1932

Abstract

Kimberlite-borne xenolithic eclogites, typically occurring in or near cratons, have long been recognized as remnants of Precambrian subducted oceanic crust that have undergone partial melting to yield granitoids similar to the Archean continental crust. While some eclogitized oceanic crust was emplaced into cratonic lithospheres, the majority was deeply subducted to form lithologic and geochemical heterogeneities in the convecting mantle. If we accept that most xenolithic eclogites originally formed at Earth's surface, then their geodynamic significance encompasses four tectonic environments: () spreading ridges, where precursors formed by partial melting of convecting mantle and subsequent melt differentiation; () subduction zones, where oceanic crust was metamorphosed and interacted with other slab lithologies; () the cratonic mantle lithosphere, where the eclogite source was variably modified subsequent to emplacement in Mesoarchean to Paleoproterozoic time; and () the convecting mantle, into which the vast majority of subduction-modified oceanic crust not captured in the cratonic lithosphere was recycled.

  • ▪  Xenolithic eclogites are fragments of ca. 3.0–1.8 Ga oceanic crust and signal robust subduction tectonics from the Mesoarchean.
  • ▪  Multiple constraints indicate an origin as variably differentiated oceanic crust, followed by subduction metamorphism, and prolonged mantle residence.
  • ▪  Xenolithic eclogites thus permit investigation of deep geochemical cycles related to recycling of Precambrian oceanic crust.
  • ▪  They help constrain asthenosphere thermal plus redox evolution and contribute to cratonic physical properties and mineral endowments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-112904
2023-05-31
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-112904.html?itemId=/content/journals/10.1146/annurev-earth-031621-112904&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott D, Burgess L, Longhi J, Smith WHF. 1994. An empirical thermal history of the Earth's upper mantle. J. Geophys. Res. 99:B713835–50
    [Google Scholar]
  2. Alt JC, Muehlenbachs K, Honnorez J. 1986. An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth Planet. Sci. Lett. 80:217–29
    [Google Scholar]
  3. Alt JC, Teagle DAH. 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem. Geol. 201:191–211
    [Google Scholar]
  4. Alvaro M, Mazzucchelli ML, Angel RJ, Murri M, Campomenosi N et al. 2020. Fossil subduction recorded by quartz from the coesite stability field. Geology 48:24–28
    [Google Scholar]
  5. Andersen MB, Elliott T, Freymuth H, Sims KWW, Niu Y, Kelley KA. 2015. The terrestrial uranium isotope cycle. Nature 517:356–59
    [Google Scholar]
  6. Arndt NT. 2013. The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits. Econ. Geol. 8:1953–70
    [Google Scholar]
  7. Artemieva IM. 2006. Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–77
    [Google Scholar]
  8. Asimow PD. 2022. The petrological consequences of the estimated oxidation state of primitive MORB glass. Magma Redox Geochemistry R Moretti, DR Neuville 139–54. Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  9. Aulbach S, Arndt NT. 2019a. Eclogites as palaeodynamic archives: evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet. Sci. Lett. 505:162–72
    [Google Scholar]
  10. Aulbach S, Arndt NT. 2019b. Origin of high-Mg bimineralic eclogite xenoliths in kimberlite: reply to comment from Claude Herzberg. Earth Planet. Sci. Lett. 510:234–37
    [Google Scholar]
  11. Aulbach S, Jacob DE. 2016. Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262:586–605
    [Google Scholar]
  12. Aulbach S, Massuyeau M, Garber JM, Gerdes A, Heaman LM, Viljoen KS. 2020. Ultramafic carbonated melt- and auto-metasomatism in mantle eclogites: compositional effects and geophysical consequences. Geochem. Geophys. Geosyst. 21:e2019GC008774
    [Google Scholar]
  13. Aulbach S, Pearson NJ, O'Reilly SY, Doyle BJ. 2007. Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J. Petrol. 48:1843–73
    [Google Scholar]
  14. Aulbach S, Woodland AB, Stagno V, Korsakov AV, Mikhailenko D, Golovin A. 2022. Fe3+ distribution and Fe3+/ΣFe-oxygen fugacity variations in eclogite xenoliths, with comments on clinopyroxene-garnet oxy-thermobarometry. J. Petrol. 63:8egac07
    [Google Scholar]
  15. Aulbach S, Woodland AB, Stern RA, Vasilyev P, Heaman LM, Viljoen KS. 2019. Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci. Rep. 9:20190
    [Google Scholar]
  16. Barth MG, Foley SF, Horn I. 2002. Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res. 113:323–40
    [Google Scholar]
  17. Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ et al. 2001. Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and Archean crust formation. Geochim. Cosmochim. Acta 65:1499–527
    [Google Scholar]
  18. Bebout GE. 2014. Chemical and isotopic cycling in subduction zones. See Holland et al. 2014 703–47
  19. Becker M, Le Roex AP 2006. Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution. J. Petrol. 47:673–703
    [Google Scholar]
  20. Beinlich A, Klemd R, John T, Gao J 2010. Trace-element mobilization during Ca-metasomatism along a major fluid conduit: eclogitization of blueschist as a consequence of fluid–rock interaction. Geochim. Cosmochim. Acta 74:1892–922
    [Google Scholar]
  21. Bolhar R, Hofmann A, Kemp AIS, Whitehouse MJ, Wind S, Kamber BS. 2017. Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons. Geochim. Cosmochim. Acta 215:432–46
    [Google Scholar]
  22. Brett RC, Russell JK, Andrews GDM, Jones TJ. 2015. The ascent of kimberlite: insights from olivine. Earth Planet. Sci. Lett. 424:119–31
    [Google Scholar]
  23. Brown M, Johnson T 2019. Metamorphism and the evolution of subduction on Earth. Am. Mineral. 104:1065–82
    [Google Scholar]
  24. Burness S, Smart KA, Tappe S, Stevens G, Woodland AB, Cano E. 2020. Sulphur-rich mantle metasomatism of Kaapvaal craton eclogites and its role in redox-controlled platinum group element mobility. Chem. Geol. 542:119476
    [Google Scholar]
  25. Burness S, Thomassot E, Smart KA, Tappe S. 2021. Sulphur isotopes (δ34S and Δ33S) in sulphides from cratonic mantle eclogites: a glimpse of volatile cycling in ancient subduction zones. Earth Planet. Sci. Lett. 572:117118
    [Google Scholar]
  26. Canil D. 1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389:842–45
    [Google Scholar]
  27. Cartigny P, Palot M, Thomassot E, Harris JW. 2014. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42:699–732
    [Google Scholar]
  28. Chin EJ. 2018. Deep crustal cumulates reflect patterns of continental rift volcanism beneath Tanzania. Contrib. Mineral. Petrol. 173:85
    [Google Scholar]
  29. Chowdhury P, Dasgupta R. 2020. Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies—implications for deep sulfur cycle and mantle redox. Geochim. Cosmochim. Acta 269:376–97
    [Google Scholar]
  30. Czas J, Stachel T, Pearson DG, Stern RA, Read GH. 2018. Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada. Mineral. Petrol. 112:311–23
    [Google Scholar]
  31. Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75:183–229
    [Google Scholar]
  32. Davies GF. 2006. Gravitational depletion of the early Earth's upper mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243:376–82
    [Google Scholar]
  33. Davies GF. 2008. Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275:382–92
    [Google Scholar]
  34. Day HW. 2012. A revised diamond-graphite transition curve. Am. Mineral. 97:52–62
    [Google Scholar]
  35. de Oliveira Chaves A. 2021. Columbia (Nuna) supercontinent with external subduction girdle and concentric accretionary, collisional and intracontinental orogens permeated by large igneous provinces and rifts. Precambrian Res. 352:106017
    [Google Scholar]
  36. Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR. 1991. Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen-content of their diamonds. Geochim. Cosmochim. Acta 55:515–24
    [Google Scholar]
  37. Evans KA, Tomkins AG. 2011. The relationship between subduction zone redox budget and arc magma fertility. Earth Planet. Sci. Lett. 308:401–9
    [Google Scholar]
  38. Foley BJ. 2018. The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philos. Trans. R. Soc. A 376:20170409
    [Google Scholar]
  39. Foley SF. 2011. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52:1363–91
    [Google Scholar]
  40. Frost DJ, McCammon CA 2008. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36:389–420
    [Google Scholar]
  41. Gale A, Dalton CA, Langmuir CH, Su YJ, Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14:489–518
    [Google Scholar]
  42. Garber JM, Maurya S, Hernandez JA, Duncan MS, Zeng L et al. 2018. Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere. Geochem. Geophys. Geosyst. 19:2062–86
    [Google Scholar]
  43. Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC. 2002. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3:1–35
    [Google Scholar]
  44. Gregory RT, Taylor HP. 1981. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail ophiolite, Oman—evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86:B42737–55
    [Google Scholar]
  45. Griffin WL, Begg GC, O'Reilly SY. 2013. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 6:905–10
    [Google Scholar]
  46. Griffin WL, Belousova EA, O'Neill C, O'Reilly SY, Malkovets V et al. 2014. The world turns over: Hadean–Archean crust–mantle evolution. Lithos 189:2–15
    [Google Scholar]
  47. Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB. 2010. Diamonds through time. Econ. Geol. 105:689–712
    [Google Scholar]
  48. Hasterok D, Chapman DS. 2011. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 307:59–70
    [Google Scholar]
  49. Helmstaedt H, Schulze DJ. 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. Evolution and Differentiation of the Continental Crust R Rushmer 67–91. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  50. Helmstaedt HH, Pehrsson SJ 2012. Geology and tectonic evolution of the Slave Province—a post-Lithoprobe perspective. Tectonic Styles in Canada: The LITHOPROBE Perspective JA Percival, FA Cook, RM Clowes 379–466. Newfoundland, Can.: Geol. Assoc. Can.
    [Google Scholar]
  51. Herzberg C. 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J. Petrol. 45:2389–405
    [Google Scholar]
  52. Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292:79–88
    [Google Scholar]
  53. Hills DV, Haggerty SE. 1989. Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra-Leone. Contrib. Mineral. Petrol. 103:397–422
    [Google Scholar]
  54. Hofmann AW, White WM. 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57:421–36
    [Google Scholar]
  55. Holland HD. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66:3811–26
    [Google Scholar]
  56. Holland HD, Turekian KK, Rudnick RL, eds. 2014. The Crust. Amsterdam: Elsevier/Pergamon, , 2nd ed..
  57. Holycross M, Cottrell E. 2022. Experimental quantification of vanadium partitioning between eclogitic minerals (garnet, clinopyroxene, rutile) and silicate melt as a function of temperature and oxygen fugacity. Contrib. Mineral. Petrol. 177:21
    [Google Scholar]
  58. Huang JX, Li P, Griffin WL, Xia QK, Gréau Y et al. 2014. Water contents of Roberts Victor xenolithic eclogites: primary and metasomatic controls. Contrib. Mineral. Petrol. 168:1092
    [Google Scholar]
  59. Hughes HSR, Compton-Jones C, McDonald I, Kiseeva ES, Kamenetsky VS et al. 2021. Base metal sulphide geochemistry of southern African mantle eclogites (Roberts Victor): implications for cratonic mafic magmatism and metallogenesis. Lithos 382–383:105918
    [Google Scholar]
  60. Ireland TR, Rudnick RL, Spetsius Z. 1994. Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet. Sci. Lett. 128:199–213
    [Google Scholar]
  61. Jacob DE. 2004. Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316
    [Google Scholar]
  62. Jacob DE, Bizimis M, Salters VJM. 2005. Lu–Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites. Contrib. Mineral. Petrol. 148:707–20
    [Google Scholar]
  63. Jacob DE, Piazolo S, Schreiber A, Trimby P. 2016. Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle. Nat. Commun. 7:11891
    [Google Scholar]
  64. Jagoutz O, Schmidt MW. 2013. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371:177–90
    [Google Scholar]
  65. Jenner FE, O'Neill HS. 2012. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13:Q02005
    [Google Scholar]
  66. Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN. 1993. Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib. Mineral. Petrol. 114:189–202
    [Google Scholar]
  67. John T, Scherer EE, Haase K, Schenk V. 2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet. Sci. Lett. 227:441–56
    [Google Scholar]
  68. Jugo PJ, Luth RW, Richards JP. 2005. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1·0 GPa. J. Petrol. 46:783–98
    [Google Scholar]
  69. Katayama I, Nakashima S, Yurimoto H. 2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86:245–59
    [Google Scholar]
  70. Kelemen PB, Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS 112:E3997–4006
    [Google Scholar]
  71. Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E. 2006. Mantle melting as a function of water content beneath back-arc basins. J. Geophys. Res. 111:B9B09208
    [Google Scholar]
  72. Koornneef JM, Bouman C, Schwieters JB, Davies GR. 2014. Measurement of small ion beams by thermal ionisation mass spectrometry using new 10(13) Ohm resistors. Anal. Chim Acta 819:49–55
    [Google Scholar]
  73. Korolev N, Nikitina LP, Goncharov A, Dubinina EO, Melnik A et al. 2021. Three types of mantle eclogite from two layers of oceanic crust: a key case of metasomatically-aided transformation of low-to-high-magnesian eclogite. J. Petrol. 62:egab070
    [Google Scholar]
  74. Korolev NM, Kopylova M, Bussweiler Y, Pearson DG, Gurney J, Davidson J 2018. The uniquely high-temperature character of Cullinan diamonds: a signature of the Bushveld mantle plume?. Lithos 304:362–73
    [Google Scholar]
  75. Kostrovitsky SI, Skuzovatov SY, Yakovlev DA, Sun J, Nasdala L, Wu F-Y. 2016. Age of the Siberian craton crust beneath the northern kimberlite fields: insights to the craton evolution. Gondwana Res. 39:365–85
    [Google Scholar]
  76. Kylander-Clark ARC, Hacker BR, Mattinson CG. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet. Sci. Lett. 321–322:115–20
    [Google Scholar]
  77. Kyser TK 2018. Stable isotope variations in the mantle. Stable Isotopes in High Temperature Geological Processes JW Valley, HP Taylor, JR O'Neil 141–64. Berlin: De Gruyter
    [Google Scholar]
  78. Lambart S, Baker MB, Stolper EM. 2016. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J. Geophys. Res. Solid Earth 121:5708–35
    [Google Scholar]
  79. Lee CTA, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib. Mineral. Petrol. 151:222–42
    [Google Scholar]
  80. Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U. 2000. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1:1012
    [Google Scholar]
  81. Liu S-A, Qu Y-R, Wang Z-Z, Li M-L, Yang C, Li S-G 2022. The fate of subducting carbon tracked by Mg and Zn isotopes: a review and new perspectives. Earth-Sci. Rev. 228:104010
    [Google Scholar]
  82. Luo Y, Korenaga J. 2020. Efficiency of eclogite removal from continental lithosphere and its implications for cratonic diamonds. Geology 49:438–41
    [Google Scholar]
  83. Luth RW, Stachel T. 2014. The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib. Mineral. Petrol. 168:1083
    [Google Scholar]
  84. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  85. Magni V, Bouilhol P, van Hunen J. 2014. Deep water recycling through time. Geochem. Geophys. Geosyst. 15:4203–16
    [Google Scholar]
  86. Marschall HR, Wanless VD, Shimizu N, von Strandmann P, Elliott T, Monteleone BD. 2017. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207:102–38
    [Google Scholar]
  87. Mattey D, Lowry D, Macpherson C. 1994. Oxygen-isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128:231–41
    [Google Scholar]
  88. Mazzone P, Haggerty SE. 1989. Peraluminous xenoliths in kimberlite: metamorphosed restites produced by partial melting of pelites. Geochim. Cosmochim. Acta 53:1551–61
    [Google Scholar]
  89. McDonough WF 1991. Chemical and isotopic systematics of continental lithospheric mantle. Kimberlites, Related Rocks and Mantle Xenoliths HOA Meyer, OH Leonardos 478–85. Rio de Janeiro: Cia. Pesqui. Recur. Minerais
    [Google Scholar]
  90. McDonough WF, Sun S-S. 1995. The composition of the Earth: chemical evolution of the mantle. Chem. Geol. 120:223–53
    [Google Scholar]
  91. McGunnigle JP, Cano EJ, Sharp ZD, Muehlenbachs K, Cole D et al. 2022. Triple oxygen isotope evidence for a hot Archean ocean. Geology 50:9991–95
    [Google Scholar]
  92. McIntyre T, Kublik K, Currie C, Pearson DG. 2021. Heat generation in cratonic mantle roots—new trace element constraints from mantle xenoliths and implications for cratonic geotherms. Geochem. Geophys. Geosyst. 22:e2021GC009691
    [Google Scholar]
  93. Meyer HOA. 1987. Inclusions in diamond. Mantle Xenoliths PH Nixon 501–22. Chichester, UK: Wiley & Sons
    [Google Scholar]
  94. Mikhailenko D, Golovin A, Korsakov A, Aulbach S, Gerdes A, Ragozin A. 2020. Metasomatic evolution of coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite. Minerals 10:4383
    [Google Scholar]
  95. Mikhailenko DS, Aulbach S, Korsakov AV, Golovin AV, Malygina EV et al. 2021. Origin of graphite–diamond-bearing eclogites from Udachnaya kimberlite pipe. J. Petrol. 62:egab033
    [Google Scholar]
  96. Mole DR, Fiorentini ML, Thebaud N, Cassidy KF, McCuaig TC et al. 2014. Archean komatiite volcanism controlled by the evolution of early continents. PNAS 111:10083–88
    [Google Scholar]
  97. Möller A, Appel P, Mezger K, Schenk V. 1995. Evidence for a 2 Ga subduction zone—eclogites in the Usagaran Belt of Tanzania. Geology 23:1067–70
    [Google Scholar]
  98. Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN et al. 1990. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2: Sr, Nd, and O isotope geochemistry. Earth Planet. Sci. Lett. 99:362–79
    [Google Scholar]
  99. Nebel O, Sossi PA, Bénard A, Arculus RJ, Yaxley GM et al. 2019. Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes. Earth Planet. Sci. Lett. 521:60–67
    [Google Scholar]
  100. Nicklas RW, Puchtel IS, Ash RD, Piccoli HM, Hanski E et al. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250:49–75
    [Google Scholar]
  101. Ning W, Kusky T, Wang L, Huang B 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. PNAS 119:e2117529119
    [Google Scholar]
  102. Niu YL, O'Hara MJ. 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos 112:1–17
    [Google Scholar]
  103. O'Neill C, Aulbach S 2022. Destabilization of deep oxidized mantle drove the Great Oxidation Event. Sci. Adv. 8:eabg1626
    [Google Scholar]
  104. Palin RM, Dyck B. 2018. Metamorphic consequences of secular changes in oceanic crust composition and implications for uniformitarianism in the geological record. Geosci. Front. 9:1009–19
    [Google Scholar]
  105. Pearson DG, Wittig N. 2014. The formation and evolution of cratonic mantle lithosphere—evidence from mantle xenoliths. See Holland et al. 2014 255–92
  106. Pokhilenko L. 2021. Kelyphite rims on garnets of contrast parageneses in mantle xenoliths from the Udachnaya-East kimberlite pipe (Yakutia). Minerals 11:615
    [Google Scholar]
  107. Rader E, Emry E, Schmerr N, Frost D, Cheng C et al. 2015. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys. Geosyst. 16:3484–504
    [Google Scholar]
  108. Radu IB, Moine BN, Bolfan-Casanova N, Ionov DA, Devidal JL et al. 2022. Zoisite in cratonic eclogite xenoliths—implications for water in the upper mantle. Lithos 418–419:106681
    [Google Scholar]
  109. Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36:891–931
    [Google Scholar]
  110. Richardson SH, Gurney JJ, Erlank AJ, Harris JW. 1984. Origin of diamonds in old enriched mantle. Nature 310:198–202
    [Google Scholar]
  111. Richardson SH, Shirey SB. 2008. Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453:910–13
    [Google Scholar]
  112. Rogers JJW, Santosh M. 2003. Supercontinents in Earth history. Gondwana Res. 6:357–68
    [Google Scholar]
  113. Rollinson H. 1997. Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation. Nature 389:173–76
    [Google Scholar]
  114. Rollinson H. 2016. Archaean crustal evolution in West Africa: a new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Res. 281:1–12
    [Google Scholar]
  115. Rudnick RL, Barth M, Horn I, McDonough WF. 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–81
    [Google Scholar]
  116. Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33:267–309
    [Google Scholar]
  117. Rudnick RL, Gao S. 2014. Composition of the continental crust. See Holland et al. 2014 1–51
  118. Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S. 2007. Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet. Sci. Lett. 254:55–68
    [Google Scholar]
  119. Schmidt MW, Jagoutz O. 2017. The global systematics of primitive arcmelts. Geochem. Geophys. Geosyst. 18:2817–54
    [Google Scholar]
  120. Schmidt MW, Poli S. 2014. Devolatilization during subduction. See Holland et al. 2014 669–701
  121. Shchukina EV, Agashev AM, Zedgenizov DA. 2018. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon. Mineral. Petrol. 112:85–100
    [Google Scholar]
  122. Shirey SB, Richardson SH. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–36
    [Google Scholar]
  123. Smart KA, Chacko T, Stachel T, Tappe S, Stern RA et al. 2012. Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: oceanic lithosphere origin without a crustal signature. Earth Planet. Sci. Lett. 319:165–77
    [Google Scholar]
  124. Smart KA, Heaman LM, Chacko T, Simonetti A, Kopylova M et al. 2009. The origin of high-MgO diamond eclogites from the Jericho kimberlite, Canada. Earth Planet. Sci. Lett. 284:527–37
    [Google Scholar]
  125. Smart KA, Tappe S, Simonetti A, Simonetti SS, Woodland AB, Harris C. 2017. Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada.. Chem. Geol. 455:98–119
    [Google Scholar]
  126. Smart KA, Tappe S, Stern RA, Webb SJ, Ashwall LD. 2016. Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nat. Geosci. 9:255–59
    [Google Scholar]
  127. Smart KA, Tappe S, Woodland AB, Greyling DR, Harris C, Gussone N. 2021a. Constraints on Archean crust recycling and the origin of mantle redox variability from the δ44/40Ca – δ18O – fO2 signatures of cratonic eclogites. Earth Planet. Sci. Lett. 556:116720
    [Google Scholar]
  128. Smart KA, Tappe S, Woodland AB, Harris C, Corcoran L, Simonetti A. 2021b. Metasomatized eclogite xenoliths from the central Kaapvaal craton as probes of a seismic mid-lithospheric discontinuity. Chem. Geol. 578:120286
    [Google Scholar]
  129. Smit KV, Stachel T, Luth RW, Stern RA. 2019. Evaluating mechanisms for eclogitic diamond growth: an example from Zimmi Neoproterozoic diamonds (West African craton). Chem. Geol. 520:21–32
    [Google Scholar]
  130. Soderman CR, Shorttle O, Matthews S, Williams HM. 2022. Global trends in novel stable isotopes in basalts: theory and observations. Geochim. Cosmochim. Acta 318:388–414
    [Google Scholar]
  131. Sommer H, Jacob DE, Stern RA, Petts D, Mattey DP, Pearson DG. 2017. Fluid-induced transition from banded kyanite- to bimineralic eclogite and implications for the evolution of cratons. Geochim. Cosmochim. Acta 207:19–42
    [Google Scholar]
  132. Spetsius ZV, Taylor LA. 2002. Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis. Int. Geol. Rev. 44:973–87
    [Google Scholar]
  133. Stachel T, Aulbach S, Harris JW. 2022. Mineral inclusions in lithospheric diamonds. Rev. Mineral. Geochem. 88:307–91
    [Google Scholar]
  134. Stachel T, Harris JW. 2008. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol. Rev. 34:5–32
    [Google Scholar]
  135. Stagno V, Frost DJ, McCammon CA, Mohseni H, Fei Y. 2015. The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib. Mineral. Petrol. 169:16
    [Google Scholar]
  136. Stagno V, Ojwang DO, McCammon CA, Frost DJ. 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493:84–88
    [Google Scholar]
  137. Stolper DA, Keller CB. 2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553:323–27
    [Google Scholar]
  138. Stracke A. 2012. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330:274–99
    [Google Scholar]
  139. Stracke A. 2021. A process-oriented approach to mantle geochemistry. Chem. Geol. 579:120350
    [Google Scholar]
  140. Stracke A, Tipper ET, Klemme S, Bizimis M. 2018. Mg isotope systematics during magmatic processes: inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochim. Cosmochim. Acta 226:192–205
    [Google Scholar]
  141. Sun S-s, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Ocean Basins AD Saunders, MJ Norry 313–45. London: Geol. Soc.
    [Google Scholar]
  142. Tamblyn R, Brown D, Hand M, Morrissey L, Clark C, Anczkiewicz R. 2021. The 2 Ga eclogites of Central Tanzania: directly linking age and metamorphism. Lithos 380–381:105890
    [Google Scholar]
  143. Tao R, Zhang L, Zhang L. 2020. Redox evolution of western Tianshan subduction zone and its effect on deep carbon cycle. Geosci. Front. 11:915–24
    [Google Scholar]
  144. Tappe S, Smart K, Torsvik T, Massuyeau M, de Wit M. 2018. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484:1–14
    [Google Scholar]
  145. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A 2011. Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–6
    [Google Scholar]
  146. Tatsumi Y, Hamilton DL, Nesbitt RW. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 29:293–309
    [Google Scholar]
  147. Thomson AR, Kohn SC, Prabhu A, Walter MJ. 2021. Evaluating the formation pressure of diamond-hosted majoritic garnets: a machine learning majorite barometer. J. Geophys. Res. Solid Earth 126:e2020JB020604
    [Google Scholar]
  148. Tsujimori T, Mattinson C 2021. Eclogites in different tectonic settings. Encyclopedia of Geology D Alderton, SA Elias 561–68. Oxford, UK: Academic, , 2nd ed..
    [Google Scholar]
  149. Viljoen KS. 1995. Graphite-bearing and diamond-bearing eclogite xenoliths from the Bellsbank kimberlites, Northern Cape, South Africa. Contrib. Mineral. Petrol. 121:414–23
    [Google Scholar]
  150. Viljoen KS, Smith CB, Sharp ZD. 1996. Stable and radiogenic isotope study of eclogite xenoliths from the Orapa kimberlite, Botswana. Chem. Geol. 131:235–55
    [Google Scholar]
  151. Wang SJ, Teng FZ, Rudnick RL, Li SG. 2015. Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology 43:1071–74
    [Google Scholar]
  152. Wang Z, Kusky TM, Wang L. 2022. Long-lasting viscous drainage of eclogites from the cratonic lithospheric mantle after Archean subduction stacking. Geology 50:583–87
    [Google Scholar]
  153. Wang Z-Z, Liu S-A, Rudnick RL, Teng F-Z, Wang S-J, Haggerty SE. 2022. Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites. Earth Planet. Sci. Lett. 580:117394
    [Google Scholar]
  154. Waterton P, Guotana JM, Nishio I, Morishita T, Tani K et al. 2022. No mantle residues in the Isua Supracrustal Belt. Earth Planet. Sci. Lett. 579:117348
    [Google Scholar]
  155. Weiss Y, Czas J, Navon O. 2022. Fluid inclusions in fibrous diamonds. Rev. Mineral. Geochem. 88:475–532
    [Google Scholar]
  156. White WM, Klein EM. 2014. Composition of the oceanic crust. See Holland et al. 2014 457–96
  157. Wilson AH, Zeh A, Gerdes A. 2017. In situ Sr isotopes in plagioclase and trace element systematics in the lowest part of the eastern Bushveld Complex: dynamic processes in an evolving magma chamber. J. Petrol. 58:327–60
    [Google Scholar]
  158. Zeh A, Gerdes A, Barton JM. 2009. Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. J. Petrol. 50:933–66
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-112904
Loading
/content/journals/10.1146/annurev-earth-031621-112904
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error