1932

Abstract

In this review we highlight recent advances in four areas in which nutrition shapes the relationships between organisms: between plants and herbivores, between hosts and their microbiota, between individuals within groups and societies, and between species within food webs. We demonstrate that taking an explicitly multidimensional view of nutrition and employing the logic of the geometric framework for nutrition provide novel insights and offer a means of integration across different levels of organization, from individuals to ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010814-020917
2015-01-07
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ento/60/1/annurev-ento-010814-020917.html?itemId=/content/journals/10.1146/annurev-ento-010814-020917&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AA. 1.  2011. Current trends in the evolutionary ecology of plant defence. Funct. Ecol. 25:420–32 [Google Scholar]
  2. Barbehenn RV, Bernays EA. 2.  1992. Relative nutritional quality of C3 and C4 grasses for a graminivorous lepidopteran, Paratrytone melane (Hesperiidae). Oecologia 92:97–103 [Google Scholar]
  3. Barbehenn RV, Karowe DN, Chen Z. 3.  2004. Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140:96–103 [Google Scholar]
  4. Barbehenn RV, Karowe DN, Spickard A. 4.  2004. Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140:86–95 [Google Scholar]
  5. Barry KL, Wilder SM. 5.  2013. Macronutrient intake affects reproduction of a predatory insect. Oikos 122:1058–64 [Google Scholar]
  6. Bazazi S, Romanczuk P, Thomas S, Schimansky-Geier L, Hale JJ. 6.  et al. 2011. Nutritional state and collective motion: from individuals to mass migration. Proc. R. Soc. B 278:356–63 [Google Scholar]
  7. Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC. 7.  et al. 2010. FOXO-dependent regulation of innate immune homeostasis. Nature 463:369–73 [Google Scholar]
  8. Beckerman A, Petchey OL, Morin PJ. 8.  2010. Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct. Ecol. 24:1–6 [Google Scholar]
  9. Bedhomme S, Agnew P, Sidobre C, Michalakis Y. 9.  2004. Virulence reaction norms across a food gradient. Proc. R. Soc. B 271:739–44 [Google Scholar]
  10. Behmer ST. 10.  2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54:165–87 [Google Scholar]
  11. Behmer ST, Joern A. 11.  2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. USA 105:1977–82 [Google Scholar]
  12. Bernays EA. 12.  1991. Evolution of insect morphology in relation to plants. Philos. Trans. R. Soc. B 333:257–64 [Google Scholar]
  13. Bernays EA, Chapman RF. 13.  1994. Host-Plant Selection by Phytophagous Insects New York: Chapman & Hall
  14. Bernays EA, Singer MS. 14.  2005. Taste alteration and endoparasites. Nature 436:476 [Google Scholar]
  15. Blum JE, Fischer CN, Miles J, Handelsman J. 15.  2013. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e00860–13 [Google Scholar]
  16. Brown MJF, Loosli R, Schmid-Hempel P. 16.  2000. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91:421–27 [Google Scholar]
  17. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E. 17.  et al. 2006. From disorder to order in marching locusts. Science 312:1402–6 [Google Scholar]
  18. Carmona D, Lajeunesse MJ, Johnson MTJ. 18.  2011. Plant traits that predict resistance to herbivores. Funct. Ecol. 25:358–67 [Google Scholar]
  19. Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF. 19.  2012. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467–69 [Google Scholar]
  20. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. 20.  2011. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLOS Genet. 7:e1002272 [Google Scholar]
  21. Chapman RF. 21.  1995. Mechanics of food handling by chewing insects. Regulatory Mechanisms in Insect Feeding RF Chapman, G de Boer 3–31 New York: Chapman & Hall [Google Scholar]
  22. Charroux B, Royet J. 22.  2012. Gut-microbiota interactions in non-mammals: What can we learn from Drosophila?. Semin. Immunol. 24:17–24 [Google Scholar]
  23. Christensen KL, Gallacher AP, Martin L, Tong D, Elgar MA. 23.  2010. Nutrient compensatory foraging in a free-living social insect. Naturwissenschaften 97:941–44 [Google Scholar]
  24. Cirimotich CM, Ramirez JL, Dimopoulos G. 24.  2011. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10:307–10 [Google Scholar]
  25. Clissold FJ. 25.  2007. The biomechanics of chewing and plant fracture: mechanisms and implications. Adv. Insect Physiol. 34:317–72 [Google Scholar]
  26. Clissold FJ, Brown ZP, Simpson SJ. 26.  2013. Protein-induced mass increase of the gastrointestinal tract of locusts improves net nutrient uptake via larger meals rather than more efficient nutrient absorption. J. Exp. Biol. 216:329–37 [Google Scholar]
  27. Clissold FJ, Coggan N, Simpson SJ. 27.  2013. Insect herbivores can choose microclimates to achieve nutritional homeostasis. J. Exp. Biol. 216:2089–96Discusses host-plant-specific P:C uptake temperature, and moving beyond thermoregulation as an energy-saving mechanism. [Google Scholar]
  28. Clissold FJ, Sanson GD, Read J. 28.  2006. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. J. Anim. Ecol. 75:1000–13Investigates nitrogen-limited growth and development of a locust by preventing the uptake of sufficient carbohydrate. [Google Scholar]
  29. Clissold FJ, Sanson GD, Read J, Simpson SJ. 29.  2009. Gross versus net income: how plant toughness affects performance of an insect herbivore. Ecology 90:3393–405 [Google Scholar]
  30. Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ. 30.  2010. The gastrointestinal tract as a nutrient-balancing organ. Proc. R. Soc. B 277:1751–59Discusses differential release of digestive enzymes redressing P:C imbalances. [Google Scholar]
  31. Coggan N, Clissold FJ, Simpson SJ. 31.  2011. Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes. Proc. R. Soc. B 278:2745–52 [Google Scholar]
  32. Colasurdo N, Dussutour A, Despland E. 32.  2007. Do food protein and carbohydrate content influence the pattern of feeding and the tendency to explore of forest tent caterpillars?. J. Insect Physiol. 53:1160–68 [Google Scholar]
  33. Collett M, Despland E, Simpson SJ, Krakauer DC. 33.  1998. Spatial scales of desert locust gregarization. Proc. Natl. Acad. Sci. USA 95:13052–55 [Google Scholar]
  34. Colman DR, Toolson EC, Takacs-Vesbach CD. 34.  2012. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21:5124–37 [Google Scholar]
  35. Cook SC, Eubanks MD, Gold RE, Behmer ST. 35.  2010. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79:429–37 [Google Scholar]
  36. Costa JT. 36.  2006. The Other Insect Societies Cambridge, MA: Harvard Univ. Press
  37. Cotter SC, Kruuk LEB, Wilson K. 37.  2004. Costs of resistance: genetic correlations and potential trade-offs in an insect immune system. J. Evol. Biol. 17:421–29 [Google Scholar]
  38. Cotter SC, Simpson SJ, Raubenheimer D, Wilson K. 38.  2011. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 25:186–98Shows that immune traits respond differently to macronutrient intake. [Google Scholar]
  39. Couzin ID. 39.  2009. Collective cognition in animals. Trends Cogn. Sci. 13:36–43 [Google Scholar]
  40. Dadd RH. 40.  1963. Feeding behaviour and nutrition in grasshoppers and locusts. Adv. Insect Physiol. 1:47–109 [Google Scholar]
  41. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 41.  et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  42. De Roode JC, Pedersen AB, Hunter MD, Altizer S. 42.  2008. Host plant species affects virulence in monarch butterfly parasites. J. Anim. Ecol. 77:120–26 [Google Scholar]
  43. de Ruiter P, Wolters V, Moore JC. 43.  2005. Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change London: Academic
  44. Denno RF, Fagan WF. 44.  2003. Might nitrogen limitation promote omnivory among carnivorous arthropods?. Ecology 84:2522–31 [Google Scholar]
  45. Despland E, Simpson SJ. 45.  2000. The role of food distribution and nutritional quality in behavioural phase change in the desert locust. Anim. Behav. 59:643–52 [Google Scholar]
  46. Dethier VG. 46.  1976. The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding Cambridge, MA: Harvard Univ. Press
  47. Diamond SE, Kingsolver JG. 47.  2010. Environmental dependence of thermal reaction norms: Host plant quality can reverse the temperature-size rule. Am. Nat. 175:1–10 [Google Scholar]
  48. Douglas AE. 48.  2010. The Symbiotic Habit Princeton, NJ: Princeton Univ. Press
  49. Dussutour A, Simpson SJ. 49.  2009. Communal nutrition in ants. Curr. Biol. 19:740–44 [Google Scholar]
  50. Ebert D, Zschokke-Rohringer CD, Carius HJ. 50.  2000. Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122:200–9 [Google Scholar]
  51. Erkosar B, Storelli G, Defaye A, Leulier F. 51.  2013. Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13:8–14 [Google Scholar]
  52. Fagan WF, Denno RF. 52.  2004. Stoichiometry of actual versus potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7:876–83 [Google Scholar]
  53. Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF. 53.  et al. 2002. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160:784–802 [Google Scholar]
  54. Faith JJ, McNulty NP, Rey FE, Gordon JI. 54.  2011. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science 333:101–4Statistical model to identify which dietary factors best explain changes in gut microbiota. [Google Scholar]
  55. Felton AM, Felton A, Raubenheimer D, Simpson SJ, Foley WJ. 55.  et al. 2009. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20:685–900 [Google Scholar]
  56. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 56.  2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6:121–31 [Google Scholar]
  57. Fraenkel GS. 57.  1959. The raison d'être of secondary plant substances. Science 129:1466–70 [Google Scholar]
  58. Frost PC, Ebert D, Smith VH. 58.  2008. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host. Ecology 89:313–18 [Google Scholar]
  59. Giraldeau L-A, Caraco T. 59.  2000. Social Foraging Theory Princeton, NJ: Princeton Univ. Press
  60. Gosby AK, Conigrave AD, Raubenheimer D, Simpson SJ. 60.  2014. Protein leverage and energy intake. Obes. Rev. 15:183–91 [Google Scholar]
  61. Hall SR, Knight CJ, Becker CR, Duffy MA, Tessier AJ, Cáceres CE. 61.  2009. Quality matters: resource quality for hosts and the timing of epidemics. Ecol. Lett. 12:118–28 [Google Scholar]
  62. Hastings HM, Conrad M. 62.  1979. Length and evolutionary stability of food chains. Nature 282:838–39 [Google Scholar]
  63. Hawlena D, Schmitz OJ. 63.  2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc. Natl. Acad. Sci. USA 107:15503–7 [Google Scholar]
  64. Hawlena D, Schmitz OJ. 64.  2010. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176:537–56 [Google Scholar]
  65. Hawlena D, Strickland MS, Bradford MA, Schmitz OJ. 65.  2012. Fear of predation slows litter decomposition. Science 336:1434–38 [Google Scholar]
  66. Helms KR, Vinson SB. 66.  2008. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37:487–93 [Google Scholar]
  67. Hewson-Hughes AK, Hewson-Hughes VL, Colyer A, Miller AT, Hall SR. 67.  et al. 2013. Consistent proportional macronutrient intake selected by adult domestic cats (Felis catus) despite variations in dietary macronutrient and moisture content of foods offered. J. Comp. Physiol. B 183:525–36 [Google Scholar]
  68. Hewson-Hughes AK, Hewson-Hughes VL, Miller AT, Hall SR, Simpson SJ, Raubenheimer D. 68.  2011. Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus. J. Exp. Biol. 214:1039–61 [Google Scholar]
  69. Hodgson DJ, Vanbergen AJ, Hartley SE, Hails RS, Cory JS. 69.  2002. Differential selection of baculovirus genotypes mediated by different species of host food plant. Ecol. Lett. 5:512–18 [Google Scholar]
  70. Hölldobler B, Wilson EO. 70.  2009. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies New York: Norton
  71. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ. 71.  2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33:181–233 [Google Scholar]
  72. Hunt JH, Amdam GV. 72.  2005. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308:264–67 [Google Scholar]
  73. Jackson RR, Pollard SD, Nelson XJ, Edwards GB, Barrion AT. 73.  2001. Jumping spiders (Araneae: Salticidae) that feed on nectar. J. Zool. 255:25–29 [Google Scholar]
  74. Jeanson R, Dussutour A, Fourcassié V. 74.  2012. Key factors for the emergence of collective decision in invertebrates. Front. Neurosci. 6:121 [Google Scholar]
  75. Jensen K, Mayntz D, Toft S, Clissold FJ, Hunt J. 75.  et al. 2012. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 7:2212–18 [Google Scholar]
  76. Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ. 76.  2011. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 81:993–99 [Google Scholar]
  77. Kamakura M. 77.  2011. Royalactin induces queen differentiation in honeybees. Nature 473:478–83 [Google Scholar]
  78. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B. 78.  2010. Modeling the ecological niche from functional traits. Philos. Trans. R. Soc. B 365:3469–83 [Google Scholar]
  79. Keating ST, Hunter MD, Schultz JC. 79.  1990. Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus: role of polyhedral inclusion body aggregation. J. Chem. Ecol. 16:1445–57 [Google Scholar]
  80. Lee KP, Cory JS, Wilson K, Raubenheimer D, Simpson SJ. 80.  2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. B 273:823–29 [Google Scholar]
  81. Lee KP, Raubenheimer D, Simpson SJ. 81.  2004. The effects of nutritional imbalance on compensatory feeding for cellulose-mediated dietary dilution in a generalist caterpillar. Physiol. Entomol. 29:108–17 [Google Scholar]
  82. Lee KP, Roh C. 82.  2010. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol. Exp. Appl. 136:151–63 [Google Scholar]
  83. Lefèvre T, Adamo SA, Biron DG, Misse D, Hughes D. 83.  et al. 2009. Invasion of the body snatchers: the diversity and evolution of manipulative strategies in host-parasite interactions. Adv. Parasitol. 68:45–83 [Google Scholar]
  84. Lemaitre B, Hoffmann J. 84.  2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697–743 [Google Scholar]
  85. Lemoine NP, Drews WA, Burkepile DE, Parker JD. 85.  2013. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122:1669–78 [Google Scholar]
  86. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 86.  2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6:776–88 [Google Scholar]
  87. Lihoreau M, Buhl J, Charleston MA, Sword GA, Raubenheimer D, Simpson SJ. 87.  2014. Modelling nutrition across organizational levels: from individuals to superorganisms. J. Insect Physiol. 692–11
  88. Lihoreau M, Deneubourg JL, Rivault C. 88.  2010. Collective foraging decision in a gregarious insect. Behav. Ecol. Sociobiol. 64:1577–87 [Google Scholar]
  89. Lubin Y, Bilde T. 89.  2007. The evolution of sociality in spiders. Adv. Study Behav. 37:83–145 [Google Scholar]
  90. Mayntz D, Nielsen VH, Sørensen A, Toft S, Raubenheimer D. 90.  et al. 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77:349–55 [Google Scholar]
  91. Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ. 91.  2005. Nutrient-specific foraging in invertebrate predators. Science 307:111–13 [Google Scholar]
  92. McClure M, Morcos L, Despland E. 92.  2012. Collective choice of a higher-protein food source by gregarious caterpillars occurs through differences in exploration. Behav. Ecol. 24:113–18 [Google Scholar]
  93. McClure M, Ralph M, Despland E. 93.  2011. Group leadership depends on energetic state in a nomadic collective foraging caterpillar. Behav. Ecol. Sociobiol. 65:1573–79 [Google Scholar]
  94. McGill BJ, Enquist BJ, Weiher E, Westoby M. 94.  2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21:178–85 [Google Scholar]
  95. Michener CD. 95.  1974. The Social Behavior of the Bees Cambridge, MA: Harvard Univ. Press
  96. Miller GA, Clissold FJ, Mayntz D, Simpson SJ. 96.  2009. Speed over efficiency: Locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proc. R. Soc. B 276:3581–89 [Google Scholar]
  97. Moret Y, Schmid-Hempel P. 97.  2001. Entomology: immune defence in bumble-bee offspring. Nature 414:506 [Google Scholar]
  98. Nalepa CA. 98.  2011. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 69–95 Dordrecht, Neth: Springer [Google Scholar]
  99. Painter RH. 99.  1936. The food of insects and its relation to resistance of plants to insect attack. Am. Nat. 70:547–66 [Google Scholar]
  100. Pener MP, Simpson SJ. 100.  2009. Locust phase polyphenism: an update. Adv. Insect Physiol. 36:1–286 [Google Scholar]
  101. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST. 101.  et al. 2009. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–23 [Google Scholar]
  102. Ponton F, Lalubin F, Fromont C, Wilson K, Behm C, Simpson SJ. 102.  2011. Hosts use altered macronutrient intake to circumvent parasite-induced reduction in fecundity. Int. J. Parasitol. 41:43–50 [Google Scholar]
  103. Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ. 103.  2011. Nutritional immunology: a multi-dimensional approach. PLOS Pathog. 7:e1002223 [Google Scholar]
  104. Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. 104.  2013. Integrating nutrition and immunology: a new frontier. J. Insect Physiol. 59:130–37 [Google Scholar]
  105. Post DM. 105.  2002. The long and short of food-chain length. Trends Evol. Ecol. 17:269–77 [Google Scholar]
  106. Post DM, Takimoto G. 106.  2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116:775–82 [Google Scholar]
  107. Povey S, Cotter SC, Simpson SJ, Lee KP, Wilson K. 107.  2009. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?. J. Anim. Ecol. 78:437–46 [Google Scholar]
  108. Povey S, Cotter SC, Simpson SJ, Wilson K. 108.  2014. Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J. Anim. Ecol. 83:245–55 [Google Scholar]
  109. Raubenheimer D, Bassil K. 109.  2007. Separate effects of macronutrient concentration and balance on plastic gut responses in locusts. J. Comp. Physiol. 177:849–55 [Google Scholar]
  110. Raubenheimer D, Mayntz D, Simpson SJ, Toft S. 110.  2007. Nutrient-specific compensation following overwintering diapause in a generalist predatory invertebrate: implications for intraguild predation. Ecology 88:2598–608 [Google Scholar]
  111. Raubenheimer D, Simpson SJ. 111.  1993. The geometry of compensatory feeding in the locust. Anim. Behav. 45:953–64First investigation of the interactive effects of P:C ratios and amounts on insect performance. [Google Scholar]
  112. Raubenheimer D, Simpson SJ. 112.  1998. Nutrient transfer functions: the site of integration between feeding behaviour and nutritional physiology. Chemoecology 8:61–68 [Google Scholar]
  113. Raubenheimer D, Simpson SJ. 113.  2009. Nutritional PharmEcology: doses, nutrients, toxins, and medicines. Integr. Comp. Biol. 49:329–37 [Google Scholar]
  114. Raubenheimer D, Simpson SJ, Mayntz D. 114.  2009. Nutrition, ecology and nutritional ecology: towards an integrated framework. Funct. Ecol. 23:4–16 [Google Scholar]
  115. Raubenheimer D, Simpson SJ, Tait A. 115.  2012. Match and mismatch: conservation physiology, nutritional ecology and the timescales of animal adaptation. Philos. Trans. R. Soc. B 367:1628–46 [Google Scholar]
  116. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R. 116.  et al. 2012. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20:738–47 [Google Scholar]
  117. Read J, Stokes A. 117.  2006. Plant biomechanics in an ecological context. Am. J. Bot. 93:1546–65 [Google Scholar]
  118. Reynolds AM, Sword GA, Simpson SJ, Reynolds DR. 118.  2009. Predator percolation, insect outbreaks, and phase polyphenism. Curr. Biol. 19:20–24 [Google Scholar]
  119. Ruohonen K, Simpson SJ, Raubenheimer D. 119.  2007. A new approach to diet optimisation: a reanalysis using European whitefish (Coregonus lavaretus). Aquaculture 267:147–56 [Google Scholar]
  120. Ryder JJ, Hathway J, Knell RJ. 120.  2007. Constraints on parasite fecundity and transmission in an insect-STD system. Oikos 116:578–84 [Google Scholar]
  121. Salomon M, Mayntz D, Lubin Y. 121.  2008. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 19:605–11 [Google Scholar]
  122. Schoener TW. 122.  1989. Food webs from the small to the large. Ecology 70:1559–89 [Google Scholar]
  123. Scriber JM, Slansky F. 123.  1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211 [Google Scholar]
  124. Seppälä O, Liljeroos K, Karvonen A, Jokela J. 124.  2008. Host condition as a constraint for parasite reproduction. Oikos 117:749–53 [Google Scholar]
  125. Simpson SJ, Raubenheimer D. 125.  1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. B 342:381–402First investigation of the interactive effects of P:C ratios and amounts on insect performance. [Google Scholar]
  126. Simpson SJ, Raubenheimer D. 126.  2012. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity Princeton, NJ: Princeton Univ. Press
  127. Simpson SJ, Raubenheimer D, Chambers PG. 127.  1995. The mechanisms of nutritional homeostasis. Regulatory Mechanisms in Insect Feeding RF Chapman, G de Boer 251–78 New York: Chapman & Hall [Google Scholar]
  128. Simpson SJ, Raubenheimer D, Charleston MA, Clissold FJ. 128.  ARC-NZ Vegetation Function Network Herbivory Working Group 2010. Modelling nutritional interactions: from individuals to communities. Trends Ecol. Evol. 25:53–60A framework to scale nutrient interactions from individuals to communities. [Google Scholar]
  129. Simpson SJ, Sibly RM, Lee KP, Behmer ST, Raubenheimer D. 129.  2004. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68:1299–311 [Google Scholar]
  130. Simpson SJ, Sword GA, Lorch PD, Couzin ID. 130.  2006. Cannibal crickets on a forced march for protein and salt. Proc. Natl. Acad. Sci. USA 103:4152–56The first study to show how deprivation of specific nutrients (protein and salt) triggers collective behavior in an animal population. [Google Scholar]
  131. Singer MS, Mace KC, Bernays EA. 131.  2009. Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLOS ONE 4:e4796 [Google Scholar]
  132. Siva-Jothy MT, Moret Y, Rolff J. 132.  2005. Insect immunity: an evolutionary ecology perspective. Adv. Insect Physiol. 32:1–48 [Google Scholar]
  133. Solon-Biet S, McMahon A, Ballard JWO, Ruohonen K, Wu L. 133.  et al. 2014. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging and longevity in ad libitum-fed mice. Cell Metab. 19:418–30 [Google Scholar]
  134. Sørensen A, Mayntz D, Simpson SJ, Raubenheimer D. 134.  2010. Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice. J. Comp. Physiol. B 180:259–66 [Google Scholar]
  135. Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. 135.  2013. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLOS ONE 8:e70749 [Google Scholar]
  136. Sumpter DJT. 136.  2010. Collective Animal Behaviour Princeton, NJ: Princeton Univ. Press
  137. Thaler JS, McArt SH, Kaplan I. 137.  2012. Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. Proc. Natl. Acad. Sci. USA 109:12075–80 [Google Scholar]
  138. Trites AW, Donnelly CP. 138.  2003. The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mamm. Rev. 33:3–28 [Google Scholar]
  139. Tseng M. 139.  2006. Interactions between the parasite's previous and current environment mediate the outcome of parasite infection. Am. Nat. 168:565–71 [Google Scholar]
  140. Uvarov BP. 140.  1966. Grasshoppers and Locusts: A Handbook of General Acridology London: Cambridge Univ. Press
  141. Vale PF, Choisy M, Little TJ. 141.  2013. Host nutrition alters the variance in parasite transmission potential. Biol. Lett. 9:20121145 [Google Scholar]
  142. Wäckers F, van Rijn PCJ, Bruin J. 142.  2005. Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and Its Applications Cambridge, UK: Cambridge Univ. Press
  143. Waldbauer GP. 143.  1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5:229–88 [Google Scholar]
  144. Walters RJ, Hassall M. 144.  2006. The temperature-size rule in ectotherms: May a general explanation exist after all?. Am. Nat. 167:510–23 [Google Scholar]
  145. Weiss B, Aksoy S. 145.  2011. Microbiome influences on insect host vector competence. Trends Parasitol. 27:514–22Investigates how the microbiome influences insect-host-vector competence. [Google Scholar]
  146. Welchman DP, Aksoy S, Jiggins F, Lemaitre B. 146.  2009. Insect immunity: from pattern recognition to symbiont-mediated host defense. Cell Host Microbe 6:107–14 [Google Scholar]
  147. West-Eberhard MJ. 147.  2003. Developmental Plasticity and Evolution New York: Oxford Univ. Press
  148. Whitehouse MEA, Lubin Y. 148.  1999. Competitive foraging in the social spider Stegodyphus dumicola. Anim. Behav. 58:677–88 [Google Scholar]
  149. Wilder SM. 149.  2011. Spider nutrition: an integrative perspective. Adv. Insect Physiol. 40:87–136 [Google Scholar]
  150. Wilder SM, Holway DA, Suarez AV, LeBrun EG, Eubanks MD. 150.  2011. Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proc. Natl. Acad. Sci. USA 108:20639–44 [Google Scholar]
  151. Wilder SM, Norris M, Lee RW, Raubenheimer D, Simpson SJ. 151.  2013. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16:895–902 [Google Scholar]
  152. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y. 152.  et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8 [Google Scholar]
  153. Yang YL, Stamp NE, Osier TL. 153.  1996. Effects of temperature, multiple allelochemicals and larval age on the performance of a specialist caterpillar. Entomol. Exp. Appl. 79:335–44 [Google Scholar]
/content/journals/10.1146/annurev-ento-010814-020917
Loading
/content/journals/10.1146/annurev-ento-010814-020917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error