1932

Abstract

Insects play important roles as predators, prey, pollinators, recyclers, hosts, parasitoids, and sources of economically important products. They can also destroy crops; wound animals; and serve as vectors for plant, animal, and human diseases. Gene drive—a process by which genes, gene complexes, or chromosomes encoding specific traits are made to spread through wild populations, even if these traits result in a fitness cost to carriers—provides new opportunities for altering populations to benefit humanity and the environment in ways that are species specific and sustainable. Gene drive can be used to alter the genetic composition of an existing population, referred to as population modification or replacement, or to bring about population suppression or elimination. We describe technologies under consideration, progress that has been made, and remaining technological hurdles, particularly with respect to evolutionary stability and our ability to control the spread and ultimate fate of genes introduced into populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020117-043154
2021-01-07
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/en/66/1/annurev-ento-020117-043154.html?itemId=/content/journals/10.1146/annurev-ento-020117-043154&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al. 2017. RNA targeting with CRISPR-Cas13. Nature 550:280–84
    [Google Scholar]
  2. 2. 
    Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9:1911
    [Google Scholar]
  3. 3. 
    Adolfi A, Gantz VM, Jasinskiene N, Lee H-F, Hwang K et al. 2020. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. bioRxiv 233056. https://doi.org/10.1101/2020.08.02.233056
    [Crossref]
  4. 4. 
    Akbari OS, Chen CH, Marshall JM, Huang H, Antoshechkin I, Hay BA 2013. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr. Biol. 23:671–77
    [Google Scholar]
  5. 5. 
    Akbari OS, Chen CH, Marshall JM, Huang H, Antoshechkin I, Hay BA 2014. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila, and a theoretical exploration of Medea-dependent population suppression. ACS Synth. Biol. 3:915–28
    [Google Scholar]
  6. 6. 
    Alphey N, Bonsall MB. 2014. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J. R. Soc. Interface 11:20131071
    [Google Scholar]
  7. 7. 
    Altrock PM, Traulsen A, Reed FA 2011. Stability properties of underdominance in finite subdivided populations. PLOS Comput. Biol. 7:e1002260
    [Google Scholar]
  8. 8. 
    Altrock PM, Traulsen A, Reeves RG, Reed FA 2010. Using underdominance to bi-stably transform local populations. J. Theor. Biol. 267:62–75
    [Google Scholar]
  9. 9. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–57
    [Google Scholar]
  10. 10. 
    Aryan A, Anderson MAE, Biedler JK, Qi Y, Overcash JM et al. 2020. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight. PNAS 117:17702–9
    [Google Scholar]
  11. 11. 
    Asman SM, McDonald PT, Prout T 1981. Field studies of genetic control systems for mosquitoes. Annu. Rev. Entomol. 26:289–318
    [Google Scholar]
  12. 12. 
    Backus GA, Delborne JA. 2019. Threhsold-dependent gene drive in the wild: controllability, and ecological uncertainty. Bioscience 69:900–7
    [Google Scholar]
  13. 13. 
    Barton NH. 1979. The dynamics of hybrid zones. Heredity 43:341–59
    [Google Scholar]
  14. 14. 
    Barton NH, Turelli M. 2011. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Nat. 178:E48–75
    [Google Scholar]
  15. 15. 
    Beaghton A, Beaghton PJ, Burt A 2016. Gene drive through a landscape: reaction-diffusion models of population suppression and elimination by a sex ratio distorter. Theor. Popul. Biol. 108:51–69
    [Google Scholar]
  16. 16. 
    Beaghton A, Beaghton PJ, Burt A 2017. Vector control with driving Y chromosomes: modelling the evolution of resistance. Malar. J. 16:286
    [Google Scholar]
  17. 17. 
    Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HC, Burt A 2017. Requirements for driving antipathogen effector genes into populations of disease vectors by homing. Genetics 205:1587–96
    [Google Scholar]
  18. 18. 
    Beaghton AK, Hammond A, Nolan T, Crisanti A, Burt A 2019. Gene drive for population genetic control: non-functional resistance and parental effects. Proc. Biol. Sci. 286:20191586
    [Google Scholar]
  19. 19. 
    Beeman RW, Friesen KS. 1999. Properties and natural occurrence of maternal-effect selfish genes (‘Medea’ factors) in the red flour beetle, Tribolium castaneum. Heredity 82:Pt. 5529–34
    [Google Scholar]
  20. 20. 
    Beeman RW, Friesen KS, Denell RE 1992. Maternal-effect selfish genes in flour beetles. Science 256:89–92
    [Google Scholar]
  21. 21. 
    Belfort M, Bonocora RP. 2014. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol. Biol. 1123:1–26
    [Google Scholar]
  22. 22. 
    Ben-David E, Burga A, Kruglyak L 2017. A maternal-effect selfish genetic element in Caenorhabditis elegans. Science 356:1051–55
    [Google Scholar]
  23. 23. 
    Bernardini F, Galizi R, Menichelli M, Papathanos PA, Dritsou V et al. 2014. Site-specific genetic engineering of the Anopheles gambiae Y chromosome. PNAS 111:7600–5
    [Google Scholar]
  24. 24. 
    Biedler JK, Qi Y, Pledger D, Macias VM, James AA, Tu Z 2014. Maternal germline-specific genes in the Asian malaria mosquito Anopheles stephensi: characterization and application for disease control. G3 5:157–66
    [Google Scholar]
  25. 25. 
    Braig HR, Yan G. 2001. The spread of genetic constructs in natural insect populations. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects DK Letourneau, BE Burrows 251–314 Boca Raton, FL: CRC Press
    [Google Scholar]
  26. 26. 
    Braun RE. 1998. Post-transcriptional control of gene expression during spermatogenesis. Semin. Cell Dev. Biol. 9:483–89
    [Google Scholar]
  27. 27. 
    Buchman A, Akbari OS. 2019. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. Insect Mol. Biol. 28:65–73
    [Google Scholar]
  28. 28. 
    Buchman A, Marshall JM, Ostrovski D, Yang T, Akbari OS 2018. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. PNAS 115:4725–30
    [Google Scholar]
  29. 29. 
    Buchman AB, Ivy T, Marshall JM, Akbari OS, Hay BA 2018. Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila. ACS Synth. Biol 7:1359–70
    [Google Scholar]
  30. 30. 
    Bull JJ. 2016. Lethal gene drive selects inbreeding. Evol. Med. Public Health 2017:1–16
    [Google Scholar]
  31. 31. 
    Bull JJ, Remien CH, Krone SM 2019. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating. Evol. Med. Public Health 2019:66–81
    [Google Scholar]
  32. 32. 
    Burt A. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. Biol. Sci. 270:921–28
    [Google Scholar]
  33. 33. 
    Burt A, Crisanti A. 2018. Gene drive: evolved and synthetic. ACS Chem. Biol. 13:343–46
    [Google Scholar]
  34. 34. 
    Burt A, Deredec A. 2018. Self-limiting population genetic control with sex-linked genome editors. Proc. Biol. Sci. 285:20180776
    [Google Scholar]
  35. 35. 
    Burt A, Trivers R. 2006. Genes in Conflict Cambridge, MA: Belknap Press
  36. 36. 
    Carareto CMA, Kim W, Wojciechowski MF, O'Grady P, Prokchorova AV et al. 1997. Testing transposable elements as genetic drive mechanisms using Drosophila P element constructs as a model system. Genetica 101:13–33
    [Google Scholar]
  37. 37. 
    Cash SA, Lorenzen MD, Gould F 2019. The distribution and spread of naturally occurring Medea selfish genetic elements in the United States. Ecol. Evol. 9:14407–16
    [Google Scholar]
  38. 38. 
    Chae D, Lee J, Lee N, Park K, Moon SJ, Kim HH 2020. Chemical controllable gene drive in Drosophila. ACS Synth. Biol 9:2362–77
    [Google Scholar]
  39. 39. 
    Champer J, Champer SE, Kim I, Clark AG, Messer PW 2019. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. bioRxiv 861435. https://doi.org/10.1101/861435
    [Crossref]
  40. 40. 
    Champer J, Chung J, Lee YL, Liu C, Yang E et al. 2019. Molecular safeguarding of CRISPR gene drive experiments. eLife 8:e41439
    [Google Scholar]
  41. 41. 
    Champer J, Kim I, Champer SE, Clark AG, Messer PW 2019. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. bioRxiv 769810. http://dx.doi.org/10.1101/769810
    [Crossref]
  42. 42. 
    Champer J, Kim IK, Champer SE, Clark AG, Messer PW 2020. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol 18:27
    [Google Scholar]
  43. 43. 
    Champer J, Lee E, Yang E, Liu C, Clark AG, Messer PW 2020. A toxin-antidote CRISPR gene drive system for regional population modification. Nat. Commun. 11:1082
    [Google Scholar]
  44. 44. 
    Champer J, Liu J, Oh SY, Reeves R, Luthra A et al. 2018. Reducing resistance allele formation in CRISPR gene drive. PNAS 115:5522–27
    [Google Scholar]
  45. 45. 
    Champer J, Reeves R, Oh SY, Liu C, Liu J et al. 2017. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLOS Genet 13:e1006796
    [Google Scholar]
  46. 46. 
    Champer J, Wen Z, Luthra A, Reeves R, Chung J et al. 2019. CRISPR gene drive efficiency and resistance rate is highly heritable with no common genetic loci of large effect. Genetics 212:333–41
    [Google Scholar]
  47. 47. 
    Champer J, Yang E, Lee YL, Liu J, Clark AG, Messer PW 2020. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. PNAS 117:24377–83
    [Google Scholar]
  48. 48. 
    Champer J, Zhao J, Champer SE, Liu J, Messer PW 2020. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth. Biol. 9:779–92
    [Google Scholar]
  49. 49. 
    Champer SE, Oh SY, Liu C, Wen Z, Clark AG et al. 2020. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6:eaaz0525
    [Google Scholar]
  50. 50. 
    Chan YS, Huen DS, Glauert R, Whiteway E, Russell S 2013. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PLOS ONE 8:e54130
    [Google Scholar]
  51. 51. 
    Chan YS, Takeuchi R, Jarjour J, Huen DS, Stoddard BL, Russell S 2013. The design and in vivo evaluation of engineered I-OnuI-based enzymes for HEG gene drive. PLOS ONE 8:e74254
    [Google Scholar]
  52. 52. 
    Chen CH, Huang H, Ward CM, Su JT, Schaeffer LV et al. 2007. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316:597–600
    [Google Scholar]
  53. 53. 
    Courret C, Chang CH, Wei KH, Montchamp-Moreau C, Larracuente AM 2019. Meiotic drive mechanisms: lessons from Drosophila. Proc. Biol. Sci 286:20191430
    [Google Scholar]
  54. 54. 
    Craig GB Jr., Hickey WA, Vandehey RC. 1960. An inherited male-producing factor in Aedes aegypti. Science 132:1887–89
    [Google Scholar]
  55. 55. 
    Curtis CF. 1968. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218:368–69
    [Google Scholar]
  56. 56. 
    Daish T, Grutzner F. 2019. Evolution and meiotic organization of heteromorphic sex chromosomes. Curr. Top. Dev. Biol. 134:1–48
    [Google Scholar]
  57. 57. 
    Davis S, Bax N, Grewe P 2001. Engineered underdominance allows efficient and economical introgression of traits into pest populations. J. Theor. Biol. 212:83–98
    [Google Scholar]
  58. 58. 
    Deleted in proof
  59. 59. 
    Deredec A, Burt A, Godfray HC 2008. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179:2013–26
    [Google Scholar]
  60. 60. 
    Deredec A, Godfray HC, Burt A 2011. Requirements for effective malaria control with homing endonuclease genes. PNAS 108:E874–80
    [Google Scholar]
  61. 61. 
    Dhole S, Lloyd AL, Gould F 2019. Tethered homing gene drives: a new design for spatially restricted population replacement and suppression. Evol. Appl. 12:1688–702
    [Google Scholar]
  62. 62. 
    Dhole S, Lloyd AL, Gould F 2020. Gene drive dynamics in natural populations: the importance of density-dependence, space and sex. Annu. Rev. Ecol. Evol. Syst. 51:505–31
    [Google Scholar]
  63. 63. 
    Dhole S, Vella MR, Lloyd AL, Gould F 2018. Invasion and migration of spatially self-limiting gene drives: a comparative analysis. Evol. Appl. 11:794–808
    [Google Scholar]
  64. 64. 
    DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM 2015. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33:1250–55
    [Google Scholar]
  65. 65. 
    Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ 2017. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 3:e1601910
    [Google Scholar]
  66. 66. 
    Duchaine TF, Fabian MR. 2019. Mechanistic insights into microRNA-mediated gene silencing. Cold Spring Harb. Perspect. Biol. 11:a032771
    [Google Scholar]
  67. 67. 
    Duffy JB. 2002. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34:1–15
    [Google Scholar]
  68. 68. 
    Dyck VA, Hendrichs J, Robinson AS 2005. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management Berlin: Springer
  69. 69. 
    Eckhoff PA, Wenger EA, Godfray HC, Burt A 2017. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. PNAS 114:E255–64
    [Google Scholar]
  70. 70. 
    Edgington MP, Alphey LS. 2017. Conditions for success of engineered underdominance gene drive systems. J. Theor. Biol. 430:128–40
    [Google Scholar]
  71. 71. 
    Edgington MP, Alphey LS. 2018. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors. PLOS Comput. Biol. 14:e1006059
    [Google Scholar]
  72. 72. 
    Edgington MP, Harvey-Samuel T, Alphey L 2020. Population level multiplexing: a promising strategy to manage the evolution of resistance against gene drives targeting a neutral locus. Evol. Appl. 13:1939–48
    [Google Scholar]
  73. 73. 
    Esvelt KM, Smidler AL, Catteruccia F, Church GM 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401
    [Google Scholar]
  74. 74. 
    Fasulo B, Meccariello A, Morgan M, Borufka C, Papathanos PA, Windbichler N 2020. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLOS Genet 16:e1008647
    [Google Scholar]
  75. 75. 
    Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A et al. 2014. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5:3977
    [Google Scholar]
  76. 76. 
    Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F et al. 2016. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6:31139
    [Google Scholar]
  77. 77. 
    Gallagher DN, Haber JE. 2018. Repair of a site-specific DNA cleavage: old-school lessons for Cas9-mediated gene editing. ACS Chem. Biol. 13:397–405
    [Google Scholar]
  78. 78. 
    Gantz VM, Bier E. 2015. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–44
    [Google Scholar]
  79. 79. 
    Gantz VM, Bier E. 2016. The dawn of active genetics. Bioessays 38:50–63
    [Google Scholar]
  80. 80. 
    Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM et al. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. PNAS 112:E6736–43
    [Google Scholar]
  81. 81. 
    Gimble FS. 2000. Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Lett. 185:99–107
    [Google Scholar]
  82. 82. 
    Girardin L, Calvez V, Debarre F 2019. Catch me if you can: a spatial model for a brake-driven gene drive reversal. Bull. Math. Biol. 81:5054–88
    [Google Scholar]
  83. 83. 
    Godfray HCJ, North A, Burt A 2017. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol 15:81
    [Google Scholar]
  84. 84. 
    Gokhale CS, Reeves RG, Reed FA 2014. Dynamics of a combined Medea-underdominant population transformation system. BMC Evol. Biol. 14:98
    [Google Scholar]
  85. 85. 
    Gould F, Huang Y, Legros M, Lloyd AL 2008. A killer-rescue system for self-limiting gene drive of anti-pathogen constructs. Proc. Biol. Sci. 275:2823–29
    [Google Scholar]
  86. 86. 
    Gould F, Schliekelman P. 2004. Population genetics of autocidal control and strain replacement. Annu. Rev. Entomol. 49:193–217
    [Google Scholar]
  87. 87. 
    Guichard A, Haque T, Bobik M, Xu XS, Klanseck C et al. 2019. Efficient allelic-drive in Drosophila. Nat. Commun 10:1640
    [Google Scholar]
  88. 88. 
    Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA et al. 2015. Sex determination: a male-determining factor in the mosquito Aedes aegypti. Science 348:1268–70
    [Google Scholar]
  89. 89. 
    Hamilton WD. 1967. Extraordinary sex ratios: A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156:477–88
    [Google Scholar]
  90. 90. 
    Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol 34:78–83
    [Google Scholar]
  91. 91. 
    Hammond A, Karlsson X, Morianou I, Kyrou K, Beaghton A et al. 2020. Regulation of gene drive expression increases invasive potential and mitigates resistance. bioRxiv 360339. https://doi.org/10.1101/360339
    [Crossref]
  92. 92. 
    Hammond AM, Kyrou K, Bruttini M, North A, Galizi R et al. 2017. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genet 13:e1007039
    [Google Scholar]
  93. 93. 
    Hartl DL, Clark AG. 1997. Principles of Population Genetics Sunderland, MA: Sinauer Assoc.
  94. 94. 
    Hastings IM. 1994. Selfish DNA as a method of pest control. Phil. Trans. R. Soc. Lond. B 344:313–24
    [Google Scholar]
  95. 95. 
    Hay BA, Chen CH, Ward CM, Huang H, Su JT, Guo M 2010. Engineering the genomes of wild insect populations: challenges, and opportunities provided by synthetic Medea selfish genetic elements. J. Insect Physiol. 56:1402–13
    [Google Scholar]
  96. 96. 
    Helleu Q, Gerard PR, Montchamp-Moreau C 2014. Sex chromosome drive. Cold Spring Harb. Perspect. Biol. 7:a017616
    [Google Scholar]
  97. 97. 
    Hicks WM, Kim M, Haber JE 2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82–85
    [Google Scholar]
  98. 98. 
    Hoermann A, Tapanelli S, Capriotti P, Masters EKG, Habtewold T et al. 2020. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. bioRxiv 086157. https://doi.org/10.1101/2020.05.09.086157
    [Crossref]
  99. 99. 
    Huang Y, Lloyd AL, Legros M, Gould F 2009. Gene-drive in age-structured insect populations. Evol. Appl. 2:143–59
    [Google Scholar]
  100. 100. 
    Huang Y, Lloyd AL, Legros M, Gould F 2010. Gene-drive into insect populations with age and spatial structure: a theoretical assessment. Evol. Appl. 4:415–28
    [Google Scholar]
  101. 101. 
    Huang Y, Magori K, Lloyd AL, Gould F 2007. Introducing desirable transgenes into insect populations using Y-linked meiotic drive: a theoretical assessment. Evolution 61:717–26
    [Google Scholar]
  102. 102. 
    Huang Y, Magori K, Lloyd AL, Gould F 2007. Introducing transgenes into insect populations using combined gene-drive strategies: modeling and analysis. Insect Biochem. Mol. Biol. 37:1054–63
    [Google Scholar]
  103. 103. 
    Jacquier A, Dujon B. 1985. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–94
    [Google Scholar]
  104. 104. 
    Jaenike J. 2001. Sex chromosome meiotic drive. Annu. Rev. Ecol. Evol. Syst. 32:25–49
    [Google Scholar]
  105. 105. 
    Kandul NP, Liu J, Buchman A, Gantz VM, Bier E, Akbari OS 2020. Assessment of a split homing based gene drive for efficient knockout of multiple genes. G3 10:827–37
    [Google Scholar]
  106. 106. 
    KaramiNejadRanjbar M, Eckermann KN, Ahmed HMM, Sanchez CH, Dippel S et al. 2018. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. PNAS 115:6189–94
    [Google Scholar]
  107. 107. 
    Khamis D, El Mouden C, Kura K, Bonsall MB 2018. Ecological effects on underdominance threshold drives for vector control. J. Theor. Biol. 456:1–15
    [Google Scholar]
  108. 108. 
    Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A et al. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36:1062–66
    [Google Scholar]
  109. 109. 
    Lansing F, Paszkowski-Rogacz M, Schmitt LT, Schneider PM, Rojo Romanos T et al. 2020. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Res 48:472–85
    [Google Scholar]
  110. 110. 
    Laruson AJ, Reed FA. 2016. Stability of underdominant genetic polymorphisms in population networks. J. Theor. Biol. 390:156–63
    [Google Scholar]
  111. 111. 
    Legros M, Xu C, Morrison A, Scott TW, Lloyd AL, Gould F 2013. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations. PLOS ONE 8:e83354
    [Google Scholar]
  112. 112. 
    Li M, Yang T, Kandul NP, Bui M, Gamez S et al. 2020. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 9:e51701
    [Google Scholar]
  113. 113. 
    Lin CC, Potter CJ. 2016. Non-Mendelian dominant maternal effects caused by CRISPR/Cas9 transgenic components in Drosophila melanogaster. G3 6:3685–91
    [Google Scholar]
  114. 114. 
    Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W et al. 2016. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31:315–26
    [Google Scholar]
  115. 115. 
    Lindsley DL, Grell EH. 1969. Spermiogenesis without chromosomes in Drosophila melanogaster. Genetics 61:Suppl.69–78
    [Google Scholar]
  116. 116. 
    Lopez Del Amo V, Bishop AL, Sanchez CH, Bennett JB, Feng X et al. 2020. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat. Commun. 11:352
    [Google Scholar]
  117. 116a. 
    Lopez Del Amo V, Leger BS, Cox KJ, Gill S, Bishop ALet al 2020. Small-molecule control of supermendelian inheritance in gene drives. Cell Rep 31:107841
    [Google Scholar]
  118. 117. 
    Lorenzen MD, Gnirke A, Margolis J, Garnes J, Campbell M et al. 2008. The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon. PNAS 105:10085–89
    [Google Scholar]
  119. 118. 
    Lyttle TW. 1977. Experimental population genetics of meiotic drive systems. I. Pseudo-Y chromosomal drive as a means of eliminating cage populations of Drosophila melanogaster. Genetics 86:413–45
    [Google Scholar]
  120. 119. 
    Lyttle TW. 1981. Experimental population genetics of meiotic drive systems. III. Neutralization of sex-ratio distortion in Drosophila through sex-chromosome aneuploidy. Genetics 98:317–34
    [Google Scholar]
  121. 120. 
    Magori K, Gould F. 2006. Genetically engineered underdominance for manipulation of pest populations: a deterministic model. Genetics 172:2613–20
    [Google Scholar]
  122. 121. 
    Marshall JM. 2009. The effect of gene drive on containment of transgenic mosquitoes. J. Theor. Biol. 258:250–65
    [Google Scholar]
  123. 122. 
    Marshall JM, Buchman A, Sanchez CH, Akbari OS 2017. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci. Rep. 7:3776
    [Google Scholar]
  124. 123. 
    Marshall JM, Hay BA. 2011. Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis. J. Hered. 102:336–41
    [Google Scholar]
  125. 124. 
    Marshall JM, Hay BA. 2012. Confinement of gene drive systems to local populations: a comparative analysis. J. Theor. Biol. 294:153–71
    [Google Scholar]
  126. 125. 
    Marshall JM, Hay BA. 2012. General principles of single-construct chromosomal gene drive. Evolution 66:2150–66
    [Google Scholar]
  127. 126. 
    Marshall JM, Hay BA. 2014. Medusa: a novel gene drive system for confined suppression of insect populations. PLOS ONE 9:e102694
    [Google Scholar]
  128. 127. 
    Marshall JM, Pittman GW, Buchman AB, Hay BA 2011. Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics 187:535–51
    [Google Scholar]
  129. 128. 
    Maselko M, Feltman N, Upadhyay A, Hayward A, Das S et al. 2020. Engineering multiple species-like genetic incompatibilities in insects. Nat. Commun 11:4468
    [Google Scholar]
  130. 129. 
    Maselko M, Heinsch SC, Chacon JM, Harcombe WR, Smanski MJ 2017. Engineering species-like barriers to sexual reproduction. Nat. Commun. 8:883
    [Google Scholar]
  131. 130. 
    McDermott JJ, Watkins KP, Williams-Carrier R, Barkan A 2019. Ribonucleoprotein capture by in vivo expression of a designer pentatricopeptide repeat protein in Arabidopsis. Plant Cell 31:1723–33
    [Google Scholar]
  132. 131. 
    McVey M, Adams M, Staeva-Vieira E, Sekelsky JJ 2004. Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila. Genetics 167:699–705
    [Google Scholar]
  133. 132. 
    Meccariello A, Krsticevic F, Colonna R, Del Corsano G, Fasulo B et al. 2020. Engineered sex distortion in the global agricultural pest Caratitis capitata. bioRxiv 240226. https://doi.org/10.1101/2020.08.07.240226
    [Crossref]
  134. 133. 
    Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P et al. 2019. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science 365:1457–60
    [Google Scholar]
  135. 134. 
    Molla KA, Yang Y. 2019. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37:1121–42
    [Google Scholar]
  136. 135. 
    Nash A, Urdaneta GM, Beaghton AK, Hoermann A, Papathanos PA et al. 2019. Integral gene drives for population replacement. Biol. Open 8:bio37762
    [Google Scholar]
  137. 136. 
    Newton ME, Wood RJ, Southern DI 1976. A cytogenetic analysis of meiotic drive in the mosquito, Aedes aegypti (L.). Genetica 46:297–318
    [Google Scholar]
  138. 137. 
    Noble C, Min J, Olejarz J, Buchthal J, Chavez A et al. 2019. Daisy-chain gene drives for the alteration of local populations. PNAS 116:8275–82
    [Google Scholar]
  139. 138. 
    Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA 2017. Evolutionary dynamics of CRISPR gene drives. Sci. Adv. 3:e1601964
    [Google Scholar]
  140. 139. 
    North A, Burt A, Godfray HC, Buckley Y 2013. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J. Appl. Ecol. 50:1216–25
    [Google Scholar]
  141. 140. 
    Oberhofer G, Ivy T, Hay BA 2018. Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs. PNAS 115:E9343–52
    [Google Scholar]
  142. 141. 
    Oberhofer G, Ivy T, Hay BA 2019. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. PNAS 116:6250–59
    [Google Scholar]
  143. 142. 
    Oberhofer G, Ivy T, Hay BA 2020. 2-Locus Cleave and Rescue selfish elements harness a recombination rate-dependent generational clock for measured, self limiting gene drive. bioRxiv 196253. https://doi.org/10.1101/2020.07.09.196253
    [Crossref]
  144. 143. 
    Oberhofer G, Ivy T, Hay BA 2020. Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements. PNAS 117:9013–21
    [Google Scholar]
  145. 144. 
    Orgogoza-Courtier V, Danchin A, Gouyon P-H, Boete C 2020. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol. Appl. 13:1888–905
    [Google Scholar]
  146. 145. 
    Papathanos PA, Windbichler N. 2018. Redkmer: an assembly-free pipeline for the identification of abundant and specific X-chromosome target sequences for X-shredding by CRISPR endonucleases. CRISPR J 1:88–98
    [Google Scholar]
  147. 146. 
    Pham TB, Phong CH, Bennett JB, Hwang K, Jasinskiene N et al. 2019. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLOS Genet. 15:e1008440
    [Google Scholar]
  148. 147. 
    Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA 2014. First steps towards underdominant genetic transformation of insect populations. PLOS ONE 9:e97557
    [Google Scholar]
  149. 148. 
    Robinson AS. 1976. Progress in the use of chromosomal translocations for the control of insect pests. Biol. Rev. 51:1–24
    [Google Scholar]
  150. 149. 
    Rode NO, Courtier-Orgogozo V, Debarre F 2020. Can a population targeted by a CRISPR-based homing drive be rescued. G3 10:3403–15
    [Google Scholar]
  151. 150. 
    Rodgers K, McVey M. 2016. Error-prone repair of DNA double-strand breaks. J. Cell Physiol. 231:15–24
    [Google Scholar]
  152. 151. 
    Sanchez CH, Bennett JB, Wu SL, Rasic G, Akbari OS, Marshall JM 2020. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biol 18:50
    [Google Scholar]
  153. 152. 
    Schafer M, Nayernia K, Engel W, Schafer U 1995. Translational control in spermatogenesis. Dev. Biol. 172:344–52
    [Google Scholar]
  154. 153. 
    Schonfeld E, Schonfeld E, Schonfeld D 2020. Autocatalytic-protection for an unknown locus CRISPR-Cas ountermeasure for undesired mutagenic chain reactions. bioRxiv 004291. https://doi.org/10.1101/2020.03.24.004291
    [Crossref]
  155. 154. 
    Serebrovskii AS. 1940. On the possibility of a new method for the control of insect pests. Zool. Zh. 19:618–90
    [Google Scholar]
  156. 155. 
    Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I et al. 2017. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 356:642–45
    [Google Scholar]
  157. 156. 
    Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C et al. 2020. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol 38:1054–60
    [Google Scholar]
  158. 157. 
    Simoni A, Siniscalchi C, Chan YS, Huen DS, Russell S et al. 2014. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster. Nucleic Acids Res 42:7461–72
    [Google Scholar]
  159. 158. 
    Smith NG. 1998. The dynamics of maternal-effect selfish genetic elements. J. Theor. Biol. 191:173–80
    [Google Scholar]
  160. 159. 
    Sudweeks J, Hollingsworth B, Blondel DV, Campbell KJ, Dhole S et al. 2019. Locally fixed alleles: a method to localize gene drive to island populations. Sci. Rep. 9:15821
    [Google Scholar]
  161. 160. 
    Sweeny TL, Barr AR. 1978. Sex ratio distortion caused by meiotic drive in a mosquito, Culex pipiens L. Genetics 88:427–46
    [Google Scholar]
  162. 161. 
    Taxiarchi C, Kranjc N, Kriezis A, Kyrou K, Bernardini F et al. 2019. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci. Rep. 9:14841
    [Google Scholar]
  163. 162. 
    Thyme SB, Boissel SJ, Quadri SA, Nolan T, Baker DA et al. 2014. Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res 42:2564–76
    [Google Scholar]
  164. 163. 
    Vella MR, Gunning CE, Lloyd AL, Gould F 2017. Evaluating strategies for reversing CRISPR-Cas9 gene drives. Sci. Rep. 7:11038
    [Google Scholar]
  165. 164. 
    Verhulst EC, van de Zande L 2015. Double nexus–Doublesex is the connecting element in sex determination. Brief Funct. Genomics 14:396–406
    [Google Scholar]
  166. 165. 
    Wade MJ, Beeman RW. 1994. The population dynamics of maternal-effect selfish genes. Genetics 138:1309–14
    [Google Scholar]
  167. 166. 
    Ward CM, Su JT, Huang Y, Lloyd AL, Gould F, Hay BA 2011. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 65:1149–62
    [Google Scholar]
  168. 167. 
    Waters AJ, Capriotti P, Gaboriau DCA, Papathanos PA, Windbichler N 2018. Rationally-engineered reproductive barriers using CRISPR and CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster. Sci. Rep 8:13125
    [Google Scholar]
  169. 168. 
    Webster SH, Vella MR, Scott MJ 2020. Development and testing of a novel killer-rescue self-limiting gene drive system in Drosophila melanogaster. Proc. Biol. Sci 287:20192994
    [Google Scholar]
  170. 169. 
    Whitten MJ. 1971. Insect control by genetic manipulation of natural populations. Science 171:682–84
    [Google Scholar]
  171. 170. 
    Whitten MJ, Foster GG. 1975. Genetical methods of pest control. Annu. Rev. Entomol. 20:461–76
    [Google Scholar]
  172. 171. 
    Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B 2020. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74:21–37
    [Google Scholar]
  173. 172. 
    Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H et al. 2011. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–15
    [Google Scholar]
  174. 173. 
    Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A 2007. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 35:5922–33
    [Google Scholar]
  175. 174. 
    Windbichler N, Papathanos PA, Crisanti A 2008. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLOS Genet 4:e1000291
    [Google Scholar]
  176. 175. 
    Wu B, Luo L, Gao XJ 2016. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat. Biotechnol. 34:137–38
    [Google Scholar]
  177. 176. 
    Zentner GE, Wade MJ. 2017. The promise and peril of CRISPR gene drives: Genetic variation and inbreeding may impede the propagation of gene drives based on the CRISPR genome editing technology. Bioessays 39:1700109
    [Google Scholar]
  178. 177. 
    Zhao YY, Mao MW, Zhang WJ, Wang J, Li HT et al. 2018. Expanding RNA binding specificity and affinity of engineered PUF domains. Nucleic Acids Res 46:4771–82
    [Google Scholar]
  179. 178. 
    Zhu KY, Palli SR. 2020. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 65:293–311
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020117-043154
Loading
/content/journals/10.1146/annurev-ento-020117-043154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error