1932

Abstract

Since Darwin, scientists have looked to the fossil record with the hope of using it to document how the phenotypes of species change over substantial periods of time. How best to interpret this record has been controversial, but empirical and methodological advances have resolved at least two issues about pattern: () directional transformations are seldom sustained over geological timescales, and () net rates of morphological change in fossil species are usually quite slow. Considerable uncertainty remains, however, about the processes responsible for these patterns, but most fruitful explanations use the framework of adaptive landscapes to consider the role of natural selection and other processes. An additional, unresolved issue is the claim that most phenotypic change is associated with speciation. A variety of methods, using data from both fossil and extant species, have supported such a link, at least in some clades and traits, but its prevalence and underlying mechanism remain unresolved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040809-152524
2014-05-30
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-040809-152524.html?itemId=/content/journals/10.1146/annurev-earth-040809-152524&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. USA 106:19699–706 [Google Scholar]
  2. Adamowicz SJ, Purvis A, Wills MA. 2008. Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proc. Natl. Acad. Sci. USA 105:4786–91 [Google Scholar]
  3. Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification correlated with rates of morphological evolution?. Proc. R. Soc. B 276:2729–38 [Google Scholar]
  4. Alizon S, Kucera M, Jansen VAA. 2008. Competition between cryptic species explains variations in rates of lineage evolution. Proc. Natl. Acad. Sci. USA 105:12382–86 [Google Scholar]
  5. Arnold SJ, Pfrender ME, Jones AG. 2001. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–13:9–32 [Google Scholar]
  6. Balter V, Renaud S, Girard C, Joachimski MM. 2008. Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology 36:907–10 [Google Scholar]
  7. Barton N, Partridge L. 2000. Limits to natural selection. BioEssays 22:1075–84 [Google Scholar]
  8. Bell G. 2010. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philos. Trans. R. Soc. B 365:87–97 [Google Scholar]
  9. Bell G, Gonzalez A. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12:942–48 [Google Scholar]
  10. Bell MA, Travis MP, Blouw DM. 2006. Inferring natural selection in a fossil threespine stickleback. Paleobiology 32:562–77 [Google Scholar]
  11. Benkman CW. 2003. Divergent selection drives the adaptive radiation of crossbills. Evolution 57:1176–81 [Google Scholar]
  12. Blows MW, Hoffmann AA. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:1371–84 [Google Scholar]
  13. Bokma F. 2002. Detection of punctuated equilibrium from molecular phylogenies. J. Evol. Biol. 15:1048–56Important advance in using models to fit punctuated equilibrium to molecular phylogenies of extant species. [Google Scholar]
  14. Bokma F. 2008. Detection of “punctuated equilibrium” by Bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny. Evolution 62:2718–26 [Google Scholar]
  15. Bookstein FL. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446–64 [Google Scholar]
  16. Bookstein FL. 2013. Random walk as a null model for high-dimensional morphometrics of fossil series: geometrical considerations. Paleobiology 39:52–74 [Google Scholar]
  17. Brooks R, Hunt J, Blows MW, Smith MJ, Bussiere LF, Jennions MD. 2005. Experimental evidence for multivariate stabilizing sexual selection. Evolution 59:871–80 [Google Scholar]
  18. Case TJ, Taper ML. 2000. Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders. Am. Nat. 155:583–605 [Google Scholar]
  19. Charlesworth B, Lande R, Slatkin M. 1982. A neo-Darwinian commentary on macroevolution. Evolution 36:474–98 [Google Scholar]
  20. Cheetham AH. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphological change within and across species boundaries. Paleobiology 12:190–202Classic and still the most persuasive paleontological case study in support of punctuated equilibrium. [Google Scholar]
  21. Cheetham AH. 1987. Tempo of evolution in a Neogene bryozoan: are trends in single morphologic characters misleading?. Paleobiology 13:286–96 [Google Scholar]
  22. Chiba S. 1996. A 40,000-year record of discontinuous evolution of island snails. Paleobiology 22:177–88 [Google Scholar]
  23. Cisne JL, Chandlee GO, Rabe BD, Cohen JA. 1980. Geographic variation and episodic evolution in an Ordovician trilobite. Science 209:925–27 [Google Scholar]
  24. Cresswell JE. 2000. Manipulation of female architecture in flowers reveals a narrow optimum for pollen deposition. Ecology 81:3244–49 [Google Scholar]
  25. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: John Murray
  26. Davis MB, Shaw RG, Etterson JR. 2005. Evolutionary responses to changing climate. Ecology 86:1704–14 [Google Scholar]
  27. Eldredge N. 1971. Allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25:156–67 [Google Scholar]
  28. Eldredge N. 1989. Macroevolutionary Dynamics New York: McGraw-Hill
  29. Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiology TJM Schopf 82–115 San Francisco: Freeman, Cooper & Co.Paper that started the punctuated equilibrium debates. [Google Scholar]
  30. Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D. et al. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133–45 [Google Scholar]
  31. Erwin DH, Anstey RL. 1995. Speciation in the fossil record. New Approaches to Speciation in the Fossil Record DH Erwin, RL Anstey 11–38 New York: Columbia Univ. Press [Google Scholar]
  32. Estes S, Arnold SJ. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169:227–44 [Google Scholar]
  33. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15 [Google Scholar]
  34. Fisher DC. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. Interpreting the Hierarchy of Nature L Grande, O Rieppel 133–71 San Diego, CA: Academic [Google Scholar]
  35. Foote M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185–204 [Google Scholar]
  36. Foote M. 1996. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science 274:1492–95 [Google Scholar]
  37. Futuyma DJ. 1987. On the role of species in anagenesis. Am. Nat. 130:465–73 [Google Scholar]
  38. Futuyma DJ. 2010. Evolutionary constraint and ecological consequences. Evolution 64:1865–84 [Google Scholar]
  39. Garant D, Forde SE, Hendry AP. 2007. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21:434–43 [Google Scholar]
  40. Garcia-Dorado A, Gonzalez JA. 1996. Stabilizing selection detected for bristle number in Drosophila melanogaster. Evolution 50:1573–78 [Google Scholar]
  41. Geary DH. 2009. The legacy of punctuated equilibrium. Stephen Jay Gould: Reflections on His View of Life WD Allmon, PH Kelley, RM Ross 127–45 Oxford, UK: Oxford Univ. Press [Google Scholar]
  42. Gingerich PD. 1976. Paleontology and phylogeny: patterns of evolution at the species level. Am. J. Sci. 276:1–28 [Google Scholar]
  43. Gingerich PD. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159–61 [Google Scholar]
  44. Gingerich PD. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology 11:27–41 [Google Scholar]
  45. Gingerich PD. 1993. Quantification and comparison of evolutionary rates. Am. J. Sci. 293A:453–78 [Google Scholar]
  46. Gingerich PD. 2009. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40:657–75 [Google Scholar]
  47. Goldberg EE, Igíc B. 2012. Tempo and mode in plant breeding system evolution. Evolution 66:3701–9 [Google Scholar]
  48. Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igic B. 2010. Species selection maintains self-incompatibility. Science 330:493–95 [Google Scholar]
  49. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction?. Evolution 49:201–7 [Google Scholar]
  50. Gomulkiewicz R, Houle D. 2009. Demographic and genetic constraints on evolution. Am. Nat. 174:E218–29 [Google Scholar]
  51. Gould SJ. 2002. The Structure of Evolutionary Theory Cambridge, MA: Belknap
  52. Gould SJ, Eldredge N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115–51 [Google Scholar]
  53. Haldane JBS. 1949. Suggestions as to the quantitative measurement of rates of evolution. Evolution 3:51–56 [Google Scholar]
  54. Haller BC, Hendry AP. 2014. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. Evolution 68:483–500 [Google Scholar]
  55. Hannisdal B. 2006. Phenotypic evolution in the fossil record: numerical experiments. J. Geol. 114:133–53 [Google Scholar]
  56. Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–51 [Google Scholar]
  57. Hansen TF. 2012. Adaptive landscapes and macroevolutionary dynamics. The Adaptive Landscape in Evolutionary Biology EI Svensson, R Calsbeek 205–26 Oxford, UK: Oxford Univ. Press [Google Scholar]
  58. Hansen TF, Houle D. 2004. Evolvability, stabilizing selection, and the problem of stasis. Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes M Pigliucci, K Preston 130–50 Oxford, UK: Oxford Univ. PressExcellent review of stasis from a quantitative genetic perspective. [Google Scholar]
  59. Hanski I, Mononen T, Ovaskainen O. 2011. Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation. Am. Nat. 177:29–43 [Google Scholar]
  60. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL. et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–96 [Google Scholar]
  61. Harmon LJ, Schulte JA, Larson A, Losos JB. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–64 [Google Scholar]
  62. Hendry AP, Day T, Taylor EB. 2001. Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests. Evolution 55:459–66 [Google Scholar]
  63. Hendry AP, Gonzalez A. 2008. Whither adaptation?. Biol. Philos. 23:673–99 [Google Scholar]
  64. Hendry AP, Kinnison MT. 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–53 [Google Scholar]
  65. Hoffman A. 1982. Punctuated versus gradual mode of evolution. Evol. Biol. 15:411–36 [Google Scholar]
  66. Hoffman A. 1989. Arguments on Evolution New York: Oxford Univ. Press
  67. Hopkins MJ, Lidgard S. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proc. Natl. Acad. Sci. USA 109:20520–25Currently the most extensive statistical survey of evolutionary mode in fossil species. [Google Scholar]
  68. Hull PM, Norris RD. 2009. Evidence for abrupt speciation in a classic case of gradual evolution. Proc. Natl. Acad. Sci. USA 106:21224–29 [Google Scholar]
  69. Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578–601 [Google Scholar]
  70. Hunt G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl. Acad. Sci. USA 104:18404–8 [Google Scholar]
  71. Hunt G. 2008a. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century RK Bambach, PH Kelley 117–31 New Haven, CT: Paleontol. Soc. [Google Scholar]
  72. Hunt G. 2008b. Gradual or pulsed evolution: when should punctuational explanations be preferred?. Paleobiology 34:360–77 [Google Scholar]
  73. Hunt G. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38:351–73 [Google Scholar]
  74. Hunt G. 2013. Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods Ecol. Evol. 4:714–23 [Google Scholar]
  75. Hunt G, Bell MA, Travis MP. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700–10 [Google Scholar]
  76. Hunt G, Roy K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proc. Natl. Acad. Sci. USA 103:1347–52 [Google Scholar]
  77. Hunt G, Wicaksono S, Brown JE, Macleod GK. 2010. Climate-driven body size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology 53:1255–68 [Google Scholar]
  78. Ingram T. 2011. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B 278:613–18 [Google Scholar]
  79. Jablonski D. 2000. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26:15–52 [Google Scholar]
  80. Jablonski D. 2008. Species selection: theory and data. Annu. Rev. Ecol. Evol. Syst. 39:501–24 [Google Scholar]
  81. Jackson JBC, Cheetham AH. 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407–23 [Google Scholar]
  82. Jackson JBC, Cheetham AH. 1999. Tempo and mode of speciation in the sea. Trends Ecol. Evol. 14:72–77 [Google Scholar]
  83. Kidwell SM, Holland SM. 2002. The quality of the fossil record: implications for evolutionary analysis. Annu. Rev. Ecol. Syst. 33:561–88 [Google Scholar]
  84. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN. et al. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157:245–61 [Google Scholar]
  85. Kingsolver JG, Pfennig DW. 2004. Individual-level selection as a cause of Cope's Rule of phyletic size increase. Evolution 58:1608–12 [Google Scholar]
  86. Kinnison MT, Hendry AP. 2001. The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112–13:145–64 [Google Scholar]
  87. Kucera M, Darling KF. 2002. Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Philos. Trans. R. Soc. A 360:695–718 [Google Scholar]
  88. Lande R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–34 [Google Scholar]
  89. Lande R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12:343–54 [Google Scholar]
  90. Lande R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22:1435–46 [Google Scholar]
  91. Laporte LF. 1983. Simpson's Tempo and Mode in Evolution revisited. Proc. Am. Philos. Soc. 127:365–417 [Google Scholar]
  92. Lazarus D, Hilbrecht H, Spencer-Cervato C, Thierstein H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides. Paleobiology 21:28–51 [Google Scholar]
  93. Levinton JS. 2001. Genetics, Paleontology, and Macroevolution Cambridge, UK: Cambridge Univ. Press
  94. Lieberman BS, Brett CE, Eldredge N. 1994. Patterns and processes of stasis in two species lineages of brachiopods from the Middle Devonian of New York state. Am. Mus. Novit. 3114:1–23 [Google Scholar]
  95. Lieberman BS, Brett CE, Eldredge N. 1995. A study of stasis and change in two species lineages from the Middle Devonian of New York state. Paleobiology 21:15–27 [Google Scholar]
  96. Lieberman BS, Dudgeon S. 1996. An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:229–38 [Google Scholar]
  97. Liem KF, Osse JWM. 1975. Biological versatility, evolution, and food resource exploitation in African cichlid fishes. Am. Zool. 15:427–54 [Google Scholar]
  98. Losos JB, Mahler DL. 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. Evolution Since Darwin: The First 150 Years MA Bell, DJ Futuyma, WF Eanes, JS Levinton 381–420 Sunderland, MA: Sinauer [Google Scholar]
  99. Lovette IJ, Bermingham E, Ricklefs RE. 2002. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. B 269:37–42 [Google Scholar]
  100. Lynch M. 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136:727–41 [Google Scholar]
  101. Malmgren BA, Berggren WA, Lohmann GP. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377–89 [Google Scholar]
  102. Marcot JD, Fox DL. 2008. StrataPhy: a new computer program for stratocladistic analysis. Palaeontol. Electron. 11:1–16 [Google Scholar]
  103. McShea DP. 2004. A revised Darwinism (book review). Biol. Philos. 19:45–53 [Google Scholar]
  104. Nosil P. 2012. Ecological Speciation Oxford, UK: Oxford Univ. Press
  105. O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–33 [Google Scholar]
  106. Pagel M. 1998. Inferring evolutionary processes from phylogenies. Zool. Scr. 26:331–48 [Google Scholar]
  107. Palumbi SR. 2001. Humans as the world's greatest evolutionary force. Science 293:1786–90 [Google Scholar]
  108. Pennell MW, Harmon LJ, Uyeda JC. 2014. Is there room for punctuated equilibrium in macroevolution?. Trends Ecol. Evol. 29:23–32 [Google Scholar]
  109. Pfennig DW, Pfennig KS. 2013. Evolution's Wedge: Competition and the Origins of Diversity Berkeley: Univ. Calif. Press
  110. Pigliucci M. 2008. Is evolvability evolvable?. Nat. Rev. Genet. 9:75–82 [Google Scholar]
  111. Princehouse P. 2009. Punctuated equilibria and speciation: What does it mean to be a Darwinian?. The Paleobiological Revolution D Sepkoski, M Ruse 149–75 Chicago: Univ. Chicago Press [Google Scholar]
  112. Prothero DR, Heaton TH. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:257–83 [Google Scholar]
  113. Rabosky DL. 2012. Positive correlation between diversification rates and phenotypic evolvability can mimic punctuated equilibrium on molecular phylogenies. Evolution 66:2622–27 [Google Scholar]
  114. Rabosky DL, Adams DC. 2012. Rates of morphological evolution are correlated with species richness in salamanders. Evolution 66:1807–18 [Google Scholar]
  115. Rabosky DL, McCune AR. 2010. Reinventing species selection with molecular phylogenies. Trends Ecol. Evol. 25:68–74 [Google Scholar]
  116. Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B. et al. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4:1958 [Google Scholar]
  117. Räsänen K, Hendry AP. 2008. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol. Lett. 11:624–36 [Google Scholar]
  118. Raup DM. 1977. Stochastic models in evolutionary paleobiology. Patterns of Evolution as Illustrated by the Fossil Record A Hallam 59–78 Amsterdam: Elsevier [Google Scholar]
  119. Raup DM, Crick RE. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:200–15 [Google Scholar]
  120. Roopnarine PD. 2001. The description and classification of evolutionary mode: a computational approach. Paleobiology 27:446–65 [Google Scholar]
  121. Roopnarine PD. 2003. Analysis of rates of morphologic evolution. Annu. Rev. Ecol. Syst. 34:605–32 [Google Scholar]
  122. Roopnarine PD, Byars G, Fitzgerald P. 1999. Anagenetic evolution, stratophenetic patterns, and random walk models. Paleobiology 25:41–57 [Google Scholar]
  123. Rosenblum EB, Sarver BAJ, Brown JW, Roches SD, Hardwick KM. et al. 2012. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39:255–61 [Google Scholar]
  124. Rudwick MJS. 1985. The Great Devonian Controversy . Chicago: Univ. Chicago Press
  125. Rundle HD, Chenoweth SF. 2011. Stronger convex (stabilizing) selection on homologous sexual display traits in females than in males: a multipopulation comparison in Drosophila serrata. Evolution 65:893–99 [Google Scholar]
  126. Rupke NA. 1983. The Great Chain of History Oxford, UK: Clarendon
  127. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ. et al. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–64 [Google Scholar]
  128. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
  129. Secord R, Bloch JI, Chester SGB, Boyer DM, Wood AR. et al. 2012. Evolution of the earliest horses driven by climate change in the Paleocene–Eocene Thermal Maximum. Science 335:959–62 [Google Scholar]
  130. Sepkoski D. 2009. “Radical” or “conservative”? The origin and early reception of punctuated equilibrium. The Paleobiological Revolution D Sepkoski, M Ruse 301–25 Chicago: Univ. Chicago Press [Google Scholar]
  131. Sheets HD, Mitchell CE. 2001a. Uncorrelated change produces the apparent dependence of evolutionary rate on interval. Paleobiology 27:429–45 [Google Scholar]
  132. Sheets HD, Mitchell CE. 2001b. Why the null matters: statistical tests, random walks and evolution. Genetica 112–13:105–25 [Google Scholar]
  133. Sheldon PR. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:209–27 [Google Scholar]
  134. Siepielski AM, DiBattista JD, Carlson SM. 2009. It's about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12:1261–76 [Google Scholar]
  135. Simpson GG. 1944. Tempo and Mode in Evolution New York: Columbia Univ. PressClassic work; introduced the ideas of evolutionary modes and phenotypic adaptive landscapes.
  136. Simpson GG. 1953. The Major Features of Evolution New York: Columbia Univ. Press
  137. Smith FA, Betancourt JL. 2006. Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record. J. Biogeogr. 33:2061–76 [Google Scholar]
  138. Stanley SM. 1979. Macroevolution . Baltimore, MD: Johns Hopkins Univ. Press
  139. Stanley SM. 1985. Rates of evolution. Paleobiology 11:13–26 [Google Scholar]
  140. Stanley SM, Yang X. 1987. Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology 13:113–39 [Google Scholar]
  141. Turelli M, Gillespie JH, Lande R. 1988. Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution 42:1085–89 [Google Scholar]
  142. Uyeda JC, Hansen TF, Arnold SJ, Pienaar J. 2011. The million-year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. USA 108:15908–13 [Google Scholar]
  143. Vermeij GJ. 1974. Adaptation, versatility, and evolution. Syst. Zool. 22:466–77 [Google Scholar]
  144. Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–76 [Google Scholar]
  145. West-Eberhard MJ. 2005. Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. USA 102:6543–49 [Google Scholar]
/content/journals/10.1146/annurev-earth-040809-152524
Loading
/content/journals/10.1146/annurev-earth-040809-152524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error