1932

Abstract

The Laurentian Great Lakes are vast, spatially heterogeneous, and changing. Across these hydrologically linked basins, some conditions approach biogeochemical extremes for freshwater systems anywhere. Some of the biogeochemical processes operate over nearly as broad a range of temporal and spatial scales as is possible to observe in freshwater. What we know about the biogeochemistry of this system is strongly influenced by an intense focus on phosphorus loading, eutrophication, and partial recovery; therefore, some important biogeochemical processes are known in detail while others are scarcely described. These lakes serve as a life support system for tens of millions of people, and they generate trillions of dollars of economic activity. Many biogeochemical changes that have occurred have surprised us. Biogeochemistry affects how these lakes perform these functions and should be a higher research priority.

  • ▪   The biogeochemical functioning of the Great Lakes affects tens of millions of people and trillions of dollars of economy, but our knowledge of their biogeochemistry is fragmentary.
  • ▪   The history of environmental damage and recovery in the Great Lakes is long and includes many surprises.
  • ▪   Large lakes such as the Great Lakes combine characteristics of small lakes and the world's oceans, making them worthy objects of study to advance fundamental understanding.
  • ▪   The Great Lakes are understudied relative to their scale and importance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071420-051746
2021-05-30
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071420-051746.html?itemId=/content/journals/10.1146/annurev-earth-071420-051746&mimeType=html&fmt=ahah

Literature Cited

  1. Aliff MN, Reavie ED, Post SP, Zanko LM 2020. Metallic elements and oxides and their relevance to Laurentian Great Lakes geochemistry. PeerJ 8:e9053
    [Google Scholar]
  2. Anagnostou E, Sherrell RM. 2008. A MAGIC method for sub-nanomolar orthophosphate determination in freshwater. Limnol. Oceanogr. Methods 6:64–74
    [Google Scholar]
  3. Anderson EJ, Schwab DJ. 2013. Predicting the oscillating bi-directional exchange flow in the Straits of Mackinac. J. Gt. Lakes Res. 39:4663–71
    [Google Scholar]
  4. Austin JA, Colman SM. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys. Res. Lett. 34:6L06604
    [Google Scholar]
  5. Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ 2014. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J. Gt. Lakes Res. 40:3502–17
    [Google Scholar]
  6. Barbiero RP, Lesht BM, Warren GJ 2012. Convergence of trophic state and the lower food web in Lakes Huron, Michigan and Superior. J. Gt. Lakes Res. 38:2368–80
    [Google Scholar]
  7. Barbiero RP, Tuchman ML, Warren GJ, Rockwell DC 2002. Evidence of recovery from phosphorus enrichment in Lake Michigan. Can. J. Fish. Aquat. Sci. 59:101639–47
    [Google Scholar]
  8. Bartolai AM, He L, Hurst AE, Mortsch L, Paehlke R, Scavia D 2015. Climate change as a driver of change in the Great Lakes St. Lawrence River basin. J. Gt. Lakes Res. 41:45–58
    [Google Scholar]
  9. Beeton AM. 1965. Eutrophication of the St. Lawrence Great Lakes. Limnol. Oceanogr. 10:2240–54
    [Google Scholar]
  10. Bellinger BJ, Mooy BASV, Cotner JB, Fredricks HF, Benitez-Nelson CR et al. 2014. Physiological modifications of seston in response to physicochemical gradients within Lake Superior. Limnol. Oceanogr. 59:31011–26
    [Google Scholar]
  11. Bennington V, McKinley GA, Urban NR, McDonald CP 2012. Can spatial heterogeneity explain the perceived imbalance in Lake Superior's carbon budget? A model study. J. Geophys. Res. 117:G3G03020
    [Google Scholar]
  12. Biddanda BA, Coleman DF, Johengen TH, Ruberg SA, Meadows GA et al. 2006. Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems 9:5828–42
    [Google Scholar]
  13. Binding CE, Greenberg TA, Watson SB, Rastin S, Gould J 2015. Long term water clarity changes in North America's Great Lakes from multi-sensor satellite observations. Limnol. Oceanogr. 60:61976–95
    [Google Scholar]
  14. Bogue MB. 2001. Fishing the Great Lakes: An Environmental History, 1783–1933 Madison: Univ. Wisconsin Press
  15. Bolsenga SJ, Herdendorf CE. 1993. Lake Erie and Lake St. Clair Handbook Detroit, MI: Wayne State Univ. Press
  16. Botts L, Muldoon P, Botts P, von Moltke K 2001. The Great Lakes Water Quality Agreement: its past successes and uncertain future. Knowledge, Power, and Participation in Environmental Policy Analysis R. Hoppe 121–44 New Brunswick, NJ: Transaction Publ.
    [Google Scholar]
  17. Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ et al. 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. BioScience 64:126–39
    [Google Scholar]
  18. Byappanahalli MN, Nevers MB, Przybyla‐Kelly K, Ishii S, King TL, Aunins AW 2019. Great Lakes Cladophora harbors phylogenetically diverse nitrogen-fixing microorganisms. Environ. DNA 1:2186–95
    [Google Scholar]
  19. Campbell M, Cooper MJ, Friedman K, Anderson WP 2015. The economy as a driver of change in the Great Lakes–St. Lawrence River basin. J. Gt. Lakes Res. 41:69–83
    [Google Scholar]
  20. Chaffin JD, Bridgeman TB, Bade DL 2013. Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie. Adv. Microbiol. 3:637926
    [Google Scholar]
  21. Chaffin JD, Mishra S, Kane DD, Bade DL, Stanislawczyk K et al. 2019. Cyanobacterial blooms in the central basin of Lake Erie: potentials for cyanotoxins and environmental drivers. J. Gt. Lakes Res. 45:2277–89
    [Google Scholar]
  22. Chapra SC. 1977. Total phosphorus model for the Great Lakes. J. Environ. Eng. Div. 103:2147–61
    [Google Scholar]
  23. Chapra SC, Dolan DM. 2012. Great Lakes total phosphorus revisited: 2. Mass balance modeling. J. Gt. Lakes Res. 38:4741–54
    [Google Scholar]
  24. Chapra SC, Dove A, Warren GJ 2012. Long-term trends of Great Lakes major ion chemistry. J. Gt. Lakes Res. 38:3550–60
    [Google Scholar]
  25. Chapra SC, Sonzogni WC. 1979. Great Lakes total phosphorus budget for the mid 1970s. J. Water Pollut. Control Fed. 51:102524–33
    [Google Scholar]
  26. Charlton MN. 1987. Lake Erie oxygen revisited. J. Gt. Lakes Res. 13:4697–708
    [Google Scholar]
  27. Chomicki KM, Howell ET, Defield E, Dumas A, Taylor WD 2016. Factors influencing the phosphorus distribution near the mouth of the Grand River, Ontario, Lake Erie. J. Gt. Lakes Res. 42:3549–64
    [Google Scholar]
  28. Clark JA, Befus KM, Sharman GR 2012. A model of surface water hydrology of the Great Lakes, North America during the past 16,000 years. Phys. Chem. Earth Parts ABC 53–54:61–71
    [Google Scholar]
  29. Clevinger CC, Heath RT, Bade DL 2014. Oxygen use by nitrification in the hypolimnion and sediments of Lake Erie. J. Gt. Lakes Res. 40:1202–7
    [Google Scholar]
  30. Conley DJ, Schelske CL, Stoermer EF 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101:1/2179–92
    [Google Scholar]
  31. Cooney EM, McKinney P, Sterner RW, Small GE, Minor EC 2018. Tale of two storms: impact of extreme rain events on the biogeochemistry of Lake Superior. J. Geophys. Res. Biogeosciences 123:1719–31
    [Google Scholar]
  32. Cotner JB, Biddanda BA, Makino W, Stets E 2004. Organic carbon biogeochemistry of Lake Superior. Aquat. Ecosyst. Health Manag. 7:4451–64
    [Google Scholar]
  33. Crowe SA, Treusch AH, Forth M, Li J, Magen C et al. 2017. Novel anammox bacteria and nitrogen loss from Lake Superior. Sci. Rep. 7:113757
    [Google Scholar]
  34. Cuhel RL, Aguilar C. 2013. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders. Annu. Rev. Mar. Sci. 5:289–320
    [Google Scholar]
  35. Culbertson AM, Martin JF, Aloysius N, Ludsin SA 2016. Anticipated impacts of climate change on 21st century Maumee River discharge and nutrient loads. J. Gt. Lakes Res. 42:61332–42
    [Google Scholar]
  36. Del Giudice D, Zhou Y, Sinha E, Michalak AM 2018. Long-term phosphorus loading and springtime temperatures explain interannual variability of hypoxia in a large temperate lake. Environ. Sci. Technol. 52:42046–54
    [Google Scholar]
  37. Delorme LD. 1982. Lake Erie oxygen; the prehistoric record. Can. J. Fish. Aquat. Sci. 39:71021–29
    [Google Scholar]
  38. Dila DK, Biddanda BA. 2015. From land to lake: contrasting microbial processes across a Great Lakes gradient of organic carbon and inorganic nutrient inventories. J. Gt. Lakes Res. 41:75–85
    [Google Scholar]
  39. Dolan DM, Chapra SC. 2012. Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008). J. Gt. Lakes Res. 38:4730–40
    [Google Scholar]
  40. Dove A, Chapra SC. 2015. Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol. Oceanogr. 60:2696–721
    [Google Scholar]
  41. Elsbury KE, Paytan A, Ostrom NE, Kendall C, Young MB et al. 2009. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ. Sci. Technol. 43:93108–14
    [Google Scholar]
  42. Environ. Clim. Change Can, US EPA (Environ. Protect. Agency) 2020. State of the Great Lakes 2019: highlights report EPA 905R19002 Washington, DC: US EPA https://binational.net/wp-content/uploads/2020/05/May-4.2020–2019-SOGL-FINAL.pdf
  43. Fahnenstiel GL, Bridgeman TB, Lang GA, McCormick MJ, Nalepa TF 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. J. Gt. Lakes Res. 21:4464–75
    [Google Scholar]
  44. Fahnenstiel GL, Pothoven S, Vanderploeg H, Klarer D, Nalepa T, Scavia D 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. J. Gt. Lakes Res. 36:20–29
    [Google Scholar]
  45. Fahnenstiel GL, Sayers MJ, Shuchman RA, Yousef F, Pothoven SA 2016. Lake-wide phytoplankton production and abundance in the Upper Great Lakes: 2010–2013. J. Gt. Lakes Res. 42:3619–29
    [Google Scholar]
  46. Fakhraee M, Katsev S. 2019. Organic sulfur was integral to the Archean sulfur cycle. Nat. Commun. 10:14556
    [Google Scholar]
  47. Fakhraee M, Li J, Katsev S 2017. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments. Geochim. Cosmochim. Acta 213:502–16
    [Google Scholar]
  48. Fichot CG, Matsumoto K, Holt B, Gierach MM, Tokos KS 2019. Assessing change in the overturning behavior of the Laurentian Great Lakes using remotely sensed lake surface water temperatures. Remote Sens. Environ. 235:111427
    [Google Scholar]
  49. Field MP, Sherrell RM. 2003. Direct determination of ultra-trace levels of metals in fresh water using desolvating micronebulization and HR-ICP-MS: application to Lake Superior waters. J. Anal. At. Spectrom. 18:3254–59
    [Google Scholar]
  50. Finlay JC, Small GE, Sterner RW 2013. Human influences on ecosystem nitrogen removal in lakes. Science 342:247–50
    [Google Scholar]
  51. Finlay JC, Sterner RW, Kumar S 2007. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecol. Appl. 17:82323–32
    [Google Scholar]
  52. Gronewold AD, Fortin V, Lofgren B, Clites A, Stow CA, Quinn F 2013. Coasts, water levels, and climate change: a Great Lakes perspective. Clim. Change 120:4697–711
    [Google Scholar]
  53. Gt. Lakes Comm 2013. Annual Report of the Great Lakes Regional Water Use Database: representing 2011 water use data Rep. 21, Gt. Lakes Comm. Ann Arbor, MI: https://waterusedata.glc.org/pdf/wateruserpt2011.pdf
  54. Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship. ? Limnol. Oceanogr. 45:61213–23
    [Google Scholar]
  55. Guiry EJ, Buckley M, Orchard TJ, Hawkins AL, Needs‐Howarth S et al. 2020. Deforestation caused abrupt shift in Great Lakes nitrogen cycle. Limnol. Oceanogr. 65:81921–35
    [Google Scholar]
  56. Hecky RE. 2000. A biogeochemical comparison of Lakes Superior and Malawi and the limnological consequences of an endless summer. Aquat. Ecosyst. Health Manag. 3:23–33
    [Google Scholar]
  57. Hecky RE, Campbell P, Hendzel LL 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38:4709–24
    [Google Scholar]
  58. Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD et al. 2004. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 61:1285–93
    [Google Scholar]
  59. Heinen EA, McManus J. 2004. Carbon and nutrient cycling at the sediment-water boundary in western Lake Superior. J. Gt. Lakes Res. 30:113–32
    [Google Scholar]
  60. Herdendorf CE. 1990. Great Lakes estuaries. Estuaries 13:4493–503
    [Google Scholar]
  61. Hollenhorst TP, Brown TN, Johnson LB, Ciborowski JJH, Host GE 2007. Methods for generating multi-scale watershed delineations for indicator development in Great Lake coastal ecosystems. J. Gt. Lakes Res. 33:13–26
    [Google Scholar]
  62. Ives JT, McMeans BC, McCann KS, Fisk AT, Johnson TB et al. 2019. Food-web structure and ecosystem function in the Laurentian Great Lakes—toward a conceptual model. Freshw. Biol. 64:11–23
    [Google Scholar]
  63. Jabbari A, Ackerman JD, Boegman L, Zhao Y 2019. Episodic hypoxia in the western basin of Lake Erie. Limnol. Oceanogr. 64:52220–36
    [Google Scholar]
  64. Jameel Y, Stein S, Grimm E, Roswell C, Wilson AE et al. 2018. Physicochemical characteristics of a southern Lake Michigan river plume. J. Gt. Lakes Res. 44:2209–18
    [Google Scholar]
  65. Jankowiak J, Hattenrath‐Lehmann T, Kramer BJ, Ladds M, Gobler CJ 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64:31347–70
    [Google Scholar]
  66. Joung D, Leonte M, Kessler JD 2019. Methane sources in the waters of Lake Michigan and Lake Superior as revealed by natural radiocarbon measurements. Geophys. Res. Lett. 46:105436–44
    [Google Scholar]
  67. Kane DD, Conroy JD, Richards RP, Baker DB, Culver DA 2014. Re-eutrophication of Lake Erie: correlations between tributary nutrient loads and phytoplankton biomass. J. Gt. Lakes Res. 40:3496–501
    [Google Scholar]
  68. Karim A, Dubois K, Veizer J 2011. Carbon and oxygen dynamics in the Laurentian Great Lakes: implications for the CO2 flux from terrestrial aquatic systems to the atmosphere. Chem. Geol. 281:1133–41
    [Google Scholar]
  69. Katsev S. 2017. When large lakes respond fast: a parsimonious model for phosphorus dynamics. J. Gt. Lakes Res. 43:1199–204
    [Google Scholar]
  70. Kilham P. 1990. Endless summer: internal loading processes dominate nutrient cycling in tropical lakes. Freshw. Biol. 23:379–89
    [Google Scholar]
  71. Klump JV, Brunner SL, Grunert BK, Kaster JL, Weckerly K et al. 2018. Evidence of persistent, recurring summertime hypoxia in Green Bay, Lake Michigan. J. Gt. Lakes Res. 44:5841–50
    [Google Scholar]
  72. Klump JV, Edgington DN, Sager PE, Robertson DM 1997. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem. Can. J. Fish. Aquat. Sci. 54:110–26
    [Google Scholar]
  73. Kornelsen KC, Coulibaly P. 2014. Synthesis review on groundwater discharge to surface water in the Great Lakes Basin. J. Gt. Lakes Res. 40:2247–56
    [Google Scholar]
  74. Kruger BR, Werne JP, Branstrator DK, Hrabik TR, Chikaraishi Y et al. 2016. Organic matter transfer in Lake Superior's food web: insights from bulk and molecular stable isotope and radiocarbon analyses. Limnol. Oceanogr. 61:1149–64
    [Google Scholar]
  75. Kutovaya OA, McKay RML, Bullerjahn GS 2013. Detection and expression of genes for phosphorus metabolism in picocyanobacteria from the Laurentian Great Lakes. J. Gt. Lakes Res. 39:4612–21
    [Google Scholar]
  76. Larson G, Schaetzl R. 2001. Origin and evolution of the Great Lakes. J. Gt. Lakes Res. 27:4518–46
    [Google Scholar]
  77. Larson JH, Trebitz AS, Steinman AD, Wiley MJ, Mazur MC et al. 2013. Great Lakes rivermouth ecosystems: scientific synthesis and management implications. J. Gt. Lakes Res. 39:3513–24
    [Google Scholar]
  78. Li J, Crowe SA, Miklesh D, Kistner M, Canfield DE, Katsev S 2012. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnol. Oceanogr. 57:61634–50
    [Google Scholar]
  79. Li J, Katsev S. 2014. Nitrogen cycling in deeply oxygenated sediments: results in Lake Superior and implications for marine sediments. Limnol. Oceanogr. 59:2465–81
    [Google Scholar]
  80. Li J, Zhang Y, Katsev S 2018. Phosphorus recycling in deeply oxygenated sediments in Lake Superior controlled by organic matter mineralization. Limnol. Oceanogr. 63:31372–85
    [Google Scholar]
  81. Lin P, Guo L. 2016. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes. ? Sci. Rep. 6:139078
    [Google Scholar]
  82. Lin P, Klump JV, Guo L 2018. Variations in chemical speciation and reactivity of phosphorus between suspended-particles and surface-sediment in seasonal hypoxia-influenced Green Bay. J. Gt. Lakes Res. 44:5864–74
    [Google Scholar]
  83. Loken L, Small GE, Finlay JC, Sterner RW, Stanley EH 2016. Nitrogen cycling in a freshwater estuary. Biogeochemistry 127:2199–216
    [Google Scholar]
  84. Lu X, Bade DL, Leff LG, Mou X 2018. The relative importance of anammox and denitrification to total N2 production in Lake Erie. J. Gt. Lakes Res. 44:3428–35
    [Google Scholar]
  85. Maccoux MJ, Dove A, Backus SM, Dolan DM 2016. Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country, and tributary. J. Gt. Lakes Res. 42:61151–65
    [Google Scholar]
  86. MacGregor BJ, Van Mooy B, Baker BJ, Mellon M, Moisander PH et al. 2001. Microbiological, molecular biological and stable isotopic evidence for nitrogen fixation in the open waters of Lake Michigan. Environ. Microbiol. 3:3205–19
    [Google Scholar]
  87. Mahdiyan O, Filazzola A, Molot LA, Gray D, Sharma S 2021. Drivers of water quality changes within the Laurentian Great Lakes region over the past 40 years. Limnol. Oceanogr. 66:123754
    [Google Scholar]
  88. Mailhot E, Music B, Nadeau DF, Frigon A, Turcotte R 2019. Assessment of the Laurentian Great Lakes’ hydrological conditions in a changing climate. Clim. Change 157:2243–59
    [Google Scholar]
  89. Makarewicz JC, Lewis TW, Boyer GL 2012. Nutrient enrichment and depletion on the shoreside of the spring thermal front. J. Gt. Lakes Res. 38:72–77
    [Google Scholar]
  90. Marcarelli AM, Coble AA, Meingast KM, Kane ES, Brooks CN et al. 2018. Of small streams and Great Lakes: integrating tributaries to understand the ecology and biogeochemistry of Lake Superior. J. Am. Water Resour. Assoc. 55:2442–58
    [Google Scholar]
  91. Markovic S, Blukacz-Richards AE, Dittrich M 2020. Speciation and bioavailability of particulate phosphorus in forested karst watersheds of southern Ontario during rain events. J. Gt. Lakes Res. 46:4824–38
    [Google Scholar]
  92. Mason LA, Riseng CM, Gronewold AD, Rutherford ES, Wang J et al. 2016. Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Clim. Change 138:171–83
    [Google Scholar]
  93. McDonald CP, Urban NR, Casey CM 2010. Modeling historical trends in Lake Superior total nitrogen concentrations. J. Gt. Lakes Res. 36:4715–21
    [Google Scholar]
  94. Meyers PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34:261–89
    [Google Scholar]
  95. Mickelson DM, Edil TB, Guy DE 1984. Erosion of coastal bluffs in the Great Lakes Prof. Pap. 1693, US Geol. Surv., US Dep. Inter. Denver, CO:
  96. Minor EC, Forsman B, Guildford SJ 2014. The effect of a flood pulse on the water column of western Lake Superior, USA. J. Gt. Lakes Res. 40:2455–62
    [Google Scholar]
  97. Minor EC, Tennant CJ, Brown ET 2019. A seasonal to interannual view of inorganic and organic carbon and pH in western Lake Superior. J. Geophys. Res. Biogeosciences 124:2405–19
    [Google Scholar]
  98. Mitsch WJ, Wang N. 2000. Large-scale coastal wetland restoration on the Laurentian Great Lakes: determining the potential for water quality improvement. Ecol. Eng. 15:3267–82
    [Google Scholar]
  99. Mohamed MN, Wellen C, Parsons CT, Taylor WD, Arhonditsis G et al. 2019. Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities. Freshw. Sci. 38:4675–91
    [Google Scholar]
  100. Monsen NE, Cloern JE, Lucas LV, Monismith SG 2002. A comment on the use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr. 47:51545–53
    [Google Scholar]
  101. Natl. Ocean. Atmos. Adm. Gt. Lakes Environ. Res. Lab 2020a. About our Great Lakes: lake by lake profiles. National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory https://www.glerl.noaa.gov/education/ourlakes/lakes.html
    [Google Scholar]
  102. Natl. Ocean. Atmos. Adm. Gt. Lakes Environ. Res. Lab 2020b. The Great Lakes Dashboard (β). National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory accessed May 25, 2020. https://www.glerl.noaa.gov/data/dashboard/GLD_HTML5.html
    [Google Scholar]
  103. Natl. Ocean. Atmos. Adm. Ocean Acidif. Steer. Comm 2010. NOAA Ocean and Great Lakes Acidification Research Plan NOAA Spec. Rep. 3500, US Dep. Commer. Washington, DC: https://www.pmel.noaa.gov/co2/files/feel3500_without_budget_rfs.pdf
  104. Neff BP, Nicholas JR. 2005. Uncertainty in the Great Lakes water balance USGS Sci. Investig. Rep. 2004-5100 USGS, Reston, VA:
  105. Nold SC, Pangborn JB, Zajack HA, Kendall ST, Rediske RR, Biddanda BA 2010. Benthic bacterial diversity in submerged sinkhole ecosystems. Appl. Environ. Microbiol. 76:1347–51
    [Google Scholar]
  106. North RL, Guildford SJ, Smith REH, Havens SM, Twiss MR 2007. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52:1315–28
    [Google Scholar]
  107. Nriagu JO, Lawson G, Wong HKT, Cheam V 1996. Dissolved trace metals in Lakes Superior, Erie, and Ontario. Environ. Sci. Technol. 30:1178–87
    [Google Scholar]
  108. Ouyang Y, Parajuli PB, Feng G, Leininger TD, Wan Y, Dash P 2018. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds. J. Hydrol. 563:363–71
    [Google Scholar]
  109. Paytan A, Roberts K, Watson S, Peek S, Chuang P-C et al. 2017. Internal loading of phosphate in Lake Erie Central Basin. Sci. Total Environ. 579:1356–65
    [Google Scholar]
  110. Phillips J, McKinley G, Bennington V, Bootsma H, Pilcher D et al. 2015. The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 25:2136–45
    [Google Scholar]
  111. Prater C, Frost PC, Howell ET, Watson SB, Zastepa A et al. 2017. Variation in particulate C:N:P stoichiometry across the Lake Erie watershed from tributaries to its outflow. Limnol. Oceanogr. 62:S1S194–206
    [Google Scholar]
  112. Quinn FH. 1992. Hydraulic residence times for the Laurentian Great Lakes. J. Gt. Lakes Res. 18:122–28
    [Google Scholar]
  113. Rabalais NN, Turner RE, Wiseman WJ 2002. Gulf of Mexico hypoxia, a.k.a. “the dead zone.”. Annu. Rev. Ecol. Syst. 33:235–63
    [Google Scholar]
  114. Rao YR, Schwab DJ. 2007. Transport and mixing between the coastal and offshore waters in the Great Lakes: a review. J. Gt. Lakes Res. 33:1202–18
    [Google Scholar]
  115. Rea DK, Owen RM, Meyers PA 1981. Sedimentary processes in the Great Lakes. Rev. Geophys. Space Phys. 19:635–48
    [Google Scholar]
  116. Reavie ED, Cai M, Twiss MR, Carrick HJ, Davis TW et al. 2016. Winter-spring diatom production in Lake Erie is an important driver of summer hypoxia. J. Gt. Lakes Res. 42:3608–18
    [Google Scholar]
  117. Reutter JM. 2019. Lake Erie: past, present, and future. Encyclopedia of Water PA Maurice 1–15 Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  118. Riseng CM, Wehrly KE, Wang L, Rutherford ES, McKenna JE et al. 2018. Ecosystem classification and mapping of the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 75:101693–712
    [Google Scholar]
  119. Robertson DM, Saad DA. 2011. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models. J. Am. Water Resour. Assoc. 47:51011–33
    [Google Scholar]
  120. Robertson DM, Saad DA, Benoy GA, Vouk I, Schwarz GE, Laitta MT 2019. Phosphorus and nitrogen transport in the binational Great Lakes basin estimated using SPARROW watershed models. J. Am. Water Resour. Assoc. 55:61401–24
    [Google Scholar]
  121. Robertson DM, Saad DA, Christiansen DE, Lorenz DJ 2016. Simulated impacts of climate change on phosphorus loading to Lake Michigan. J. Gt. Lakes Res. 42:3536–48
    [Google Scholar]
  122. Rowe MD, Kreis RG, Dolan DM 2014. A reactive nitrogen budget for Lake Michigan. J. Gt. Lakes Res. 40:1192–201
    [Google Scholar]
  123. Rucinski DK, DePinto JV, Scavia D, Beletsky D 2014. Modeling Lake Erie's hypoxia response to nutrient loads and physical variability. J. Gt. Lakes Res. 40:151–61
    [Google Scholar]
  124. Salk KR, Bullerjahn GS, McKay RML, Chaffin JD, Ostrom NE 2018. Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms. Biogeosciences 15:92891
    [Google Scholar]
  125. Salk KR, Ostrom NE. 2019. Nitrous oxide in the Great Lakes: insights from two trophic extremes. Biogeochemistry 144:3233–43
    [Google Scholar]
  126. Saxton MA, D'souza NA, Bourbonniere RA, McKay RML, Wilhelm SW 2012. Seasonal Si:C ratios in Lake Erie diatoms—evidence of an active winter diatom community. J. Gt. Lakes Res. 38:2206–11
    [Google Scholar]
  127. Scavia D, Kalcic M, Muenich RL, Read J, Aloysius N et al. 2017. Multiple models guide strategies for agricultural nutrient reductions. Front. Ecol. Environ. 15:3126–32
    [Google Scholar]
  128. Schelske CL, Stoermer EF, Kenney WF 2006. Historic low-level phosphorus enrichment in the Great Lakes inferred from biogenic silica accumulation. Limnol. Oceanogr. 51:728–48
    [Google Scholar]
  129. Sharma A, Hamlet AF, Fernando HJS, Catlett CE, Horton DE et al. 2018. The need for an integrated land-lake-atmosphere modeling system, exemplified by North America's Great Lakes region. Earth's Future 6:101366–79
    [Google Scholar]
  130. Sharrar AM, Flood BE, Bailey JV, Jones DS, Biddanda BA et al. 2017. Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron basin. Front. Microbiol. 8:791
    [Google Scholar]
  131. Shuchman RA, Sayers M, Fahnenstiel GL, Leshkevich G 2013. A model for determining satellite-derived primary productivity estimates for Lake Michigan. J. Gt. Lakes Res. 39:46–54
    [Google Scholar]
  132. Sierszen ME, Morrice JA, Trebitz AS, Hoffman JC 2012. A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquat. Ecosyst. Health Manag. 15:192–106
    [Google Scholar]
  133. Skjelkvåle BL, Stoddard JL, Jeffries DS, Tørseth K, Høgåsen T et al. 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ. Pollut. 137:1165–76
    [Google Scholar]
  134. Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S et al. 2013a. Rates and controls of nitrification in a large oligotrophic lake. Limnol. Oceanogr. 58:1276–86
    [Google Scholar]
  135. Small GE, Cotner JB, Finlay JC, Stark RA, Sterner RW 2013b. Nitrogen transformations at the sediment-water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 731:195–108
    [Google Scholar]
  136. Small GE, Finlay JC, McKay RML, Rozmarynowycz MJ, Brovold S et al. 2016. Large differences in potential denitrification and sediment microbial communities across the Laurentian Great Lakes. Biogeochemistry 128:3353–68
    [Google Scholar]
  137. Small GE, Sterner RW, Finlay JC 2014. An ecological network analysis of nitrogen cycling in the Laurentian Great Lakes. Ecol. Model. 293:150–60
    [Google Scholar]
  138. Sosa OA, Burrell TJ, Wilson ST, Foreman RK, Karl DM, Repeta DJ 2020. Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean. Limnol. Oceanogr. 65:102443–59
    [Google Scholar]
  139. Springer 2020. Landscape Ecology italicSpringer https://www.springer.com/journal/10980
  140. Sterner RW. 2010. In situ-measured primary production in Lake Superior. J. Gt. Lakes Res. 36:1139–49
    [Google Scholar]
  141. Sterner RW. 2011. C:N:P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters 1:129–46
    [Google Scholar]
  142. Sterner RW, Anagnostou E, Brovold S, Bullerjahn G, Finlay J et al. 2007. Increasing stoichiometric imbalance in Earth's largest lake. Geophys. Res. Lett. 34:L10406
    [Google Scholar]
  143. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. Press
  144. Sterner RW, Keeler B, Polasky S, Poudel R, Rhude K, Rogers M 2020a. Ecosystem services of Earth's largest freshwater lakes. Ecosyst. Serv. 41:101046
    [Google Scholar]
  145. Sterner RW, Ostrom P, Ostrom NE, Klump JV, Steinman AD et al. 2017. Grand challenges for research in the Laurentian Great Lakes. Limnol. Oceanogr. 62:2510–25
    [Google Scholar]
  146. Sterner RW, Reinl KL, Lafrancois BM, Brovold S, Miller TR 2020b. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior. Limnol. Oceanogr. 65:12298498
    [Google Scholar]
  147. Sterner RW, Smutka TM, McKay RML, Xiaoming Q, Brown ET, Sherrell RM 2004. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49:495–507
    [Google Scholar]
  148. Stewart TJ, Rudstam L, Watkins J, Johnson TB, Weidel B, Koops MA 2016. Research needs to better understand Lake Ontario ecosystem function: a workshop summary. J. Gt. Lakes Res. 42:11–5
    [Google Scholar]
  149. Stow CA, Hook T. 2013. Saginaw Bay multiple stressors summary report NOAA Tech. Rep. 160, Gt. Lakes Environ. Res. Lab., NOAA Ann Arbor, MI:
  150. Tonello MS, Hebner TS, Sterner RW, Brovold S, Tiecher T et al. 2019. Geochemistry and minerology of southwestern Lake Superior sediments with an emphasis on phosphorus lability. J. Soils Sediments 20:21060–73
    [Google Scholar]
  151. Tong Y, Li J, Qi M, Zhang X, Wang M et al. 2019. Impacts of water residence time on nitrogen budget of lakes and reservoirs. Sci. Total Environ. 646:75–83
    [Google Scholar]
  152. Tong Y, Wang M, Peñuelas J, Liu X, Paerl HW et al. 2020. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. PNAS 117:2111566–72
    [Google Scholar]
  153. Townsend-Small A, Disbennett D, Fernandez JM, Ransohoff RW, Mackay R, Bourbonniere RA 2016. Quantifying emissions of methane derived from anaerobic organic matter respiration and natural gas extraction in Lake Erie. Limnol. Oceanogr. 61:S356–66
    [Google Scholar]
  154. Twiss MR, Gouvêa SP, Bourbonniere RA, McKay RML, Wilhelm SW 2005. Field investigations of trace metal effects on Lake Erie phytoplankton productivity. J. Gt. Lakes Res. 31:168–79
    [Google Scholar]
  155. Urban NR. 2005. Carbon cycling in Lake Superior. J. Geophys. Res. 110:C6C06S90
    [Google Scholar]
  156. US EPA (Environ. Prot. Agency) 2009. National Lakes Assessment: A Collaborative Survey of the Nation's Lakes Washington, DC: US EPA. https://www.epa.gov/sites/production/files/2013-11/documents/nla_newlowres_fullrpt.pdf
  157. US EPA (Environ. Prot. Agency) 2019. Physical features of the Great Lakes. US Environmental Protection Agency accessed Jul. 5, 2020. https://www.epa.gov/greatlakes/physical-features-great-lakes
    [Google Scholar]
  158. Van Cleave K, Lenters JD, Wang J, Verhamme EM 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnol. Oceanogr. 59:61889–98
    [Google Scholar]
  159. Vander Zanden MJ, Hansen GJA, Higgins SN, Kornis MS 2010. A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. J. Gt. Lakes Res. 36:1199–205
    [Google Scholar]
  160. Vanderploeg HA, Eadie BJ, Liebig JR, Tarapchak SJ, Glover RM 1987. Contribution of calcite to the particle-size spectrum of Lake Michigan seston and its interactions with the plankton. Can. J. Fish. Aquat. Sci. 44:111898–914
    [Google Scholar]
  161. Vanderploeg HA, Liebig JR, Nalepa TF, Fahnenstiel GL, Pothoven SA 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. J. Gt. Lakes Res. 36:50–59
    [Google Scholar]
  162. Verhamme EM, Redder TM, Schlea DA, Grush J, Bratton JF, DePinto JV 2016. Development of the Western Lake Erie Ecosystem Model (WLEEM): application to connect phosphorus loads to cyanobacteria biomass. J. Gt. Lakes Res. 42:61193–205
    [Google Scholar]
  163. Verma S, Bartosova A, Markus M, Cooke R, Um M-J, Park D 2018. Quantifying the role of large floods in riverine nutrient loadings using linear regression and analysis of covariance. Sustainability 10:82876
    [Google Scholar]
  164. Verma S, Bhattarai R, Bosch NS, Cooke RC, Kalita PK, Markus M 2015. Climate change impacts on flow, sediment and nutrient export in a Great Lakes watershed using SWAT. CLEAN Soil Air Water 43:111464–74
    [Google Scholar]
  165. Verschoor MJ, Powe CR, McQuay E, Schiff SL, Venkiteswaran JJ et al. 2017. Internal iron loading and warm temperatures are preconditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Can. J. Fish. Aquat. Sci. 74:91439–53
    [Google Scholar]
  166. Vilmin L, Mogollón JM, Beusen AHW, Bouwman AF 2018. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century. Glob. Planet. Change 163:67–85
    [Google Scholar]
  167. Wang J, Kessler J, Hang F, Hu H, Clites A, Chu P 2017. Great Lakes ice climatology update of winters 2012–2017: seasonal cycle, interannual variability, decadal variability, and trend for the period 1973–2017 NOAA Tech. Rep. 170, Gt. Lakes Environ. Res. Lab., NOAA Ann Arbor, MI:
  168. Warner DM, Lesht BM. 2015. Relative importance of phosphorus, invasive mussels and climate for patterns in chlorophyll a and primary production in Lakes Michigan and Huron. Freshw. Biol. 60:51029–43
    [Google Scholar]
  169. Warren GJ, Lesht BM, Barbiero RP 2018. Estimation of the width of the nearshore zone in Lake Michigan using eleven years of MODIS satellite imagery. J. Gt. Lakes Res. 44:4563–72
    [Google Scholar]
  170. Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W et al. 2016. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44–66
    [Google Scholar]
  171. Wellen C, Arhonditsis GB, Long T, Boyd D 2014. Accommodating environmental thresholds and extreme events in hydrological models: a Bayesian approach. J. Gt. Lakes Res. 40:102–16
    [Google Scholar]
  172. Wilcox DA, Thompson TA, Booth RK, Nichols JR 2007. Lake-level variability and water availability in the Great Lakes Circular 1311, USGS Reston, VA:
  173. Williams MR, King KW. 2020. Changing rainfall patterns over the western Lake Erie basin (1975–2017): effects on tributary discharge and phosphorus load. Water Resour. Res. 56:3e2019WR025985
    [Google Scholar]
  174. Yao M, Henny C, Maresca JA 2016. Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl. Environ. Microbiol. 82:236994–7003
    [Google Scholar]
  175. Yuan F, Depew R, Soltis-Muth C 2015. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments. Sci. Rep. 4:17265
    [Google Scholar]
  176. Yurista PM, Kelly JR, Scharold JV 2016. Great Lakes nearshore-offshore: distinct water quality regions. J. Gt. Lakes Res. 42:2375–85
    [Google Scholar]
  177. Zhou Y, Obenour DR, Scavia D, Johengen TH, Michalak AM 2013. Spatial and temporal trends in Lake Erie hypoxia, 1987–2007. Environ. Sci. Technol. 47:2899–905
    [Google Scholar]
  178. Zhou Z, Guo L, Minor EC 2016. Characterization of bulk and chromophoric dissolved organic matter in the Laurentian Great Lakes during summer 2013. J. Gt. Lakes Res. 42:4789–801
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071420-051746
Loading
/content/journals/10.1146/annurev-earth-071420-051746
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error