1932

Abstract

In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092320-120148
2022-06-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092320-120148.html?itemId=/content/journals/10.1146/annurev-chembioeng-092320-120148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD. 2017. 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–43
    [Google Scholar]
  2. 2.
    Liu DF, Ma XL, Xi HX, Lin YS. 2014. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451:85–93
    [Google Scholar]
  3. 3.
    Koros WJ, Zhang C. 2017. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16:289–97
    [Google Scholar]
  4. 4.
    Koros WJ, Lively RP. 2012. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AIChE J 58:2624–33
    [Google Scholar]
  5. 5.
    Shekhah O, Chernikova V, Belmabkhout Y, Eddaoudi M. 2018. Metal–organic framework membranes: from fabrication to gas separation. Crystals 8:412
    [Google Scholar]
  6. 6.
    Pan Y, Li T, Lestari G, Lai Z. 2012. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–91:93–98
    [Google Scholar]
  7. 7.
    Brown AJ, Brunelli NA, Eum K, Rashidi F, Johnson JR et al. 2014. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345:72–75
    [Google Scholar]
  8. 8.
    Venna SR, Carreon MA. 2015. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124:3–19
    [Google Scholar]
  9. 9.
    Kwon HT, Jeong H-K, Lee AS, An HS, Lee JS. 2015. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137:12304–11
    [Google Scholar]
  10. 10.
    Caro J. 2011. Are MOF membranes better in gas separation than those made of zeolites?. Curr. Opin. Chem. Eng. 1:77–83
    [Google Scholar]
  11. 11.
    Gucuyener C, van den Bergh J, Gascon J, Kapteijn F. 2010. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132:17704–6
    [Google Scholar]
  12. 12.
    Ma XL, Kumar P, Mittal N, Khlyustova A, Daoutidis P et al. 2018. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361:1008–11
    [Google Scholar]
  13. 13.
    Ma X, Liu D. 2019. Zeolitic imidazolate framework membranes for light olefin/paraffin separation. Crystals 9:14
    [Google Scholar]
  14. 14.
    Cacho-Bailo F, Caro G, Etxeberría-Benavides M, Karvan O, Téllez C, Coronas J. 2015. High selectivity ZIF-93 hollow fiber membranes for gas separation. Chem. Commun. 51:11283–85
    [Google Scholar]
  15. 15.
    Wang N, Liu Y, Qiao Z, Diestel L, Zhou J et al. 2015. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J. Mater. Chem. A 3:4722–28
    [Google Scholar]
  16. 16.
    Huang K, Li Q, Liu G, Shen J, Guan K, Jin W 2015. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion. ACS Appl. Mater. Interfaces 7:16157–60
    [Google Scholar]
  17. 17.
    Li Y, Liang F, Bux H, Yang W, Caro J 2010. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 354:48–54
    [Google Scholar]
  18. 18.
    Nian P, Liu H, Zhang X. 2019. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. J. Membr. Sci. 573:200–9
    [Google Scholar]
  19. 19.
    Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J 2012. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem. Commun. 48:10981–83
    [Google Scholar]
  20. 20.
    Li KH, Olson DH, Seidel J, Emge TJ, Gong HW et al. 2009. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 131:10368–69
    [Google Scholar]
  21. 21.
    Noh K, Lee J, Kim J. 2018. Compositions and structures of zeolitic imidazolate frameworks. Isr. J. Chem. 58:1075–88
    [Google Scholar]
  22. 22.
    Olujić Ž, Sun L, de Rijke A, Jansens PJ. 2006. Conceptual design of an internally heat integrated propylene-propane splitter. Energy 31:3083–96
    [Google Scholar]
  23. 23.
    Am. Chem. Counc 2019. Plastic Resins in the United States Washington, DC: Am. Chem. Counc.
  24. 24.
    Sholl DS, Lively RP. 2016. Seven chemical separations to change the world. Nature 532:435–37
    [Google Scholar]
  25. 25.
    Salgado-Gordon H-J, Valbuena-Moreno G. 2011. Technical and economic evaluation of the separation of light olefins (ethylene and propylene) by using π-complexation with silver salts. CT&F 4:73–87
    [Google Scholar]
  26. 26.
    Perry RH. 1997. Perry's Chemical Engineers’ Handbook. New York: McGraw-Hill. , 7th ed..
  27. 27.
    Motelica A, Bruinsma OSL, Kreiter R, den Exter M, Vente JF. 2012. Membrane retrofit option for paraffin/olefin separation—a technoeconomic evaluation. Ind. Eng. Chem. Res. 51:6977–86
    [Google Scholar]
  28. 28.
    Park KS, Ni Z, Cote AP, Choi JY, Huang RD et al. 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103:10186–91
    [Google Scholar]
  29. 29.
    Krokidas P, Castier M, Economou IG. 2017. Computational study of ZIF-8 and ZIF-67 performance for separation of gas mixtures. J. Phys. Chem. C 121:17999–8011
    [Google Scholar]
  30. 30.
    Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Chizallet C et al. 2012. Comparison of the behavior of metal–organic frameworks and zeolites for hydrocarbon separations. J. Am. Chem. Soc. 134:8115–26
    [Google Scholar]
  31. 31.
    Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J 2009. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131:16000–1
    [Google Scholar]
  32. 32.
    Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM. 2010. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43:58–67
    [Google Scholar]
  33. 33.
    Verploegh RJ, Nair S, Sholl DS. 2015. Temperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulations. J. Am. Chem. Soc. 137:15760–71
    [Google Scholar]
  34. 34.
    Coudert FX. 2017. Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: continuous deformation upon adsorption. ChemPhysChem 18:2732–38
    [Google Scholar]
  35. 35.
    Haldoupis E, Watanabe T, Nair S, Sholl DS. 2012. Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem 13:3449–52
    [Google Scholar]
  36. 36.
    Krokidas P, Castier M, Moncho S, Sredojevic DN, Brothers EN et al. 2016. ZIF-67 framework: a promising new candidate for propylene/propane separation. Experimental data and molecular simulations. J. Phys. Chem. C 120:8116–24
    [Google Scholar]
  37. 37.
    Tan NY, Ruggiero MT, Orellana C, Tian T, Bond AD et al. 2015. Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy Presented at the 40th International Conference on Infrared, Millimeter and Terahertz Waves (Irmmw-Thz) Aug. 23–28 Hong Kong:
  38. 38.
    Moggach SA, Bennett TD, Cheetham AK. 2009. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem. Int. Ed. 48:7087–89
    [Google Scholar]
  39. 39.
    Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S, Duren T. 2011. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133:8900–2
    [Google Scholar]
  40. 40.
    Russell B, Villaroel J, Sapag K, Migone AD. 2014. O2 adsorption on ZIF-8: temperature dependence of the gate-opening transition. J. Phys. Chem. C 118:28603–8
    [Google Scholar]
  41. 41.
    Zhang LL, Hu ZQ, Jiang JW. 2013. Sorption-induced structural transition of zeolitic imidazolate framework-8: a hybrid molecular simulation study. J. Am. Chem. Soc. 135:3722–28
    [Google Scholar]
  42. 42.
    Tanaka S, Fujita K, Miyake Y, Miyamoto M, Hasegawa Y et al. 2015. Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C 119:28430–39
    [Google Scholar]
  43. 43.
    Arami-Niya A, Birkett G, Zhu ZH, Rufford TE. 2017. Gate opening effect of zeolitic imidazolate framework ZIF-7 for adsorption of CH4 and CO2 from N2. J. Mater. Chem. A 5:21389–99
    [Google Scholar]
  44. 44.
    Du Y, Mao KM, Wooler B, Sharma AK, Colmyer D et al. 2017. Insights into the flexibility of ZIF-7 and its structural impact in alcohol adsorption. J. Phys. Chem. C 121:28090–95
    [Google Scholar]
  45. 45.
    Zheng B, Maurin G. 2019. Mechanical control of the kinetic propylene/propane separation by zeolitic imidazolate framework-8. Angew. Chem. Int. Ed. 58:13734–38
    [Google Scholar]
  46. 46.
    Zhang C, Gee JA, Sholl DS, Lively RP. 2014. Crystal-size-dependent structural transitions in nanoporous crystals: adsorption-induced transitions in ZIF-8. J. Phys. Chem. C 118:20727–33
    [Google Scholar]
  47. 47.
    Tanaka S, Sakamoto K, Inada H, Kawata M, Takasaki G, Imawaka K. 2018. Vapor-phase synthesis of ZIF-8 MOF thick film by conversion of ZnO nanorod array. Langmuir 34:7028–33
    [Google Scholar]
  48. 48.
    Tian T, Wharmby MT, Parra JB, Ania CO, Fairen-Jimenez D. 2016. Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8. Dalton Trans 45:6893–900
    [Google Scholar]
  49. 49.
    Tiba A, Tivanski AV, MacGillivray LR. 2019. Size-dependent mechanical properties of a metal-organic framework: increase in flexibility of ZIF-8 by crystal downsizing. Nano Lett 19:6140–43
    [Google Scholar]
  50. 50.
    Sheng LQ, Wang CQ, Yang F, Xiang L, Huang XJ et al. 2017. Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating. Chem. Commun. 53:7760–63
    [Google Scholar]
  51. 51.
    Tan JC, Bennett TD, Cheetham AK. 2010. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. PNAS 107:9938–43
    [Google Scholar]
  52. 52.
    Gao MZ, Wang J, Rong ZH, Shi Q, Dong JX. 2018. A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies. RSC Adv. 8:39627–34
    [Google Scholar]
  53. 53.
    Chaplais G, Fraux G, Paillaud J-L, Marichal C, Nouali H et al. 2018. Impacts of the imidazolate linker substitution (CH3, Cl, or Br) on the structural and adsorptive properties of ZIF-8. The J. Phys. Chem. C 122:26945–55
    [Google Scholar]
  54. 54.
    Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. 2008. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J. Am. Chem. Soc. 130:12626–27
    [Google Scholar]
  55. 55.
    Eum K, Jayachandrababu KC, Rashidi F, Zhang K, Leisen J et al. 2015. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 137:4191–97
    [Google Scholar]
  56. 56.
    Zheng B, Wang LL, Du L, Huang K-W, Du H. 2016. ZIF-8 gate tuning via terminal group modification: a computational study. Chem. Phys. Lett. 658:270–75
    [Google Scholar]
  57. 57.
    Thompson JA, Blad CR, Brunelli NA, Lydon ME, Lively RP et al. 2012. Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater. 24:1930–36
    [Google Scholar]
  58. 58.
    Hobday CL, Bennett TD, Fairen-Jimenez D, Graham AJ, Morrison CA et al. 2018. Tuning the swing effect by chemical functionalization of zeolitic imidazolate frameworks. J. Am. Chem. Soc. 140:382–87
    [Google Scholar]
  59. 59.
    Liu D, Wu Y, Xia Q, Li Z, Xi H. 2013. Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19:25–37
    [Google Scholar]
  60. 60.
    Schejn A, Aboulaich A, Balan L, Falk V, Lalevee J et al. 2015. Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 5:1829–39
    [Google Scholar]
  61. 61.
    Li R, Ren X, Feng X, Li X, Hu C, Wang B. 2014. A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chem. Commun. 50:6894–97
    [Google Scholar]
  62. 62.
    Krokidas P, Moncho S, Brothers EN, Castier M, Economou IG. 2018. Tailoring the gas separation efficiency of metal organic framework ZIF-8 through metal substitution: a computational study. Phys. Chem. Chem. Phys. 20:4879–92
    [Google Scholar]
  63. 63.
    Tian YQ, Yao SY, Gu D, Cui KH, Guo DW et al. 2010. Cadmium imidazolate frameworks with polymorphism, high thermal stability, and a large surface area. Chemistry 16:1137–41
    [Google Scholar]
  64. 64.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H et al. 2008. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–43
    [Google Scholar]
  65. 65.
    Qian JF, Sun FA, Qin LZ. 2012. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82:220–23
    [Google Scholar]
  66. 66.
    McGuirk CM, Runcevski T, Oktawiec J, Turkiewicz A, Taylor MK, Long JR. 2018. Influence of metal substitution on the pressure-induced phase change in flexible zeolitic imidazolate frameworks. J. Am. Chem. Soc. 140:15924–33
    [Google Scholar]
  67. 67.
    Fei HH, Cahill JF, Prather KA, Cohen SM. 2013. Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 52:4011–16
    [Google Scholar]
  68. 68.
    Thompson JA, Brunelli NA, Lively RP, Johnson JR, Jones CW, Nair S. 2013. Tunable CO2 adsorbents by mixed-linker synthesis and postsynthetic modification of zeolitic imidazolate frameworks. J. Phys. Chem. C 117:8198–207
    [Google Scholar]
  69. 69.
    Karagiaridi O, Lalonde MB, Bury W, Sarjeant AA, Farha OK, Hupp JT. 2012. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 134:18790–96
    [Google Scholar]
  70. 70.
    Hillman F, Jeong H-K. 2019. Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations. ACS Appl. Mater. Interfaces 11:18377–85
    [Google Scholar]
  71. 71.
    Karagiaridi O, Bury W, Sarjeant AA, Stern CL, Farha OK, Hupp JT. 2012. Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chem. Sci. 3:3256–60
    [Google Scholar]
  72. 72.
    Jayachandrababu KC, Sholl DS, Nair S. 2017. Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchange and de novo routes. J. Am. Chem. Soc. 139:5906–15
    [Google Scholar]
  73. 73.
    Ban YJ, Peng Y, Zhang YL, Jin H, Jiao WM et al. 2016. Dual-ligand zeolitic imidazolate framework crystals and oriented films derived from metastable mono-ligand ZIF-108. Microporous Mesoporous Mater 219:190–98
    [Google Scholar]
  74. 74.
    Sánchez-Laínez J, Veiga A, Zornoza B, Balestra SRG, Hamad S et al. 2017. Tuning the separation properties of zeolitic imidazolate framework core-shell structures via post-synthetic modification. J. Mater. Chem. A 5:25601–08
    [Google Scholar]
  75. 75.
    Hou QQ, Wu Y, Zhou S, Wei YY, Caro J, Wang HH 2019. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 58:327–31
    [Google Scholar]
  76. 76.
    Verploegh RJ, Wu Y, Sholl DS. 2017. Lattice-gas modeling of adsorbate diffusion in mixed-linker zeolitic imidazolate frameworks: effect of local imidazolate ordering. Langmuir 33:6481–91
    [Google Scholar]
  77. 77.
    Venna SR, Jasinski JB, Carreon MA. 2010. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132:18030–33
    [Google Scholar]
  78. 78.
    Lee YR, Jang MS, Cho BY, Kwon HJ, Kim S, Ahn WS. 2015. ZIF-8: a comparison of synthesis methods. Chem. Eng. J. 271:276–80
    [Google Scholar]
  79. 79.
    Anumah A, Louis H, Saud-uz-Zafar, Hamzat AT, Amusan OO et al. 2019. Metal-organic frameworks (MOFs): recent advances in synthetic methodologies and some applications. Chem. Methodol. 3:283–305
    [Google Scholar]
  80. 80.
    Lee YR, Kim J, Ahn WS. 2013. Synthesis of metal-organic frameworks: a mini review. Korean J. Chem. Eng. 30:1667–80
    [Google Scholar]
  81. 81.
    Zhang HF, Zhao M, Lin YS. 2019. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater 279:201–10
    [Google Scholar]
  82. 82.
    Jian MP, Liu B, Liu RP, Qu JH, Wang HT, Zhang XW. 2015. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv 5:48433–41
    [Google Scholar]
  83. 83.
    Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. 2011. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23:2130–41
    [Google Scholar]
  84. 84.
    Ban YJ, Li YS, Liu XL, Peng Y, Yang WS. 2013. Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater 173:29–36
    [Google Scholar]
  85. 85.
    Khaleque A, Alam MM, Hoque M, Mondal S, Haider JB et al. 2020. Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2:10019
    [Google Scholar]
  86. 86.
    Huang XC, Lin YY, Zhang JP, Chen XM. 2006. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45:1557–59
    [Google Scholar]
  87. 87.
    Bustamante EL, Fernández JL, Zamaro JM. 2014. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 424:37–43
    [Google Scholar]
  88. 88.
    Cravillon J, Schröder CA, Nayuk R, Gummel J, Huber K, Wiebcke M. 2011. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50:8067–71
    [Google Scholar]
  89. 89.
    Ozturk Z, Filez M, Weckhuysen BM. 2017. Decoding nucleation and growth of zeolitic imidazolate framework thin films with atomic force microscopy and vibrational spectroscopy. Chemistry 23:10915–24
    [Google Scholar]
  90. 90.
    Chen BL, Yang ZX, Zhu YQ, Xia YD. 2014. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2:16811–31
    [Google Scholar]
  91. 91.
    Pan YC, Liu YY, Zeng GF, Zhao L, Lai ZP. 2011. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47:2071–73
    [Google Scholar]
  92. 92.
    Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. 2012. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chem. Lett. 41:1337–39
    [Google Scholar]
  93. 93.
    Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. 2013. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 15:1794–801
    [Google Scholar]
  94. 94.
    Malekmohammadi M, Fatemi S, Razavian M, Nouralishahi A. 2019. A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: effect of temperature and ligand content. Solid State Sci 91:108–12
    [Google Scholar]
  95. 95.
    Bao QL, Lou YB, Xing TT, Chen JX. 2013. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation. Inorg. Chem. Commun. 37:170–73
    [Google Scholar]
  96. 96.
    Fan XX, Wang W, Li W, Zhou JW, Wang B et al. 2014. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl. Mater. Interfaces 6:14994–99
    [Google Scholar]
  97. 97.
    Gross AF, Sherman E, Vajo JJ. 2012. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 41:5458–60
    [Google Scholar]
  98. 98.
    He M, Yao JF, Liu Q, Wang K, Chen FY, Wang HT. 2014. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184:55–60
    [Google Scholar]
  99. 99.
    Nordin NAHM, Ismail AF, Mustafa A, Goh PS, Rana D, Matsuura T 2014. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Adv. 4:33292–300
    [Google Scholar]
  100. 100.
    Wu RF, Fan T, Chen JY, Li YW. 2019. Synthetic factors affecting the scalable production of zeolitic imidazolate frameworks. ACS Sustain. Chem. Eng. 7:3632–46
    [Google Scholar]
  101. 101.
    Shi Q, Chen ZF, Song ZW, Li JP, Dong JX. 2011. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem. Int. Ed. 50:672–75
    [Google Scholar]
  102. 102.
    Ahmed I, Jeon J, Khan NA, Jhung SH. 2012. Synthesis of a metal-organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Cryst. Growth Des. 12:5878–81
    [Google Scholar]
  103. 103.
    Chen Y, Yang CY, Wang XQ, Yang JF, Li JP. 2017. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chem. Eng. J. 313:179–86
    [Google Scholar]
  104. 104.
    Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W et al. 2016. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15:304–10
    [Google Scholar]
  105. 105.
    Cruz AJ, Stassen I, Krishtab M, Marcoen K, Stassin T et al. 2019. Integrated cleanroom process for the vapor-phase deposition of large-area zeolitic imidazolate framework thin films. Chem. Mater. 31:9462–71
    [Google Scholar]
  106. 106.
    Huang JK, Saito N, Cai YC, Wan Y, Cheng CC et al. 2020. Steam-assisted chemical vapor deposition of zeolitic imidazolate framework. ACS Mater. Lett. 2:485–91
    [Google Scholar]
  107. 107.
    López-Cabrelles J, Romero J, Abellán G, Giménez-Marqués M, Palomino M et al. 2019. Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8. J. Am. Chem. Soc. 141:7173–80
    [Google Scholar]
  108. 108.
    Marreiros J, Van Dommelen L, Fleury G, de Oliveira-Silva R, Stassin T et al. 2019. Vapor-phase linker exchange of the metal-organic framework ZIF-8: a solvent-free approach to post-synthetic modification. Angew. Chem. Int. Ed. 58:18471–75
    [Google Scholar]
  109. 109.
    Eum K, Hayashi M, De Mello MD, Xue F, Kwon HT, Tsapatsis M. 2019. ZIF-8 membrane separation performance tuning by vapor phase ligand treatment. Angew. Chem. Int. Ed. 58:16390–94
    [Google Scholar]
  110. 110.
    Wu WF, Su JY, Jia MM, Li ZJ, Liu GQ, Li WB. 2020. Vapor-phase linker exchange of metal-organic frameworks. Sci. Adv. 6:eaax7270
    [Google Scholar]
  111. 111.
    Qiu S, Xue M, Zhu G. 2014. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43:6116–40
    [Google Scholar]
  112. 112.
    Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K et al. 2020. MOF-based membranes for gas separations. Chem. Rev. 120:8161–266
    [Google Scholar]
  113. 113.
    Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H-K. 2012. Current status of metal–organic framework membranes for gas separations: promises and challenges. Ind. Eng. Chem. Res. 51:2179–99
    [Google Scholar]
  114. 114.
    Abdul Hamid MR, Shean Yaw TC, Mohd Tohir MZ, Ghani WAWAK, Sutrisna PD, Jeong H-K 2021. Zeolitic imidazolate framework membranes for gas separations: current state-of-the-art, challenges, and opportunities. J. Ind. Eng. Chem. 98:17–41
    [Google Scholar]
  115. 115.
    Lee MJ, Kwon HT, Jeong H-K. 2018. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew. Chem. Int. Ed. 57:156–61
    [Google Scholar]
  116. 116.
    Hayashi M, Lee DT, de Mello MD, Boscoboinik JA, Tsapatsis M. 2021. ZIF-8 membrane permselectivity modification by manganese(II) acetylacetonate vapor treatment. Angew. Chem. Int. Ed. 60:9316–20
    [Google Scholar]
  117. 117.
    Miao Y, Lee DT, Dorneles de Mello M, Abdel-Rahman MK, Corkery P et al. 2021. Electron beam induced modification of ZIF-8 membrane permeation properties. Chem. Commun. 57:5250–53
    [Google Scholar]
  118. 118.
    Gitis V, Rothenberg G 2016. The basics. Ceramic Membranes: New Opportunities and Practical Applications V Gitis, G Rothenberg 1–90 Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  119. 119.
    James JB, Lin YS. 2017. Thermal stability of ZIF-8 membranes for gas separations. J. Membr. Sci. 532:9–19
    [Google Scholar]
  120. 120.
    Drioli E, Giorno L. 2010. Comprehensive Membrane Science and Engineering Amsterdam/Boston: Elsevier/Academic
  121. 121.
    Li Y, Yang W 2008. Microwave synthesis of zeolite membranes: a review. J. Membr. Sci. 316:3–17
    [Google Scholar]
  122. 122.
    Neelakanda P, Barankova E, Peinemann K-V. 2016. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers. Microporous Mesoporous Mater 220:215–19
    [Google Scholar]
  123. 123.
    Huang A, Bux H, Steinbach F, Caro J 2010. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem. Int. Ed. 49:4958–61
    [Google Scholar]
  124. 124.
    Huang A, Dou W, Caro J 2010. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 132:15562–64
    [Google Scholar]
  125. 125.
    Peterson GW, Lee DT, Barton HF, Epps TH III, Parsons GN. 2021. Fibre-based composites from the integration of metal–organic frameworks and polymers. Nat. Rev. Mater. 6:605–21
    [Google Scholar]
  126. 126.
    Kwon HT, Jeong H-K. 2013. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem. Commun. 49:3854–56
    [Google Scholar]
  127. 127.
    Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J 2010. Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 49:548–51
    [Google Scholar]
  128. 128.
    Shekhah O, Swaidan R, Belmabkhout Y, du Plessis M, Jacobs T et al. 2014. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study. Chem. Commun. 50:2089–92
    [Google Scholar]
  129. 129.
    Kwon HT, Jeong H-K. 2013. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135:10763–68
    [Google Scholar]
  130. 130.
    Xie Z, Yang J, Wang J, Bai J, Yin H et al. 2012. Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube. Chem. Commun. 48:5977–79
    [Google Scholar]
  131. 131.
    Shah MN, Gonzalez MA, McCarthy MC, Jeong H-K. 2013. An unconventional rapid synthesis of high performance metal-organic framework membranes. Langmuir 29:7896–902
    [Google Scholar]
  132. 132.
    Ma Q, Mo K, Gao S, Xie Y, Wang J et al. 2020. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation. Angew. Chem. Int. Ed. 59:21909–14
    [Google Scholar]
  133. 133.
    Ameloot R, Gobechiya E, Uji-i H, Martens JA, Hofkens J et al. 2010. Direct patterning of oriented metal–organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 22:2685–88
    [Google Scholar]
  134. 134.
    Hao J, Babu DJ, Liu Q, Chi H-Y, Lu C et al. 2020. Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes. J. Mater. Chem. A 8:7633–40
    [Google Scholar]
  135. 135.
    He G, Dakhchoune M, Zhao J, Huang S, Agrawal KV. 2018. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. Adv. Funct. Mater. 28:1707427
    [Google Scholar]
  136. 136.
    Zhou S, Wei YY, Li LB, Duan YF, Hou QQ et al. 2018. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 4:eaau1393
    [Google Scholar]
  137. 137.
    Wei R, Chi HY, Li X, Lu D, Wan Y et al. 2019. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation. Adv. Funct. Mater. 30:1907089
    [Google Scholar]
  138. 138.
    Hou Q, Zhou S, Wei Y, Caro J, Wang H 2020. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 142:9582–86
    [Google Scholar]
  139. 139.
    Zhang YY, Feng X, Yuan S, Zhou JW, Wang B. 2016. Challenges and recent advances in MOF-polymer composite membranes for gas separation. Inorg. Chem. Front. 3:896–909
    [Google Scholar]
  140. 140.
    Baker RW. 2004. Membranes and modules. Membrane Technology and Applications RW Baker 89–160 Hoboken, NJ: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  141. 141.
    Lau CH, Low BT, Shao L, Chung T-S. 2010. A vapor-phase surface modification method to enhance different types of hollow fiber membranes for industrial scale hydrogen separation. Int. J. Hydrogen Energy 35:8970–82
    [Google Scholar]
  142. 142.
    Yao J, Dong D, Li D, He L, Xu G, Wang H. 2011. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47:2559–61
    [Google Scholar]
  143. 143.
    Cacho-Bailo F, Seoane B, Téllez C, Coronas J. 2014. ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. J. Membr. Sci. 464:119–26
    [Google Scholar]
  144. 144.
    Li W, Yang Z, Zhang G, Fan Z, Meng Q et al. 2014. Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2:2110–18
    [Google Scholar]
  145. 145.
    Li W, Meng Q, Zhang C, Zhang G. 2015. Metal-organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation. Chemistry 21:7224–30
    [Google Scholar]
  146. 146.
    Shamsaei E, Low ZX, Lin X, Mayahi A, Liu H et al. 2015. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chem. Commun. 51:11474–77
    [Google Scholar]
  147. 147.
    Shamsaei E, Lin X, Low ZX, Abbasi Z, Hu Y et al. 2016. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 8:6236–44
    [Google Scholar]
  148. 148.
    Barankova E, Tan X, Villalobos LF, Litwiller E, Peinemann KV. 2017. A metal chelating porous polymeric support: the missing link for a defect-free metal-organic framework composite membrane. Angew. Chem. Int. Ed. 56:2965–68
    [Google Scholar]
  149. 149.
    Su P, Li W, Zhang C, Meng Q, Shen C, Zhang G. 2015. Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes. J. Mater. Chem. A 3:20345–51
    [Google Scholar]
  150. 150.
    Li W, Su P, Li Z, Xu Z, Wang F et al. 2017. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat. Commun. 8:406
    [Google Scholar]
  151. 151.
    Tanaka S, Okubo K, Kida K, Sugita M, Takewaki T. 2017. Grain size control of ZIF-8 membranes by seeding-free aqueous synthesis and their performances in propylene/propane separation. J. Membr. Sci. 544:306–11
    [Google Scholar]
  152. 152.
    Pan YC, Liu W, Zhao YJ, Wang CQ, Lai ZP. 2015. Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 493:88–96
    [Google Scholar]
  153. 153.
    Kwon HT, Jeong H-K. 2015. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes. Chem. Eng. Sci. 124:20–26
    [Google Scholar]
  154. 154.
    Hara N, Yoshimune M, Negishi H, Haraya K, Hara S, Yamaguchi T. 2014. Thickness reduction of the zeolitic imidazolate framework-8 membrane by controlling the reaction rate during the membrane preparation. J. Chem. Eng. Japan 47:770–76
    [Google Scholar]
  155. 155.
    Hara N, Yoshimune M, Negishi H, Haraya K, Hara S, Yamaguchi T. 2014. Diffusive separation of propylene/propane with ZIF-8 membranes. J. Membr. Sci. 450:215–23
    [Google Scholar]
  156. 156.
    Hara N, Yoshimune M, Negishi H, Haraya K, Hara S, Yamaguchi T. 2015. Effect of temperature on synthesis of ZIF-8 membranes for propylene/propane separation by counter diffusion method. J. Japan Pet. Inst. 58:237–44
    [Google Scholar]
  157. 157.
    Eum K, Ma C, Rownaghi A, Jones CW, Nair S. 2016. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: efficient propylene separation at elevated pressures. ACS Appl. Mater. Interfaces 8:25337–42
    [Google Scholar]
  158. 158.
    Li JF, Lian HQ, Wei KF, Song EY, Pan YC, Xing WH. 2020. Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure. J. Membr. Sci. 595:117503
    [Google Scholar]
  159. 159.
    Glob. Ind. Anal 2021. Propylene: global market trajectory & analytics Rep. 4845833 Glob. Ind. Anal. https://www.researchandmarkets.com/reports/4845833/propylene-global-market-trajectory-and-analytics
  160. 160.
    Silva FAD, Rodrigues AE. 2001. Propylene/propane separation by vacuum swing adsorption 13X zeolite. AIChE J 47:341–57
    [Google Scholar]
  161. 161.
    Zhang C, Lively RP, Zhang K, Johnson JR, Karvan O, Koros WJ. 2012. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3:2130–34
    [Google Scholar]
  162. 162.
    Qiao ZH, Liang YY, Zhang ZQ, Mei DH, Wang Z et al. 2020. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction. Adv. Mater. 32:2002165
    [Google Scholar]
  163. 163.
    Huang K, Wang B, Chi YS, Li K. 2018. High propylene selective metal-organic framework membranes prepared in confined spaces via convective circulation synthesis. Adv. Mater. Interfaces 5:1800287
    [Google Scholar]
  164. 164.
    Lee MJ, Kwon HT, Jeong H-K. 2017. Defect-dependent stability of highly propylene-selective zeolitic-imidazolate framework ZIF-8 membranes. J. Membr. Sci. 529:105–13
    [Google Scholar]
  165. 165.
    Lee MJ, Hamid MRA, Lee J, Kim JS, Lee YM, Jeong H-K. 2018. Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation. J. Membr. Sci. 559:28–34
    [Google Scholar]
  166. 166.
    Rashidi F, Leisen J, Kim SJ, Rownaghi AA, Jones CW, Nair S. 2019. All-nanoporous hybrid membranes: redefining upper limits on molecular separation properties. Angew. Chem. Int. Ed. 58:236–39
    [Google Scholar]
  167. 167.
    Jogwar SS, Daoutidis P. 2009. Dynamics and control of vapor recompression distillation. J. Process Control 19:1737–50
    [Google Scholar]
  168. 168.
    Yu J, Pan YC, Wang CQ, Lai ZP. 2016. ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chem. Eng. Sci. 141:119–24
    [Google Scholar]
  169. 169.
    Colling CW, Huff GA Jr., Bartels JV 2004. Processes using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture US Patent No. 2004/0004040 A1
  170. 170.
    Castoldi MT, Pinto JC, Melo PA. 2007. Modeling of the separation of propene/propane mixtures by permeation through membranes in a polymerization system. Ind. Eng. Chem. Res. 46:1259–69
    [Google Scholar]
  171. 171.
    Drobek M, Bechelany M, Vallicari C, Abou Chaaya A, Charmette C et al. 2015. An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. J. Membr. Sci. 475:39–46
    [Google Scholar]
  172. 172.
    Zhuang L, Corkery P, Lee DT, Lee S, Kooshkbaghi M et al. 2021. Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate. AIChE J 67:e17305
    [Google Scholar]
  173. 173.
    Xu L, Rungta M, Brayden MK, Martinez MV, Stears BA et al. 2012. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci.423–24314–23
    [Google Scholar]
  174. 174.
    Feiring AE, Lazzeri J, Majumdar S, Shangguan N. 2018. Membrane separation of olefin and paraffin mixtures US Patent No. 10,029,248
  175. 175.
    Staudt-Bickel C, Koros WJ. 2000. Olefin/paraffin gas separations with 6FDA-based polyimide membranes. J. Membr. Sci. 170:205–14
    [Google Scholar]
  176. 176.
    Dutta A, Tymińska N, Zhu G, Collins J, Lively RP et al. 2018. Influence of hydrogen sulfide exposure on the transport and structural properties of the metal–organic framework ZIF-8. J. Phys. Chem. C 122:7278–87
    [Google Scholar]
  177. 177.
    Zhang HF, James J, Zhao M, Yao Y, Zhang YS et al. 2017. Improving hydrostability of ZIF-8 membranes via surface ligand exchange. J. Membr. Sci. 532:1–8
    [Google Scholar]
  178. 178.
    Song EY, Wei KF, Lian HQ, Hua JX, Tao HX et al. 2021. Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes. J. Membr. Sci. 617:118655
    [Google Scholar]
  179. 179.
    Abdul Hamid MR, Kim S, Kim JS, Lee YM, Jeong H-K 2019. In situ formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates. J. Mater. Chem. A 7:9680–89
    [Google Scholar]
  180. 180.
    Wang YH, Fin H, Ma Q, Mo K, Mao HZ et al. 2020. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 59:4365–69
    [Google Scholar]
  181. 181.
    Zhou S, Shekhah O, Jia J, Czaban-Jóźwiak J, Bhatt PM et al. 2021. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 6:882–91
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092320-120148
Loading
/content/journals/10.1146/annurev-chembioeng-092320-120148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error