1932

Abstract

Blueberry is a crop native to North America with expanding production and consumption worldwide. In the historical regions of production, integrated pest management (IPM) programs have been developed and provided effective control of key insect pests. These have integrated monitoring programs with physical, cultural, biological, behavioral, and chemical controls to meet the intense demands of consumers and modern food systems. Globalization of the blueberry industry has resulted in new pest-crop associations and the introduction of invasive pests into existing and new blueberry-growing areas. Invasive pests—in particular spotted wing drosophila—have been highly disruptive to traditional IPM programs, resulting in increased use of insecticides and the potential to disrupt beneficial insects. Moreover, regulatory agencies have reduced the number of broad-spectrum insecticides available to growers while facilitating registration and adoption of reduced-risk insecticides that have a narrower spectrum of activity. Despite these new tools, increasing international trade has constrained insecticide use because of maximum residue limits, which are often not standardized across countries. Great potential remains for biological, behavioral, cultural, and physical methods to contribute to blueberry IPM, and with more regions investing in blueberry research, we expect regionally relevant IPM programs to develop in the new production regions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-112147
2019-01-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-112147.html?itemId=/content/journals/10.1146/annurev-ento-011118-112147&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Agrinova, Club Conseil Bleuet, MAPAQ Saguenay–Lac Saint-Jean, CRAAQ. 2013. Wild blueberry production guide in a context of sustainable development Quebec, Can. https://www.craaq.qc.ca/Publications-du-CRAAQ/guide-de-production-du-bleuet-sauvage/p/PAUT0108-PDF
  2. 2.  Alnajjar G, Drummond FA, Groden E 2017. Laboratory and field susceptibility of Drosophila suzukii Matsumura (Diptera: Drosophilidae) to entomopathogenic fungal mycoses. J. Agric. Urban Entomol. 33:111–32
    [Google Scholar]
  3. 3.  Aly MFK, Kraus DA, Burrack HJ 2017. Effects of postharvest cold storage on the development and survival of immature Drosophila suzukii (Diptera: Drosophilidae) in artificial diet and fruit. J. Econ. Entomol. 110:87–93
    [Google Scholar]
  4. 4.  Andreazza F, Bernardi D, Dos Santos RSS, Garcia FRM, Oliveira EE et al. 2017. Drosophila suzukii in southern Neotropical region: current status and future perspectives. Neotrop. Entomol. 46:591–605
    [Google Scholar]
  5. 5.  Arévalo HA, Fraulo AB, Liburd OE 2009. Management of flower thrips in blueberries in Florida. Fla. Entomol. 92:14–17
    [Google Scholar]
  6. 6.  Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D et al. 2015. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88:469–94
    [Google Scholar]
  7. 7.  Ballman ES, Collins JA, Drummond FA 2017. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) pupae in Maine wild blueberry fields. J. Econ. Entomol. 110:2308–17
    [Google Scholar]
  8. 8.  Ballman ES, Drummond FA 2017. Infestation of wild fruit by Drosophila suzukii surrounding Maine wild blueberry fields. J. Agric. Urban Entomol. 33:61–70
    [Google Scholar]
  9. 9.  Barry JD, Sciarappa WJ, Teixeira LAF, Polavarapu S 2005. Comparative effectiveness of different insecticides for organic management of blueberry maggot (Diptera: Tephritidae). J. Econ. Entomol. 98:1236–41
    [Google Scholar]
  10. 10.  Beckwith CS 1941. Control of cranberry fruit worm on blueberries. J. Econ. Entomol. 34:169–71
    [Google Scholar]
  11. 11.  Beckwith CS, Doehlert CA 1937. Control of Rhagoletis pomonella (Walsh) in cultivated blueberry fields. J. Econ. Entomol. 30:294–97
    [Google Scholar]
  12. 12.  Blaauw BR, Isaacs R 2015. Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol. Control 91:94–103
    [Google Scholar]
  13. 13.  Brazelton C, Young K 2017. World blueberry statistics and global market analysis: spring review for GBC Int. Blueberry Org. https://static1.squarespace.com/static/581373dbe4fcb5675436dbf7/t/58dd0a421b10e38a0a19447f/1490881114392/Cort+Brazelton+GBC2017.pdf
  14. 14.  Burgher-MacLellan KL, Gaul S, MacKenzie K, Vincent C 2009. The use of real-time PCR to identify blueberry maggot (Diptera: Tephritidae, Rhagoletis mendax) from other Rhagoletis species and in lowbush blueberry fruit (Vaccinium angustifolium). Acta Hortic 810:265–73
    [Google Scholar]
  15. 15.  Calvo D, Molina JM, Skuhravá M 2006. Prodiplosis vaccinii an introduced pest of blueberries in Southwestern Spain. Acta Hortic 715:519–23
    [Google Scholar]
  16. 16. Agric. Agri-Food Can. 2017. Snapshot of opportunities in Japan's blueberry sector. Commod. Innov. Ser. A74-4/8-2017-PDF. www.agr.gc.ca/resources/prod/Internet-Internet/MISB-DGSIM/ATS-SEA/PDF/6883-eng.pdf
  17. 17. Can. Food Insp. Agency. 2015. D-02-04: The blueberry certification program and domestic phytosanitary requirements to prevent the spread of blueberry maggot (Rhagoletis mendax) within Canada, 6th revision. accessed June 19, 2017. www.inspection.gc.ca/plants/plant-protection/directives/horticulture/d-02-04/eng/1320046578973/1320046655958
  18. 18.  Choate B, Drummond FA 2013. The influence of insecticides and vegetation in structuring formica mound ant communities (Hymenoptera: Formicidae) in Maine lowbush blueberry. J. Econ. Entomol. 106:716–26
    [Google Scholar]
  19. 19.  Cormier D, Veilleux J, Firlej A 2015. Exclusion net to control spotted wing drosophila in blueberry fields. IOBC/WPRS Bull 109:181–84
    [Google Scholar]
  20. 20.  Daane KM, Vincent C, Isaacs R, Ioriatti C 2018. Entomological opportunities and challenges for sustainable viticulture in a global market. Annu. Rev. Entomol. 63:193–214
    [Google Scholar]
  21. 21.  Daane KM, Wang X-G, Biondi A, Miller B, Miller JC et al. 2016. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89:823–35
    [Google Scholar]
  22. 22.  Diepenbrock LM, Rosensteel DO, Hardin JA, Sial AA, Burrack HJ 2016. Season-long programs for control of Drosophila suzukii in southeastern U.S. blueberries. Crop Prot 81:76–84
    [Google Scholar]
  23. 23.  Driggers BF 1927. Calcium cyanide as a control for the cranberry root worm on cultivated blueberries. J. Econ. Entomol. 20:267–70
    [Google Scholar]
  24. 24.  Drummond F, Annis S, Smagula JM, Yarborough DE 2009. Organic production of wild blueberries I. Insects and diseases. Acta Hortic 810:275–85
    [Google Scholar]
  25. 25.  Drummond F, Smagula JM, Yarborough D, Annis S 2012. Organic lowbush blueberry research and extension in Maine. Int. J. Fruit Sci. 12:216–31
    [Google Scholar]
  26. 26.  Drummond FA, Collins JA, Choate B, Woodman D, Jennings DT et al. 2010. Harvestman (Opiliones) fauna associated with Maine lowbush blueberry fields in the major production areas of Washington and Hancock counties. Environ. Entomol. 39:1428–40
    [Google Scholar]
  27. 27.  Drummond FA, Collins JA 1999. History of insect pest management for lowbush blueberries in Maine. Trends Entomol 2:105–8
    [Google Scholar]
  28. 28.  Eck P, Childers NF 1966. Blueberry Culture New Brunswick, NJ: Rutgers Univ. Press
  29. 29.  Etzel RW, Meyer JR 1986. Resistance in blueberries to feeding and oviposition by the sharpnosed leafhopper, Scaphytopius magdalensis Provancher (Homoptera: Cicadellidae). J. Econ. Entomol. 79:1513–15
    [Google Scholar]
  30. 30.  Evans EA, Ballen FH 2014. An Overview of US Blueberry Production, Trade, and Consumption, with Special Reference to Florida EDIS Publ. FE952 Gainesville, FL: Food Res. Econ. Dep., UF/IFAS Ext.
  31. 31.  Follett PA, Zee FT, Hamasaki RT, Hummer K, Nakamoto ST 2011. Susceptibility of low-chill blueberry cultivars to Mediterranean fruit fly, oriental fruit fly, and melon fly (Diptera: Tephritidae). J. Econ. Entomol. 104:566–70
    [Google Scholar]
  32. 32.  Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J et al. 2017. Deciphering the routes of invasion of Drosophila suzukii by means of ABC Random Forest. Mol. Biol. Evol. 34:980–96
    [Google Scholar]
  33. 33.  France IA, Gerding GM, Gerding PM, Sandoval VA 2000. Patogenicidad de una colección de cepas nativas de Metarhizium spp. y Beauveria spp. en Aegorhinus superciliosus, Asynonychus cervinus y Otiorhynchus sulcatus. Agric. Tec 60:205–15
    [Google Scholar]
  34. 34.  Ganter A, Montalba R, Rebolledo R, Vieli L 2013. Plastic mulch effects on ground beetle communities (Coleoptera: Carabidae) in an organic blueberry field. Idesia 31:61–66
    [Google Scholar]
  35. 35.  Gantner M, Najda A, Janiuk M 2012. Attractiveness of highbush blueberry (Vaccinium corymbosum L.) cultivars to leafrollers depending on chosen secondary metabolites. Prog. Plant Prot. 52:820–25
    [Google Scholar]
  36. 36.  Geddes PS, Le Blanc JPR, Flanders KL, Forsythe HY Jr 1989. Installation of baited Pherocon AM traps for monitoring adult populations of Rhagoletis mendax (Diptera: Tephritidae) in lowbush blueberry fields. Environ. Entomol. 18:510–12
    [Google Scholar]
  37. 37.  Gibbs J, Elle E, Bobiwash K, Haapalainen T, Isaacs R 2016. Contrasting pollinators and pollination in native and non-native regions of highbush blueberry production. PLOS ONE 11:7e0158937
    [Google Scholar]
  38. 38.  Gillespie DR, King GGS, Salas-Reyes VA, Slessor KN 1984. Determination of the sex-pheromone components of Cheimophila salicella (Lepidoptera: Oecophoridae), a pest of blueberry in British Columbia. Can. Entomol. 116:1397–402
    [Google Scholar]
  39. 39.  Girgenti V, Peano C, Bounous M, Baudino C 2013. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in Northern Italy. Sci. Total Environ. 458–460:414–18
    [Google Scholar]
  40. 40.  Goguen J, Moreau G 2015. Exogenous and endogenous factors acting on the spatial distribution of a chrysomelid in extensively managed blueberry fields. Agric. Forest Entomol. 17:181–87
    [Google Scholar]
  41. 41.  Gradish AE, Scott-Dupree CD, Frewin AJ, Cutler GC 2012. Lethal and sublethal effects of some insecticides recommended for wild blueberry on the pollinator Bombus impatiens. Can. Entomol 144:478–86
    [Google Scholar]
  42. 42.  Hallman GJ 2003. Ionizing irradiation quarantine treatment against plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 96:1399–404
    [Google Scholar]
  43. 43.  Hallman GJ, Thomas DB 1999. Gamma irradiation quarantine treatment against blueberry maggot and apple maggot (Diptera: Tephritidae). J. Econ. Entomol. 92:1373–76
    [Google Scholar]
  44. 44.  Hampton E, Koski C, Barsoian O, Faubert H, Cowles RS, Alm SR 2014. Use of early ripening cultivars to avoid infestation and mass trapping to manage Drosophila suzukii (Diptera: Drosophilidae) in Vaccinium corymbosum (Ericales: Ericaceae). J. Econ. Entomol. 107:1849–57
    [Google Scholar]
  45. 45.  Haviland DR, Rill SM, Morse JG 2016. Impact of citrus thrips (Thysanoptera: Thripidae) on the growth and productivity of southern highbush blueberries in California. J. Econ. Entomol. 109:2454–62
    [Google Scholar]
  46. 46.  Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM et al. 2016. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest Sci. 89:643–51
    [Google Scholar]
  47. 47.  Hayman DI, MacKenzie KE, Reekie EG 2003. The influence of pruning on wasp inhabitants of galls induced by Hemadas nubilipennis Ashmead (Hymenoptera: Pteromalidae) on lowbush blueberry. J. Econ. Entomol. 96:1245–53
    [Google Scholar]
  48. 48.  Horgan FG, Myers JH, Van Meel R 1999. Cyzenis albicans (Diptera: Tachinidae) does not prevent the outbreak of winter moth (Lepidoptera: Geometridae) in birch stands and blueberry plots on the lower mainland of British Columbia. Environ. Entomol. 28:96–107
    [Google Scholar]
  49. 49.  Howitt AJ, Connor LJ 1965. The response of Rhagoletis pomonella (Walsh) adults and other insects to trap boards baited with protein hydrolysate baits. Proc. Entomol. Soc. Ont. 95:134–36
    [Google Scholar]
  50. 50.  Isaacs R, Birch ANE, Martin R, Woodford T 2017. IPM case studies: berry crops. Aphids as Crop Pests HF van Emden, R Harrington 561–69 Wallingford, UK: CABI Press. , 2nd ed..
    [Google Scholar]
  51. 51.  Isaacs R, Mason KS, Brewer M, Noma T, O'Neal M 2006. Does implementation of a reduced-risk blueberry insect control program enhance biological control?. Bull. OILB/SROP 29:7–11
    [Google Scholar]
  52. 52.  Isaacs R, Szendrei Z, Wise JC 2004. Evaluation of new approaches for management of Japanese beetles in highbush blueberries. Small Fruits Rev 3:349–60
    [Google Scholar]
  53. 53.  Isaacs R, Wise JC, Garcia-Salazar C 2009. Developing integrated fruitworm control strategies for blueberry in preparation for pesticide restrictions. Acta Hortic 810:259–64
    [Google Scholar]
  54. 54.  Jessup AJ, Sloggett RF, Quinn NM 1998. Quarantine disinfestation of blueberries against Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) by cold storage. J. Econ. Entomol. 91:964–67
    [Google Scholar]
  55. 55.  Jones MS, Halteman WA, Drummond FA 2016. Predator- and scavenger-mediated ecosystem services determined by distance to field-forest interface in the Maine lowbush blueberry agroecosystem. Environ. Entomol. 45:1131–40
    [Google Scholar]
  56. 56.  Kevan PG, Greco CF, Belaoussoff S 1997. Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. J. Appl. Ecol. 34:1122–36
    [Google Scholar]
  57. 57.  Kinjo H, Kunimi Y, Ban T, Nakai M 2013. Oviposition efficacy of Drosophila suzukii (Diptera: Drosophilidae) on different cultivars of blueberry. J. Econ. Entomol. 106:1767–71
    [Google Scholar]
  58. 58.  Kinsman GB 1993. The History of Lowbush Blueberry Industry in Nova Scotia 1950–1990 Truro: Nova Scotia Dep. Agric. Mark.
  59. 59.  Kuhnlein HV, Turner NJ 1991. Traditional Plant Foods of Canadian Indigenous Peoples: Nutrition, Botany, and Use Amsterdam, Neth: Gordon and Breach
  60. 60.  Lathrop FH 1939. Ten years of warfare against the blueberry maggot. J. Econ. Entomol. 32:510–13
    [Google Scholar]
  61. 61.  Leach BR, Fleming WE, Johnson JP 1924. Soil insecticide investigations at the Japanese beetle laboratory during 1923. J. Econ. Entomol. 17:361–65
    [Google Scholar]
  62. 62.  Lee JC, Dalton DT, Swoboda-Bhattarai KA, Bruck DJ, Burrack HJ et al. 2016. Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J. Pest Sci 89:771–80
    [Google Scholar]
  63. 63.  Lemoyne P, Vincent C, Gaul S, Mackenzie K 2008. Kaolin affects blueberry maggot behavior on fruit. J. Econ. Entomol. 101:118–25
    [Google Scholar]
  64. 64.  Leskey TC, Nielsen AL 2018. Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management. Annu. Rev. Entomol. 63:599–618
    [Google Scholar]
  65. 65.  Liburd OE, Alm SR, Casagrande RA 1998. Susceptibility of highbush blueberry cultivars to larval infestation by Rhagoletis mendax (Diptera: Tephritidae). Environ. Entomol. 27:817–21
    [Google Scholar]
  66. 66.  Liburd OE, Gut LJ, Stelinski LL, Whalon ME, McGuire MR et al. 1999. Mortality of Rhagoletis species encountering pesticide-treated spheres (Diptera: Tephritidae). J. Econ. Entomol. 92:1151–56
    [Google Scholar]
  67. 67.  Little CM, Chapman TW, Moreau DL, Hillier NK 2017. Susceptibility of selected boreal fruits and berries to the invasive pest Drosophila suzukii (Diptera: Drosophilidae). Pest Manag. Sci. 73:160–66
    [Google Scholar]
  68. 68.  Lobos GA, Hancock JF 2015. Breeding blueberries for a changing global environment: a review. Front. Plant Sci. 6:782
    [Google Scholar]
  69. 69.  Locke DO, Havey K 1972. Effects of DDT upon salmon from Schoodic Lake, Maine. Trans. Am. Fish Soc. 101:638–43
    [Google Scholar]
  70. 70.  MacKenzie K, Hayman D, Reekie E 2004. The effect of pruning on blueberry stem gall wasp. Small Fruits Rev 3:331–38
    [Google Scholar]
  71. 71.  MacLachlan DJ, Hamilton D 2010. Estimation methods for Maximum Residue Limits for pesticides. Regul. Toxicol. Pharmacol. 58:208–18
    [Google Scholar]
  72. 72.  Maloney DM, Alford AR, Drummond FA 2005. Predation by Lycosidae in lowbush blueberry agroecosystems. Trends Entomol 4:43–57
    [Google Scholar]
  73. 73.  Mampe CD, Neunzig HH 1967. The biology, parasitism, and population sampling of the plum curculio on blueberry in North Carolina. J. Econ. Entomol. 60:807–12
    [Google Scholar]
  74. 74.  Marucci PE 1966. Insects and their control. Blueberry Culture P Eck, NF Childers 199–235 New Brunswick, NJ: Rutgers Univ. Press
    [Google Scholar]
  75. 75.  Maxwell CW 1961. Field tests of insecticides against the thrips Frankliniella vaccinii Morgan and Taeniothrips vaccinophilus Hood on the low-bush blueberry. Can. J. Plant Sci. 41:134–36
    [Google Scholar]
  76. 76.  Mayer DF, Johansen CA, Shanks CH Jr, Antonelli AL 1989. Methomyl insecticide and domesticated pollinators. J. Entomol. Soc. B. C. 86:7–13
    [Google Scholar]
  77. 77.  McAlister LC, Anderson WH 1932. The blueberry stem-gall in Maine. J. Econ. Entomol. 25:1165–69
    [Google Scholar]
  78. 78.  McDonough LM, Averill AL, Davis HG, Smithhisler CL, Murray DA et al. 1994. Sex pheromone of cranberry fruitworm, Acrobasis vaccinii (Lepidoptera: Pyralidae). J. Chem. Ecol. 20:3269–79
    [Google Scholar]
  79. 79.  McGregor R, Caddick G, Henderson D 2000. Egg loads and egg masses: parasitism of Choristoneura rosaceana eggs by Trichogramma minutum after inundative release in a commercial blueberry field. BioControl 45:257–68
    [Google Scholar]
  80. 80.  Metzger FW, Lipp JW 1936. Value of lime and aluminum sulfate as a repellent spray for Japanese beetle. J. Econ. Entomol. 29:343–47
    [Google Scholar]
  81. 81.  Moose SP, Mumm RH 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–77
    [Google Scholar]
  82. 82.  Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH et al. 2017. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol 54:170–77
    [Google Scholar]
  83. 83.  Morimoto KM, Ramsdell DC 1985. Aphid vector population dynamics and movement relative to field transmission of blueberry shoestring virus. Phytopathology 75:1217–22
    [Google Scholar]
  84. 84.  Nickle WR, Wood GW 1964. Hojvardula aptini (Sharga 1932) parasitic in blueberry thrips in New Brunswick. Can. J. Zool. 42:843–46
    [Google Scholar]
  85. 85.  O'Neal ME, Mason KS, Isaacs R 2005. Seasonal abundance of ground beetles in highbush blueberry (Vaccinium corymbosum) fields and response to a reduced-risk insecticide program. Environ. Entomol. 34:378–84
    [Google Scholar]
  86. 86.  Osburn MR 1931. Effect on certain fresh fruits of fumigation with ethylene oxide to destroy the Japanese beetle. J. N. Y. Entomol. Soc. 39:567–75
    [Google Scholar]
  87. 87.  Pelz KS, Isaacs R, Wise JC, Gut LJ 2005. Protection of fruit against infestation by apple maggot and blueberry maggot (Diptera: Tephritidae) using compounds containing spinosad. J. Econ. Entomol. 98:432–37
    [Google Scholar]
  88. 88.  Peshlov BN, Dowelt FE, Drummond FA, Donahue DW 2009. Comparison of three near infrared spectrophotometers for infestation detection in wild blueberries using multivariate calibration models. J. Near Infrared Spectrosc. 17:203–12
    [Google Scholar]
  89. 89.  Polavarapu S, Kyryczenko-Roth V, Barry JD 2004. Phenology and infestation patterns of plum curculio (Coleoptera: Curculionidae) on four highbush blueberry cultivars. J. Econ. Entomol. 97:1899–905
    [Google Scholar]
  90. 90.  Polavarapu S, Wicki M, Vogel K, Lonergan G, Nielsen K 2002. Disruption of sexual communication of oriental beetles (Coleoptera: Scarabaeidae) with a microencapsulated formulation of sex pheromone components in blueberries and ornamental nurseries. Environ. Entomol. 31:1268–75
    [Google Scholar]
  91. 91.  Polavarapu SK, Koppenhöfer AM, Barry JD, Holdcraft RJ, Fuzy EM 2007. Entomopathogenic nematodes and neonicotinoids for remedial control of oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae), in highbush blueberry. Crop Prot 26:1266–71
    [Google Scholar]
  92. 92.  Pritts MP 1997. Impacts of cultivation practices on pollination of Vaccinium. Acta Hortic 446:91–96
    [Google Scholar]
  93. 93.  Profaizer D, Grassi A, Zadra E, Maistri S 2015. Efficacy of insecticide treatment strategies against Drosophila suzukii in combination with mass trapping. IOBC/WPRS Bull 109:215–18
    [Google Scholar]
  94. 94.  Prokopy RJ, Wright SE, Black JL, Hu XP, McGuire MR 2000. Attracticidal spheres for controlling apple maggot flies: commercial-orchard trials. Entomol. Ex. Appl. 97:293–99
    [Google Scholar]
  95. 95.  Prokopy RJ, Wright SE, Chandler B, Hu XP 1998. Evaluation of varying doses of different toxicants for use on spheres to control apple maggot flies. Fruit Notes 63:6–11
    [Google Scholar]
  96. 96.  Raine J 1965. Control of Dasystoma salicellum, a new pest of blueberries in British Columbia. Can. J. Plant Sci. 45:243–45
    [Google Scholar]
  97. 97.  Ramanaidu K, Hardman JM, Percival DC, Cutler GC 2011. Laboratory and field susceptibility of blueberry spanworm (Lepidoptera: Geometridae) to conventional and reduced-risk insecticides. Crop Prot 30:1643–48
    [Google Scholar]
  98. 98.  Ranger CM, Johnson-Cicalese J, Polavarapu S, Vorsa N 2006. Evaluation of Vaccinium spp. for Illinoia pepperi (Hemiptera: Aphididae) performance and phenolic content. J. Econ. Entomol. 99:1474–82
    [Google Scholar]
  99. 99.  Renkema JM, Cutler GC, Rutherford K 2014. Molecular analysis reveals lowbush blueberry pest predation rates depend on ground beetle (Coleoptera: Carabidae) species and pest density. BioControl 59:749–60
    [Google Scholar]
  100. 100.  Renkema JM, Lynch DH, Cutler GC, MacKenzie K, Walde SJ 2012. Emergence of blueberry maggot flies (Diptera: Tephritidae) from mulches and soil at various depths. Environ. Entomol. 41:370–76
    [Google Scholar]
  101. 101.  Renkema JM, Walde SJ, Lynch DH, Cutler GC, MacKenzie K 2012. Ground beetles (Carabidae) are affected by mulch in organic highbush blueberries. Acta Hortic 933:447–53
    [Google Scholar]
  102. 102.  Retamales JB, Hancock JF 2012. Blueberries. Wallingford, UK: CABI
    [Google Scholar]
  103. 103.  Rhodes EM, Liburd OE, England GK 2012. Effects of southern highbush blueberry cultivar and treatment threshold on flower thrips populations. J. Econ. Entomol. 105:480–89
    [Google Scholar]
  104. 104.  Rice KB, Short BD, Leskey TC 2017. Development of an attract-and-kill strategy for Drosophila suzukii (Diptera: Drosophilidae): evaluation of attracticidal spheres under laboratory and field conditions. J. Econ. Entomol. 110:535–42
    [Google Scholar]
  105. 105.  Richards R, Alexander S, Station PNR 2006. A social history of wild huckleberry harvesting in the Pacific Northwest Gen. Tech. Rep. PNW-GTR-657, US Dep. Agric., For. Serv., Pac. Northwest Res. Stn Portland, OR:
  106. 106.  Rocca M, Greco N 2011. Diversity of herbivorous communities in blueberry crops of different regions of Argentina. Environ. Entomol. 40:247–59
    [Google Scholar]
  107. 107.  Rocca M, Greco NM 2012. Sampling plans for aphids and their parasitoids in blueberry fields in Argentina. Int. J. Pest Manag. 58:320–29
    [Google Scholar]
  108. 108.  Rodriguez-Saona C, Polk D, Holdcraft R, Chinnasamy D, Mafra Neto A 2010. SPLAT-OrB reveals competitive attraction as a mechanism of mating disruption in oriental beetle (Coleoptera: Scarabaeidae). Environ. Entomol. 39:1980–89
    [Google Scholar]
  109. 109.  Rodriguez-Saona C, Vincent C, Polk D, Drummond FA 2015. A review of the blueberry maggot fly (Diptera: Tephritidae). J. Integr. Pest Manag. 6:11
    [Google Scholar]
  110. 110.  Rodriguez-Saona CR, Wise JC, Polk D, Leskey TC, Vandervoort C 2013. Lethality of reduced-risk insecticides against plum curculio (Coleoptera: Curculionidae) in blueberries, with emphasis on their curative activity. Pest Manag. Sci. 69:1334–45
    [Google Scholar]
  111. 111.  Roth H, Richardson HH 1970. Ethylene dibromide, methyl bromide, and ethylene chlorobromide as fumigants for control of apple and blueberry maggots in fruit. J. Econ. Entomol. 63:496–99
    [Google Scholar]
  112. 112.  Roubos CR, Liburd OE 2010. Evaluation of emergence traps for monitoring blueberry gall midge (Diptera: Cecidomyiidae) adults and within field distribution of midge infestation. J. Econ. Entomol. 103:1258–67
    [Google Scholar]
  113. 113.  Sciarappa WJ, Polavarapu S, Holdcraft RJ, Barry JD 2005. Disruption of sexual communication of oriental beetles (Coleoptera: Scarabaeidae) in highbush blueberries with retrievable pheromone sources. Environ. Entomol. 34:54–58
    [Google Scholar]
  114. 114.  Sharp JL, Polavarapu S 1999. Gamma radiation doses for preventing pupariation and adult emergence of Rhagoletis mendax (Diptera: Tephritidae). Can. Entomol. 131:549–55
    [Google Scholar]
  115. 115.  Sheppard DH, Myers JH, Fitzpatrick S, Gerber H 1990. Efficacy of deltamethrin and Bacillus thuringiensis Berliner ssp. kurstaki on larvae of winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae) attacking blueberry in the lower mainland of British Columbia. J. Entomol. Soc. B. C 87:25–29
    [Google Scholar]
  116. 116.  Smith DC, Prokopy RJ 1981. Seasonal and diurnal activity of Rhagoletis mendax flies in nature. Ann. Entomol. Soc. Am. 74:462–66
    [Google Scholar]
  117. 117.  Smith JJ, Gavrilovic V, Smitley DR 2001. Native Vaccinium spp. and Gaylussacia spp. infested by Rhagoletis mendax (Diptera: Tephritidae) in the Great Lakes region: a potential source of inoculum for infestation of cultivated blueberries. J. Econ. Entomol. 94:1378–85
    [Google Scholar]
  118. 118.  Spiers JD, Matta FB, Marshall DA, Sampson BJ 2005. Effects of kaolin clay application on flower bud development, fruit quality and yield, and flower thrips [Frankliniella spp. (Thysanoptera: Thripidae)] populations of blueberry plants. Small Fruits Rev 4:73–84
    [Google Scholar]
  119. 119.  Stelinski LL, Liburd OE 2001. Evaluation of various deployment strategies of imidacloprid-treated spheres in highbush blueberries for control of Rhagoletis mendax (Diptera: Tephritidae). J. Econ. Entomol. 94:905–10
    [Google Scholar]
  120. 120.  Stelinski LL, Pelz-Stelinski KS, Liburd OE, Gut LJ 2006. Control strategies for Rhagoletis mendax disrupt host-finding and ovipositional capability of its parasitic wasp. Diachasma alloeum. Biol. Control 36:91–99
    [Google Scholar]
  121. 121.  Strik BC, Yarborough D 2005. Blueberry production trends in North America, 1992 to 2003, and predictions for growth. HortTechnology 15:391–98
    [Google Scholar]
  122. 122.  Stubbs CS, Drummond FA, Allard SL 1997. Bee conservation and increasing Osmia spp. in Maine lowbush blueberry fields. Northeast. Nat. 4:133–44
    [Google Scholar]
  123. 123.  Swoboda-Bhattarai KA, Burrack HJ 2014. Influence of edible fruit coatings on Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) oviposition and development. Int. J. Pest Manag. 60:279–86
    [Google Scholar]
  124. 124.  Szendrei Z, Isaacs R 2006. Ground covers influence the abundance and behavior of Japanese beetles. Environ. Entomol. 35:789–96
    [Google Scholar]
  125. 125.  Szendrei Z, Mallampalli N, Isaacs R 2005. Effect of tillage on abundance of Japanese beetle, Popillia japonica Newman (Col., Scarabaeidae), larvae and adults in highbush blueberry fields. J. Appl. Entomol. 129:258–64
    [Google Scholar]
  126. 126.  Teixeira LAF, Polavarapu S 2001. Postdiapause development and prediction of emergence of female blueberry maggot (Diptera: Tephritidae). Environ. Entomol. 30:925–31
    [Google Scholar]
  127. 127.  Tertuliano M, Srinivasan R, Scherm H 2012. Settling behavior of the glassy-winged sharpshooter, Homalodisca vitripennis, vector of Xylella fastidiosa, on southern highbush blueberry cultivars. Entomol. Exp. Appl. 143:67–73
    [Google Scholar]
  128. 128.  Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM 2014. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43:501–10
    [Google Scholar]
  129. 129.  Tomlinson WE 1951. Control of insect larvae infesting immature blueberry fruit. J. Econ. Entomol. 44:247–50
    [Google Scholar]
  130. 130.  Tuell JK, Isaacs R 2010. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop. J. Econ. Entomol. 103:668–75
    [Google Scholar]
  131. 131.  US Congress 1996. H.R. 1627: Food Quality Protection Act of 1996 104th Congr., Aug 3
  132. 132. US Dep. Agric. 1997. United States standards for grades of blueberries US Dep. Agric Washington, DC:
  133. 133.  Van Timmeren S, Isaacs R 2009. Susceptibility of highbush blueberry cultivars to cranberry fruitworm and Japanese beetle. Int. J. Fruit Sci. 9:23–34
    [Google Scholar]
  134. 134.  Van Timmeren S, Isaacs R 2013. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–33
    [Google Scholar]
  135. 135.  Vander Kloet SP 1988. The Genus Vaccinium in North America Ottawa: Agric. Can.
  136. 136.  Vera M, Aguilera A, Rebolledo R 2010. Comparison of relative abundance and diversity of coccinellids (Coleoptera: Coccinellidae) in blueberries (Vaccinium corymbosum L.), under two production systems in the La Araucanía region, Chile. Cienc. Investig. Agrar. 37:123–29
    [Google Scholar]
  137. 137.  Vincent C, Lemoyne P, Gaul S, Mackenzie K 2014. Extreme cold temperature to kill blueberry maggot (Diptera: Tephritidae) in reusable containers. J. Econ. Entomol. 107:906–9
    [Google Scholar]
  138. 138.  Wallingford AK, Cha DH, Loeb GM 2017. Evaluating a push-pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Manag. Sci. 74:120–25
    [Google Scholar]
  139. 139.  Walton NJ, Isaacs R 2011. Influence of native flowering plant strips on natural enemies and herbivores in adjacent blueberry fields. Environ. Entomol. 40:697–705
    [Google Scholar]
  140. 140.  Whalon ME, Elsner EA 1982. Impact of insecticides on Illinoia pepperi and its predators. J. Econ. Entomol. 75:356–58
    [Google Scholar]
  141. 141.  Whitehouse TS, Sial AA, Schmidt JM 2018. Natural enemy abundance in southeastern blueberry agro-ecosystems: distance to edge and impact of management practices. Environ. Entomol. 47:32–38
    [Google Scholar]
  142. 142.  Whitney SP, Meyer JR 1988. Movement between wild and cultivated blueberry by two species of sharpnosed leafhoppers (Homoptera: Cicadellidae) in North Carolina. J. Entomol. Sci. 23:88–95
    [Google Scholar]
  143. 143.  Wiman NG, Parker JE, Rodriguez-Saona C, Walton VM 2015. Characterizing damage of brown marmorated stink bug (Hemiptera: Pentatomidae) in blueberries. J. Econ. Entomol. 108:1156–63
    [Google Scholar]
  144. 144.  Wise JC, Jenkins PE, Poppen RV, Isaacs R 2010. Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in highbush blueberry. J. Econ. Entomol. 103:1720–28
    [Google Scholar]
  145. 145.  Wood GW 1970. Survival of blueberry casebeetle adults in burned blueberry fields. J. Econ. Entomol. 63:1364
    [Google Scholar]
  146. 146.  Wood GW 1979. Recuperation of native bee populations in blueberry fields exposed to drift of fenitrothion from forest spray operations in New Brunswick. J. Econ. Entomol. 72:36–39
    [Google Scholar]
  147. 147.  Woolwine AE, Culin JD, Gorsuch CS 1996. Cultivar preference of Oberea myops in rabbiteye blueberries. Vaccinium ashei. J. Agric. Entomol. 13:121–27
    [Google Scholar]
  148. 148.  Wright S, Hu XP, Prokopy RJ 1997. Tests of imidacloprid-treated spheres for controlling apple maggot flies. Fruit Notes 62:1–4
    [Google Scholar]
  149. 149.  Yarborough D, Drummond F, Annis S, D'Appollonio J 2017. Maine wild blueberry systems analysis. Acta Hortic 1180:151–60
    [Google Scholar]
  150. 150.  Zahn DK, Haviland DR, Stanghellini ME, Morse JG 2013. Evaluation of Beauveria bassiana for management of citrus thrips (Thysanoptera: Thripidae) in California blueberries. J. Econ. Entomol. 106:1986–95
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-112147
Loading
/content/journals/10.1146/annurev-ento-011118-112147
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error