1932

Abstract

This article reviews tsunami modeling and its relation to recent developments of deep-ocean observations. Unlike near-coast observations, deep-ocean observations have enabled the capture of short-wavelength dispersive tsunamis and reflected waves from the coast. By analyzing these waves, researchers can estimate tsunami sources and earthquake slip distributions more reliably with higher spatial resolution. In addition, fractional tsunami speed reduction due to the elasticity of the Earth medium is now clearly detected. Densely and widely distributed tsunami sensors make it possible to observe tsunamis inside the earthquake focal area, and understanding tsunami generation mechanisms is increasingly important. In order to describe the generation field, we should consider seismic waves overlapping tsunami signals in addition to vertical and horizontal displacements at the sea bottom. The importance of elastic dynamics, in addition to fluid dynamics, is increasing in order for researchers to fully understand tsunami phenomena using the new offshore and inside focal area observations.

  • ▪   Deep-ocean observations have advanced tsunami propagation modeling.
  • ▪   New deep-ocean observations in earthquake focal areas are expected to detect in situ tsunami generation caused by megathrust earthquakes.
  • ▪   The importance of elastic dynamics, in addition to fluid dynamics, is increasing to help researchers fully understand mechanics in tsunami generation and propagation.
  • ▪   Tsunami modeling including earthquake rupture and seismic waves contributes to mega-thrust earthquake investigation and disaster mitigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-054845
2020-05-30
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-054845.html?itemId=/content/journals/10.1146/annurev-earth-071719-054845&mimeType=html&fmt=ahah

Literature Cited

  1. Allgeyer S, Cummins P. 2014. Numerical tsunami simulation including elastic loading and seawater density stratification. Geophys. Res. Lett. 41:72368–75
    [Google Scholar]
  2. An C, Cai C, Zheng Y, Meng L, Liu P 2017. Theoretical solution and applications of ocean bottom pressure induced by seismic seafloor motion. Geophys. Res. Lett. 44:2010272–81
    [Google Scholar]
  3. An C, Meng L. 2017. Time reversal imaging of the 2015 Illapel tsunami source. Geophys. Res. Lett. 44:41732–39
    [Google Scholar]
  4. Baba T, Allgeyer S, Hossen J, Cummins PR, Tsushima H et al. 2017. Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model 111:46–54
    [Google Scholar]
  5. Baba T, Cummins PR, Thio HK, Tsushima H 2009. Validation and joint inversion of teleseismic waveforms for earthquake source models using deep ocean bottom pressure records: a case study of the 2006 Kuril megathrust earthquake. Pure Appl. Geophys. 166:1–255–76
    [Google Scholar]
  6. Barnes CR, Best MMR, Johnson FR, Pirenne B 2015. NEPTUNE Canada: installation and initial operation of the world's first regional cabled ocean observatory. Seafloor Observatories P Favali, L Beranzoli, A De Santis 415–38 Berlin: Springer
    [Google Scholar]
  7. Bernard EN, Meinig C. 2011. History and future of deep-ocean tsunami measurements. Oceans 11: Proceedings of Oceans’ 11 MTS/IEEE, Kona1–7 Piscataway, NJ: IEEE
    [Google Scholar]
  8. Comer RP. 1984. Tsunami generation: a comparison of traditional and normal mode approaches. Geophys. J. Int. 77:129–41
    [Google Scholar]
  9. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:4297–356
    [Google Scholar]
  10. Eyov E, Klar A, Kadri U, Stiassnie M 2013. Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50:5929–39
    [Google Scholar]
  11. Fujii Y, Satake K. 2007. Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bull. Seismol. Soc. Am. 97:1A192–207
    [Google Scholar]
  12. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:7815–20
    [Google Scholar]
  13. Fukao Y, Sandanbata O, Sugioka H, Ito A, Shiobara H et al. 2018. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan. Sci. Adv. 4:4eaao0219
    [Google Scholar]
  14. Geist EL. 2018. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes. Pure Appl. Geophys. 175:41341–54
    [Google Scholar]
  15. Geist EL, Dmowska R. 1999. Local tsunamis and distributed slip at the source. Pure Appl. Geophys. 154:3–4485–512
    [Google Scholar]
  16. Gower J. 2005. Jason 1 detects the 26 December 2004 tsunami. Eos Trans. AGU 86:437–38
    [Google Scholar]
  17. Gusman AR, Murotani S, Satake K, Heidarzadeh M, Gunawan E et al. 2015. Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophys. Res. Lett. 42:41053–60
    [Google Scholar]
  18. Gusman AR, Satake K, Shinohara M, Sakai S, Tanioka Y 2017. Fault slip distribution of the 2016 Fukushima earthquake estimated from tsunami waveforms. Pure Appl. Geophys. 174:82925–43
    [Google Scholar]
  19. Gusman AR, Sheehan AF, Satake K, Heidarzadeh M, Mulia IE, Maeda T 2016. Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophys. Res. Lett. 43:94189–96
    [Google Scholar]
  20. Heesemann M, Insua TL, Scherwath M, Juniper SK, Moran K 2014. Ocean Networks Canada: from geohazards research laboratories to smart ocean systems. Oceanography 27:2151–53
    [Google Scholar]
  21. Heidarzadeh M, Murotani S, Satake K, Takagawa T, Saito T 2017. Fault size and depth extent of the Ecuador earthquake (Mw 7.8) of 16 April 2016 from teleseismic and tsunami data. Geophys. Res. Lett. 44:52211–19
    [Google Scholar]
  22. Hirata K, Satake K, Tanioka Y, Kuragano T, Hasegawa Y et al. 2006. The 2004 Indian Ocean tsunami: tsunami source model from satellite altimetry. Earth Planets Space 58:2195–201
    [Google Scholar]
  23. Ho TC, Satake K, Watada S 2017. Improved phase corrections for transoceanic tsunami data in spatial and temporal source estimation: application to the 2011 Tohoku earthquake. J. Geophys. Res. Solid Earth 122:1210155–75
    [Google Scholar]
  24. Hooper A, Pietrzak J, Simons W, Cui H, Riva R et al. 2013. Importance of horizontal seafloor motion on tsunami height for the 2011 Mw = 9.0 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 361:469–79
    [Google Scholar]
  25. Horrillo J, Kowalik Z, Shigihara Y 2006. Wave dispersion study in the Indian Ocean-tsunami of December 26, 2004. Mar. Geod. 29:3149–66
    [Google Scholar]
  26. Hossen MJ, Cummins PR, Dettmer J, Baba T 2015. Time reverse imaging for far-field tsunami forecasting: 2011 Tohoku earthquake case study. Geophys. Res. Lett. 42:229906–15
    [Google Scholar]
  27. Inazu D, Saito T. 2013. Simulation of distant tsunami propagation with a radial loading deformation effect. Earth Planets Space 65:8835–42
    [Google Scholar]
  28. Inazu D, Saito T. 2014. Two subevents across the Japan Trench during the 7 December 2012 off Tohoku earthquake (Mw 7.3) inferred from offshore tsunami records. J. Geophys. Res. Solid Earth 119:75800–13
    [Google Scholar]
  29. Kajiura K. 1963. The leading wave of a tsunami. Bull. Earthq. Res. Inst. 41:535–71
    [Google Scholar]
  30. Kakinuma T, Akiyama M. 2007. Numerical analysis of tsunami generation due to seabed deformation. Coastal Engineering 2006 J McKee Smith 1490–502 Hackensack, NJ: World Scientific
    [Google Scholar]
  31. Kanazawa T, Uehira K, Mochizuki M, Shinbo T, Fujimoto H, Noguchi S et al. 2016. S-net project, cabled observation network for earthquakes and tsunamis Paper presented at SubOptic 2016, Dubai
  32. Kaneda Y, Kawaguchi K, Araki E, Matsumoto H, Nakamura T et al. 2015. Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. Seafloor Observatories P Favali, L Beranzoli, A De Santis 643–62 Berlin: Springer
    [Google Scholar]
  33. Kawaguchi K, Kaneko S, Nishida T, Komine T 2015. Construction of the DONET real-time seafloor observatory for earthquakes and tsunami monitoring. Seafloor Observatories P Favali, L Beranzoli, A De Santis 211–28 Berlin: Springer
    [Google Scholar]
  34. Kervella Y, Dutykh D, Dias F 2007. Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor. Comput. Fluid Dyn. 21:4245–69
    [Google Scholar]
  35. Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST 2013. Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55
    [Google Scholar]
  36. Koketsu K, Yokota Y, Nishimura N, Yagi Y, Miyazaki S et al. 2011. A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett. 310:3–4480–87
    [Google Scholar]
  37. Kozdon JE, Dunham EM. 2013. Rupture to the trench: dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 103:1275–89
    [Google Scholar]
  38. Kozdon JE, Dunham EM, Nordström J 2013. Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 55:192–124
    [Google Scholar]
  39. Kubota T, Saito T, Ito Y, Kaneko Y, Wallace LM et al. 2018a. Using tsunami waves reflected at the coast to improve offshore earthquake source parameters: application to the 2016 Mw 7.1 Te Araroa earthquake, New Zealand. J. Geophys. Res. Solid Earth 123:108767–79
    [Google Scholar]
  40. Kubota T, Saito T, Suzuki W, Hino R 2017. Estimation of seismic centroid moment tensor using ocean bottom pressure gauges as seismometers. Geophys. Res. Lett. 44:2110907–15
    [Google Scholar]
  41. Kubota T, Suzuki W, Nakamura T, Chikasada NY, Aoi S et al. 2018b. Tsunami source inversion using time-derivative waveform of offshore pressure records to reduce effects of non-tsunami components. Geophys. J. Int. 215:21200–14
    [Google Scholar]
  42. Kulikov E. 2006. Dispersion of the Sumatra tsunami waves in the Indian Ocean detected by satellite altimetry. Russ. J. Earth Sci. 8:4ES4004
    [Google Scholar]
  43. Lay T, Ye L, Kanamori H, Yamazaki Y, Cheung KF et al. 2013. The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth Planet. Sci. Lett 375:57–70
    [Google Scholar]
  44. Levin BW, Nosov M. 2009. Physics of Tsunamis Dordrecht, Neth: Springer
  45. Lotto GC, Dunham EM. 2015. High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Comput. Geosci. 19:2327–40
    [Google Scholar]
  46. Lotto GC, Jeppson TN, Dunham EM 2018. Fully coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia subduction zone. Pure Appl. Geophys. 176:4009–41
    [Google Scholar]
  47. Lotto GC, Nava G, Dunham EM 2017. Should tsunami simulations include a nonzero initial horizontal velocity?. Earth Planets Space 69:1117
    [Google Scholar]
  48. Ma S, Hirakawa ET. 2013. Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes. Earth Planet. Sci. Lett. 375:113–22
    [Google Scholar]
  49. Ma S, Nie S. 2019. Dynamic wedge failure and along-arc variations of tsunamigenesis in the Japan Trench margin. Geophys. Res. Lett. 46:8782–90
    [Google Scholar]
  50. Madsen PA, Murray R, Sørensen OR 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast. Eng. 15:371–88
    [Google Scholar]
  51. Maeda T, Furumura T. 2013. FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170:1–2109–27
    [Google Scholar]
  52. Maeda T, Furumura T, Noguchi S, Takemura S, Sakai S et al. 2013. Seismic- and tsunami-wave propagation of the 2011 off the Pacific coast of Tohoku earthquake as inferred from the tsunami-coupled finite-difference simulation. Bull. Seismol. Soc. Am. 103:2B1456–72
    [Google Scholar]
  53. Maeda T, Obara K, Shinohara M, Kanazawa T, Uehira K 2015. Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys. Res. Lett. 42:197923–32
    [Google Scholar]
  54. Matsumoto H, Inoue S, Ohmachi T 2012. Dynamic response of bottom water pressure due to the 2011 Tohoku earthquake. J. Disaster Res. 7:7468–75
    [Google Scholar]
  55. Mochizuki M, Kanazawa T, Uehira K, Shimbo T, Shiomi K, Kunugi T et al. 2016. S-net project: construction of large scale seafloor observatory network for tsunamis and earthquakes in Japan Paper presented at 2016 American Geophysical Union Fall Meeting, San Francisco
  56. Mulia IE, Inazu D, Waseda T, Gusman AR 2017. Preparing for the future Nankai Trough tsunami: a data assimilation and inversion analysis from various observational systems. J. Geophys. Res. Oceans 122:107924–37
    [Google Scholar]
  57. Mungov G, Eblé M, Bouchard R 2013. DART® tsunameter retrospective and real-time data: a reflection on 10 years of processing in support of tsunami research and operations. Pure Appl. Geophys. 170:9–101369–84
    [Google Scholar]
  58. Munk WH, MacDonald GJ. 1975. The Rotation of the Earth: A Geophysical Discussion Cambridge, UK: Cambridge Univ. Press
  59. Murotani S, Iwai M, Satake K, Shevchenko G, Loskutov A 2015. Tsunami forerunner of the 2011 Tohoku earthquake observed in the Sea of Japan. Pure Appl. Geophys. 172:3–4683–97
    [Google Scholar]
  60. Nakamura K. 1961. Velocity of long gravity waves in the ocean. Sci. Rep. Tohoku Univ. Ser. 5 Geophys. 13:164–73
    [Google Scholar]
  61. Nosov M, Karpov V, Kolesov S, Sementsov K, Matsumoto H, Kaneda Y 2018. Relationship between pressure variations at the ocean bottom and the acceleration of its motion during a submarine earthquake. Earth Planets Space 70:1100
    [Google Scholar]
  62. Nosov MA. 1999. Tsunami generation in compressible ocean. Phys. Chem. Earth B Hydrol. Oceans Atmos. 24:5437–41
    [Google Scholar]
  63. Nosov MA, Kolesov SV, Denisova AV, Alekseev AB, Levin BV 2007. On the near-bottom pressure variations in the region of the 2003 Tokachi-Oki tsunami source. Oceanology 47:126–32
    [Google Scholar]
  64. Oishi Y, Imamura F, Sugawara D 2015. Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model: application to the 2011 Tohoku-Oki earthquake combined with source inversions. Geophys. Res. Lett. 42:41083–91
    [Google Scholar]
  65. Oishi Y, Piggott MD, Maeda T, Kramer SC, Collins GS et al. 2013. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. Solid Earth 118:62998–3018
    [Google Scholar]
  66. Okal EA. 1982. Mode-wave equivalence and other asymptotic problems in tsunami theory. Phys. Earth Planet. Inter. 30:1–11
    [Google Scholar]
  67. Pedlosky J. 2013. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics Berlin: Springer
  68. Peregrine H. 1972. Equations for water waves and the approximations behind them. Waves on Beaches and Resulting Sediment Transport RE Meyer 95–121 New York: Academic
    [Google Scholar]
  69. Rabinovich AB. 1997. Spectral analysis of tsunami waves: separation of source and topography effects. J. Geophys. Res. 102:C612663–76
    [Google Scholar]
  70. Rabinovich AB, Eblé MC. 2015. Deep-ocean measurements of tsunami waves. Pure Appl. Geophys. 172:123281–312
    [Google Scholar]
  71. Saito T. 2013. Dynamic tsunami generation due to sea-bottom deformation: analytical representation based on linear potential theory. Earth Planets Space 65:121411–23
    [Google Scholar]
  72. Saito T. 2017. Tsunami generation: validity and limitations of conventional theories. Geophys. J. Int. 210:31888–900
    [Google Scholar]
  73. Saito T. 2019. Tsunami Generation and Propagation Tokyo: Springer
  74. Saito T, Baba T, Inazu D, Takemura S, Fukuyama E 2019. Synthesizing sea surface height change including seismic waves and tsunami using a dynamic rupture scenario of anticipated Nankai trough earthquakes. Tectonophysics 769:228166
    [Google Scholar]
  75. Saito T, Furumura T. 2009. Three-dimensional simulation of tsunami generation and propagation: application to intraplate events. J. Geophys. Res. 114:B2B02307
    [Google Scholar]
  76. Saito T, Inazu D, Miyoshi T, Hino R 2014. Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J. Geophys. Res. Ocean 119:5160–80
    [Google Scholar]
  77. Saito T, Ito Y, Inazu D, Hino R 2011. Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: inversion analysis based on dispersive tsunami simulations. Geophys. Res. Lett. 38:21L00G19
    [Google Scholar]
  78. Saito T, Tsushima H. 2016. Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: toward realistic tests of monitoring systems. J. Geophys. Res. Solid Earth 121:118175–95
    [Google Scholar]
  79. Satake K, Baba T, Hirata K, Iwasaki S, Kato T et al. 2005. Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges. Earth Planets Space 57:3173–78
    [Google Scholar]
  80. Satake K, Fujii Y, Harada T, Namegaya Y 2013. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from Tsunami waveform data. Bull. Seismol. Soc. Am. 103:2B1473–92
    [Google Scholar]
  81. Satake K, Shimazaki K, Yoshinobu T, Ueda K 1996. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature 379:246–49
    [Google Scholar]
  82. Sladen A, Hébert H. 2008. On the use of satellite altimetry to infer the earthquake rupture characteristics: application to the 2004 Sumatra event. Geophys. J. Int. 172:2707–14
    [Google Scholar]
  83. Smith W, Scharroo R, Titov V, Arcas D, Arbic B 2005. Satellite altimeters measure tsunami. Oceanography 18:211–13
    [Google Scholar]
  84. Song YT, Fu LL, Zlotnicki V, Ji C, Hjorleifsdottir V et al. 2008. The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 tsunami. Ocean Model 20:4362–79
    [Google Scholar]
  85. Song YT, Mohtat A, Yim SC 2017. New insights on tsunami genesis and energy source. J. Geophys. Res. Ocean 122:4283–56
    [Google Scholar]
  86. Takahashi R. 1942. [On seismic sea waves caused by deformations of the sea bottom]. Bull. Earthq. Res. Inst. 20:357–400 (In Japanese)
    [Google Scholar]
  87. Tanioka Y. 2018. Tsunami simulation method assimilating ocean bottom pressure data near a tsunami source region. Pure Appl. Geophys. 175:2721–29
    [Google Scholar]
  88. Tanioka Y, Gusman AR. 2018. Near-field tsunami inundation forecast method assimilating ocean bottom pressure data: a synthetic test for the 2011 Tohoku-oki tsunami. Phys. Earth Planet. Inter. 283:82–91
    [Google Scholar]
  89. Tanioka Y, Satake K. 1996. Tsunami generation by horizontal displacement of ocean bottom. Geophys. Res. Lett. 23:8861–64
    [Google Scholar]
  90. Tanioka Y, Shibata M, Yamanaka Y, Gusman AR, Ioki K 2019. Generation mechanism of large later phases of the 2011 Tohoku-oki tsunami causing damages in Hakodate, Hokkaido, Japan. Prog. Earth Planet. Sci. 6:30
    [Google Scholar]
  91. Titov V. 2005. The global reach of the 26 December 2004 Sumatra tsunami. Science 309:57432045–48
    [Google Scholar]
  92. Titov VV, González FI, Bernard EN, Eble MC, Mofjeld HO et al. 2005. Real-time tsunami forecasting: challenges and solutions. Developing Tsunami-Resilient Communities EN Bernard 41–58 Berlin: Springer
    [Google Scholar]
  93. Tsai VC, Ampuero JP, Kanamori H, Stevenson DJ 2013. Estimating the effect of Earth elasticity and variable water density on tsunami speeds. Geophys. Res. Lett. 40:3492–96
    [Google Scholar]
  94. Tsushima H, Hino R, Fujimoto H, Tanioka Y, Imamura F 2009. Near-field tsunami forecasting from cabled ocean bottom pressure data. J. Geophys. Res. 114:B6B06309
    [Google Scholar]
  95. Tsushima H, Hino R, Tanioka Y, Imamura F, Fujimoto H 2012. Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. J. Geophys. Res. 117:B3B03311
    [Google Scholar]
  96. Tsushima H, Ohta Y. 2014. Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. J. Disaster Res. 9:3339–57
    [Google Scholar]
  97. Udías A, Madariaga R, Buforn E, Muñoz D, Ros M 2012. The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bull. Seismol. Soc. Am. 102:41639–53
    [Google Scholar]
  98. Uehira K, Kanazawa T, Mochizuki M, Fujimoto H, Noguchi S et al. 2016. Outline of seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) Paper presented at European Geosciences Union General Assembly, Vienna
  99. Uno K, Tanioka Y, Yamanaka Y. 2018. A large slip area of the 1854 Ansei-Tokai earthquake estimated from an observed tsunami waveform at San Francisco Paper presented at Japan Geoscience Union Meeting 2018, Makuhari Japan:
  100. Wang Y, Satake K, Maeda T, Gusman AR 2017. Green's function-based tsunami data assimilation: a fast data assimilation approach toward tsunami early warning. Geophys. Res. Lett. 44:2010282–89
    [Google Scholar]
  101. Ward SN. 1980. Relationships of tsunami generation source and an earthquake source. J. Phys. Earth 28:441–74
    [Google Scholar]
  102. Watada S, Kushomoto S, Satake K 2014. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. J. Geophys. Res. Solid Earth 119:4287–310
    [Google Scholar]
  103. Wei Y, Chamberlin C, Titov VV, Tang L, Bernard EN 2013. Modeling of the 2011 Japan tsunami: lessons for near-field forecast. Pure Appl. Geophys. 170:6–81309–31
    [Google Scholar]
  104. Yamamoto N, Aoi S, Hirata K, Suzuki W, Kunugi T, Nakamura H 2016. Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast. Earth Planets Space 68:1128
    [Google Scholar]
  105. Yamazaki Y, Cheung KF, Lay T 2018. A self-consistent fault slip model for the 2011 Tohoku earthquake and tsunami. J. Geophys. Res. Solid Earth 123:21435–58
    [Google Scholar]
  106. Yang Y, Dunham EM, Barnier G, Almquist M 2019. Tsunami wavefield reconstruction and forecasting using the ensemble Kalman filter. Geophys. Res. Lett. 46:2853–60
    [Google Scholar]
  107. Yoshimoto M, Watada S, Fujii Y, Satake K 2016. Source estimate and tsunami forecast from far-field deep-ocean tsunami waveforms—the 27 February 2010 Mw 8.8 Maule earthquake. Geophys. Res. Lett. 43:2659–65
    [Google Scholar]
  108. Yue H, Lay T, Rivera L, An C, Vigny C et al. 2014. Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. J. Geophys. Res. Solid Earth 119:107786–804
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-054845
Loading
/content/journals/10.1146/annurev-earth-071719-054845
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error