013. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 49:343491–509
    [Google Scholar]
  30. 30. 
    Di Iorio JR, Gounder R. 2016. Controlling the isolation and pairing of aluminum in chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chem. Mater. 28:72236–47
    [Google Scholar]
  31. 31. 
    Hoffman AJ, Bates JS, Di Iorio JR, Nystrom SV, Nimlos CT et al. 2020. Rigid arrangements of ionic charge in zeolite frameworks conferred by specific Al distributions preferentially stabilize alkanol dehydration transition states. Angew. Chem. Int. Ed. 59:4218686–94
    [Google Scholar]
  32. 32. 
    Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. 2020. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal 10:169476–95
    [Google Scholar]
  33. 33. 
    Luo HY, Lewis JD, Román-Leshkov Y. 2016. Lewis acid zeolites for biomass conversion: perspectives and challenges on reactivity, synthesis, and stability. Annu. Rev. Chem. Biomol. Eng. 7:663–92
    [Google Scholar]
  34. 34. 
    Li H, Paolucci C, Khurana I, Wilcox LN, Göltl F et al. 2019. Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13. Chem. Sci. 10:82373–84
    [Google Scholar]
  35. 35. 
    Li S, Wang Y, Wu T, Schneider WF. 2018. First-principles analysis of site- and condition-dependent Fe speciation in SSZ-13 and implications for catalyst optimization. ACS Catal 8:1110119–30
    [Google Scholar]
  36. 36. 
    Pidko EA, Hensen EJM, Van Santen RA. 2012. Self-organization of extraframework cations in zeolites. Proc. R. Soc. A 468:21432070–86
    [Google Scholar]
  37. 37. 
    Bols ML, Rhoda HM, Snyder BER, Solomon EI, Pierloot K et al. 2020. Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fe-zeolites for redox catalysts. Dalton Trans 49:14749–57
    [Google Scholar]
  38. 38. 
    Paolucci C, Di Iorio JR, Schneider WF, Gounder R. 2020. Solvation and mobilization of copper active sites in zeolites by ammonia: consequences for the catalytic reduction of nitrogen oxides. Acc. Chem. Res. 53:91881–92
    [Google Scholar]
  39. 39. 
    Shamzhy M, Opanasenko M, Concepción P, Martínez A. 2019. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 48:41095–149
    [Google Scholar]
  40. 40. 
    Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H et al. 2016. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:6295150–54
    [Google Scholar]
  41. 41. 
    Hansen TW, DeLaRiva AT, Challa SR, Datye AK. 2013. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening?. Acc. Chem. Res. 46:81720–30
    [Google Scholar]
  42. 42. 
    Liu L, Corma A. 2018. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118:104981–5079
    [Google Scholar]
  43. 43. 
    Moliner M, Gabay JE, Kliewer CE, Carr RT, Guzman J et al. 2016. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138:4815743–50
    [Google Scholar]
  44. 44. 
    Moliner M, Gabay J, Kliewer C, Serna P, Corma A. 2018. Trapping of metal atoms and metal clusters by chabazite under severe redox stress. ACS Catal 8:109520–28
    [Google Scholar]
  45. 45. 
    Liu L, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P et al. 2020. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J. Catal. 391:11–24
    [Google Scholar]
  46. 46. 
    Liu L, Zakharov DN, Arenal R, Concepcion P, Stach EA, Corma A. 2018. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9:574
    [Google Scholar]
  47. 47. 
    Guan E, Ciston J, Bare SR, Runnebaum RC, Katz A et al. 2020. Supported metal pair-site catalysts. ACS Catal 10:169065–85
    [Google Scholar]
  48. 48. 
    Liang AJ, Gates BC. 2008. Time-resolved structural characterization of formation and break-up of rhodium clusters supported in highly dealuminated Y zeolite. J. Phys. Chem. C 112:4618039–49
    [Google Scholar]
  49. 49. 
    Uzun A, Gates BC. 2008. Real-time characterization of formation and breakup of iridium clusters in highly dealuminated zeoliteY. Angew. Chem. Int. Ed. 47:489245–48
    [Google Scholar]
  50. 50. 
    Serna P, Gates BC. 2011. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133:134714–17
    [Google Scholar]
  51. 51. 
    Uzun A, Gates BC. 2009. Dynamic structural changes in a molecular zeolite-supported iridium catalyst for ethene hydrogenation. J. Am. Chem. Soc. 131:4315887–94
    [Google Scholar]
  52. 52. 
    Fang C-Y, Zhang S, Hu Y, Vasiliu M, Perez-Aguilar JE et al. 2019. Reversible metal aggregation and redispersion driven by the catalytic water gas shift half-reactions: interconversion of single-site rhodium complexes and tetrarhodium clusters in zeolite HY. ACS Catal 9:43311–21
    [Google Scholar]
  53. 53. 
    Satsuma A, Shibata J, Shimizu K-i, Hattori T. 2005. Ag clusters as active species for HC-SCR over Ag-zeolites. Catal. Surv. Asia 9:75–85
    [Google Scholar]
  54. 54. 
    Shibata J, Shimizu K, Takada Y, Shichi A, Yoshida H et al. 2004. Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. J. Catal. 227:2367–74
    [Google Scholar]
  55. 55. 
    Gounder R, Moini A. 2019. Automotive NOx abatement using zeolite-based technologies. React. Chem. Eng. 4:6966–68
    [Google Scholar]
  56. 56. 
    Lambert CK. 2019. Perspective on SCR NOx control for diesel vehicles. React. Chem. Eng. 4:6969–74
    [Google Scholar]
  57. 57. 
    Murata Y, Morita T, Wada K, Ohno H. 2015. NOx trap three-way catalyst (N-TWC) concept: TWC with NOx adsorption properties at low temperatures for cold-start emission control. SAE Int. J. Fuels Lubr. 8:2454–59
    [Google Scholar]
  58. 58. 
    Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T et al. 2014. Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J. Catal. 312:87–97
    [Google Scholar]
  59. 59. 
    Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H et al. 2016. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138:186028–48
    [Google Scholar]
  60. 60. 
    Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C et al. 2016. The Cu-CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J. Am. Chem. Soc. 138:3712025–28
    [Google Scholar]
  61. 61. 
    Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB et al. 2015. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal 5:52832–45
    [Google Scholar]
  62. 62. 
    Giordanino F, Borfecchia E, Lomachenko KA, Lazzarini A, Agostini G et al. 2014. Interaction of NH3 with Cu-SSZ-13 catalyst: a complementary FTIR, XANES, and XES study. J. Phys. Chem. Lett. 5:91552–59
    [Google Scholar]
  63. 63. 
    Psofogiannakis GM, McCleerey JF, Jaramillo E, van Duin ACT. 2015. ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J. Phys. Chem. C 119:126678–86
    [Google Scholar]
  64. 64. 
    Kerkeni B, Berthout D, Berthomieu D, Doronkin DE, Casapu M et al. 2018. Copper coordination to water and ammonia in CuII-exchanged SSZ-13: atomistic insights from DFT calculations and in situ XAS experiments. J. Phys. Chem. C 122:2916741–55
    [Google Scholar]
  65. 65. 
    Shwan S, Skoglundh M, Lundegaard LF, Tiruvalam RR, Janssens TVW et al. 2015. Solid-state ion-exchange of copper into zeolites facilitated by ammonia at low temperature. ACS Catal 5:116–19
    [Google Scholar]
  66. 66. 
    Chen L, Jansson J, Skoglundh M, Grönbeck H. 2016. Mechanism for solid-state ion exchange of Cu+ into zeolites. J. Phys. Chem. C 120:5129182–89
    [Google Scholar]
  67. 67. 
    Maier SM, Jentys A, Janousch M, van Bokhoven JA, Lercher JA. 2012. Unique dynamic changes of Fe cationic species under NH3-SCR conditions. J. Phys. Chem. C 116:95846–56
    [Google Scholar]
  68. 68. 
    Bal R, Tada M, Sasaki T, Iwasawa Y. 2006. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed. 45:3448–52
    [Google Scholar]
  69. 69. 
    Tada M, Bal R, Sasaki T, Uemura Y, Inada Y et al. 2007. Novel Re-cluster/HZSM-5 catalyst for highly selective phenol synthesis from benzene and O2: performance and reaction mechanism. J. Phys. Chem. C 111:2710095–104
    [Google Scholar]
  70. 70. 
    Stangland EE. 2018. Shale gas implications for C2-C3 olefin production: incumbent and future technology. Annu. Rev. Chem. Biomol. Eng. 9:341–64
    [Google Scholar]
  71. 71. 
    Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW. 2019. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 3:4223–49
    [Google Scholar]
  72. 72. 
    Olivier-Bourbigou H, Breuil PAR, Magna L, Michel T, Espada Pastor MF, Delcroix D 2020. Nickel catalyzed olefin oligomerization and dimerization. Chem. Rev. 120:157919–83
    [Google Scholar]
  73. 73. 
    Joshi R, Saxena A, Gounder R. 2020. Mechanistic insights into alkene chain growth reactions catalyzed by nickel active sites on ordered microporous and mesoporous supports. Catal. Sci. Technol. 10:7101–23
    [Google Scholar]
  74. 74. 
    Brogaard RY, Kømurcu M, Dyballa MM, Botan A, Van Speybroeck V et al. 2019. Ethene dimerization on zeolite-hosted Ni ions: reversible mobilization of the active site. ACS Catal 9:65645–50
    [Google Scholar]
  75. 75. 
    Joshi R, Zhang G, Miller JT, Gounder R. 2018. Evidence for the coordination-insertion mechanism of ethene dimerization at nickel cations exchanged onto beta molecular sieves. ACS Catal 8:1211407–22
    [Google Scholar]
  76. 76. 
    Gu Y, Epling WS. 2019. Passive NOx adsorber: an overview of catalyst performance and reaction chemistry. Appl. Catal. A 570:1–14
    [Google Scholar]
  77. 77. 
    Mandal K, Gu Y, Westendorff KS, Li S, Pihl JA et al. 2020. Condition-dependent Pd speciation and NO adsorption in Pd/zeolites. ACS Catal 10:2112801–18
    [Google Scholar]
  78. 78. 
    Eckert M, Fleishmann G, Jira R, Bolt H, Golka K. 2012. Acetaldehyde. In Ullman's Encyclopedia of Industrial Chemistry197–200 Hoboken, NJ: Wiley Anal. Sci.
    [Google Scholar]
  79. 79. 
    Espeel PH, De Peuter G, MC Tielen, Jacobs PA. 1994. Mechanism of the Wacker oxidation of alkenes over Cu-Pd-exchanged Y zeolites. J. Phys. Chem. 98:4411588–96
    [Google Scholar]
  80. 80. 
    Keith JA, Nielsen RJ, Oxgaard J, Goddard WA. 2007. Unraveling the Wacker oxidation mechanisms. J. Am. Chem. Soc. 129:4112342–43
    [Google Scholar]
  81. 81. 
    Imbao J, van Bokhoven JA, Clark A, Nachtegaal M 2020. Elucidating the mechanism of heterogeneous Wacker oxidation over Pd-Cu/zeolite Y by transient XAS. Nat. Commun. 11:1118
    [Google Scholar]
  82. 82. 
    Dinh KT, Sullivan MM, Serna P, Meyer RJ, Dincă M, Román-Leshkov Y. 2018. Viewpoint on the partial oxidation of methane to methanol using Cu- and Fe-exchanged zeolites. ACS Catal 8:98306–13
    [Google Scholar]
  83. 83. 
    Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J et al. 2014. Copper active sites in biology. Chem. Rev. 114:73659–853
    [Google Scholar]
  84. 84. 
    Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF et al. 2009. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. PNAS 106:4518908–13
    [Google Scholar]
  85. 85. 
    Vanelderen P, Hadt RG, Smeets PJ, Solomon EI, Schoonheydt RA, Sels BF. 2011. Cu-ZSM-5: a biomimetic inorganic model for methane oxidation. J. Catal. 284:2157–64
    [Google Scholar]
  86. 86. 
    Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA et al. 2015. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6:7546
    [Google Scholar]
  87. 87. 
    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA. 2005. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127:51394–95
    [Google Scholar]
  88. 88. 
    Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, van Bokhoven JA. 2020. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem. Soc. Rev. 49:51449–86
    [Google Scholar]
  89. 89. 
    Dinh KT, Sullivan MM, Narsimhan K, Serna P, Meyer RJ et al. 2019. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141:2911641–50
    [Google Scholar]
  90. 90. 
    Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y. 2016. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2:6424–29
    [Google Scholar]
  91. 91. 
    Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT. 2012. Low absorption vitreous carbon reactors for operandoXAS: a case study on Cu/Zeolites for selective catalytic reduction of NOx by NH3. Phys. Chem. Chem. Phys. 14:72229–38
    [Google Scholar]
  92. 92. 
    Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT et al. 2014. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13. Angew. Chem. Int. Ed. 53:4411828–33
    [Google Scholar]
  93. 93. 
    Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF. 2014. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 319:1–14
    [Google Scholar]
  94. 94. 
    Gao F, Mei D, Wang Y, Szanyi J, Peden CHF. 2017. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J. Am. Chem. Soc. 139:134935–42
    [Google Scholar]
  95. 95. 
    Jones CB, Khurana I, Krishna SH, Shih AJ, Delgass WN et al. 2020. Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. J. Catal. 389:140–49
    [Google Scholar]
  96. 96. 
    Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD et al. 2017. Copper-oxygen complexes revisited: structures, spectroscopy, and reactivity. Chem. Rev. 117:32059–107
    [Google Scholar]
  97. 97. 
    Mirica LM, Ottenwaelder X, Stack TDP. 2004. Structure and spectroscopy of copper−dioxygen complexes. Chem. Rev. 104:21013–46
    [Google Scholar]
  98. 98. 
    McCann SD, Stahl SS. 2015. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48:61756–66
    [Google Scholar]
  99. 99. 
    Hoover JM, Ryland BL, Stahl SS. 2013. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation. J. Am. Chem. Soc. 135:62357–67
    [Google Scholar]
  100. 100. 
    Ryan MC, Kim YJ, Gerken JB, Wang F, Aristov MM et al. 2020. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N-N bonds. Chem. Sci. 11:41170–75
    [Google Scholar]
  101. 101. 
    Negri C, Selleri T, Borfecchia E, Martini A, Krill A et al. 2020. Structure and reactivity of oxygen-bridged diamino dicopper (II) complexes in Cu-ion-exchanged chabazite catalyst for NH3-mediated selective catalytic reduction. J. Am. Chem. Soc. 142:3715884–96
    [Google Scholar]
  102. 102. 
    Liu C, Kubota H, Amada T, Kon K, Toyao T et al. 2020. In situ spectroscopic studies on the redox cycle of NH3-SCR over Cu-CHA zeolites. ChemCatChem 12:113050–59
    [Google Scholar]
  103. 103. 
    Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA et al. 2012. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J. Phys. Chem. C 116:74809–18
    [Google Scholar]
  104. 104. 
    Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R et al. 2017. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9:117–29
    [Google Scholar]
  105. 105. 
    Doronkin DE, Casapu M, Günter T, Müller O, Frahm R, Grunwaldt J-D. 2014. Operando spatially- and time-resolved XAS study on zeolite catalysts for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C 118:1910204–12
    [Google Scholar]
  106. 106. 
    Krishna SH, Jones CB, Miller JT, Ribeiro FH, Gounder R. 2020. Combining kinetics and operando spectroscopy to interrogate the mechanism and active site requirements of NOx selective catalytic reduction with NH3 on Cu-zeolites. J. Phys. Chem. Lett. 11:135029–36
    [Google Scholar]
  107. 107. 
    Günter T, Doronkin DE, Boubnov A, Carvalho HWP, Casapu M, Grunwaldt JD. 2016. The SCR of NOx with NH3 examined by novel X-ray emission and X-ray absorption methods. Top. Catal. 59:10866–74
    [Google Scholar]
  108. 108. 
    Martini A, Signorile M, Negri C, Kvande K, Lomachenko KA et al. 2020. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Phys. Chem. Chem. Phys. 22:3418950–63
    [Google Scholar]
  109. 109. 
    Sushkevich VL, Safonova OV, Palagin D, Newton MA, van Bokhoven J. 2020. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS. Chem. Sci. 11:205299–312
    [Google Scholar]
  110. 110. 
    Collinge G, Yuk SF, Nguyen M-T, Lee M-S, Glezakou V-A, Rousseau R. 2020. Effect of collective dynamics and anharmonicity on entropy in heterogenous catalysis: building the case for advanced molecular simulations. ACS Catal 10:169236–60
    [Google Scholar]
  111. 111. 
    Villamaina R, Iacobone U, Nova I, Ruggeri MP, Collier J et al. 2020. Low-T CO oxidation over Cu−CHA catalysts in presence of NH3: probing the mobility of CuII ions and the role of multinuclear CuII species. ChemCatChem 12:153795
    [Google Scholar]
  112. 112. 
    Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R. 2018. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal 8:2770–84
    [Google Scholar]
  113. 113. 
    Le TT, Chawla A, Rimer JD. 2020. Impact of acid site speciation and spatial gradients on zeolite catalysis. J. Catal. 391:56–68
    [Google Scholar]
  114. 114. 
    Rimer JD, Chawla A, Le TT. 2018. Crystal engineering for catalysis. Annu. Rev. Chem. Biomol. Eng. 9:283–309
    [Google Scholar]
  115. 115. 
    Urakawa A, Bürgi T, Baiker A. 2008. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: principle and application in heterogeneous catalysis. Chem. Eng. Sci. 63:204902–9
    [Google Scholar]
  116. 116. 
    Müller P, Hermans I. 2017. Applications of modulation excitation spectroscopy in heterogeneous catalysis. Ind. Eng. Chem. Res. 56:51123–36
    [Google Scholar]
  117. 117. 
    Davis R. 2018. Turnover rates on complex heterogeneous catalysts. AIChE J 64:113778–85
    [Google Scholar]
  118. 118. 
    Ledesma C, Yang J, Chen D, Holmen A 2014. Recent approaches in mechanistic and kinetic studies of catalytic reactions using SSITKA technique. ACS Catal 4:124527–47
    [Google Scholar]
  119. 119. 
    Shannon SL, Goodwin JG. 1995. Characterization of catalytic surfaces by isotopic-transient kinetics during steady-state reaction. Chem. Rev. 95:3677–95
    [Google Scholar]
  120. 120. 
    Reuter K, Scheffler M. 2006. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys. Rev. B 73:4045433
    [Google Scholar]
  121. 121. 
    Reuter K 2011. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: concepts, status, and frontiers. Modeling and Simulation of Heterogeneous Catalytic Reactions O Deutschmann 71–111 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  122. 122. 
    Stamatakis M, Vlachos DG. 2012. Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: current status and frontiers. ACS Catal 2:122648–63
    [Google Scholar]
  123. 123. 
    Stamatakis M. 2014. Kinetic modelling of heterogeneous catalytic systems. J. Phys.: Condens. Matter. 27:1013001
    [Google Scholar]
  124. 124. 
    Motagamwala AH, Ball MR, Dumesic JA. 2018. Microkinetic analysis and scaling relations for catalyst design. Annu. Rev. Chem. Biomol. Eng. 9:413–50
    [Google Scholar]
  125. 125. 
    Bell AT, Head-Gordon M. 2011. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2:453–77
    [Google Scholar]
  126. 126. 
    Greeley J. 2016. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7:605–35
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-010920
Loading
/content/journals/10.1146/annurev-chembioeng-092120-010920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error