1932

Abstract

Global consumption of agrochemicals continues to rise, despite growing evidence of their adverse effects on environmental quality and human health. The extent of increase varies across nations, by type of chemical compounds and by severity of the detrimental impacts. The differential impacts are largely attributable to the level of technology adoption and regulation as well as their enforcement and compliance. The article highlights gaps in technical, legal, and social aspects, which include the paucity of holistic and long-term ecological impact assessment frameworks and lack of consideration for the social dimensions of pesticide use in regulatory decisions. Bridging these gaps, establishing global cooperation for regulation and governance, and a regional/national-level monitoring mechanism are suggested. This, complemented with a policy shift from the current approach of productivity enhancement to augmenting agroecosystem services, would encourage sustainable and nature-positive agriculture equipped to meet the multiple challenges of food security, ecological safety, and climate resilience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-111015
2022-10-17
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120920-111015.html?itemId=/content/journals/10.1146/annurev-environ-120920-111015&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    [Google Scholar]
  2. 2.
    Popp J, Pető K, Nagy J. 2013. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33:243–55
    [Google Scholar]
  3. 3.
    Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R et al. 2021. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18:31112
    [Google Scholar]
  4. 4.
    Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V et al. 2015. Implications of leading crop production practices on environmental quality and human health. J. Environ. Manag. 151:267–79
    [Google Scholar]
  5. 5.
    Bourguet D, Guillemaud T. 2016. The hidden and external costs of pesticide use. Sustainable Agriculture Reviews, Vol. 19 E Lichtfouse 35–120 Cham, Switz.: Springer
    [Google Scholar]
  6. 6.
    Guha R. 2016. Environmentalism: A Global History London: Penguin
  7. 7.
    Clark JFM. 2017. Pesticides, pollution and the UK's silent spring, 1963–1964: poison in the Garden of England. Notes Rec 71:297–327
    [Google Scholar]
  8. 8.
    John DA, Babu GR. 2021. Lessons from the aftermaths of Green Revolution on food system and health. Front. Sustain. Food Syst. 5:644559
    [Google Scholar]
  9. 9.
    Somvanshi PS, Pandiaraj T, Singh RP. 2020. An unexplored story of successful green revolution of India and steps towards ever green revolution. J. Pharmacogn. Phytochem. 9:11270–73
    [Google Scholar]
  10. 10.
    Galloway JN, Bleeker A, Erisman JW. 2021. The human creation and use of reactive nitrogen: a global and regional perspective. Annu. Rev. Environ. Resour. 46:255–88
    [Google Scholar]
  11. 11.
    Ellis EC. 2021. Land use and ecological change: a 12,000-year history. Annu. Rev. Environ. Resour. 46:1–33
    [Google Scholar]
  12. 12.
    Nielsen UN, Wall DH, Six J. 2015. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40:63–90
    [Google Scholar]
  13. 13.
    FAO (U. N. Food Agric. Organ.) 2021. FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations https://www.fao.org/faostat/en/#data
    [Google Scholar]
  14. 14.
    Liu Y, Xubin P, Junsheng L. 2015. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: a review. Agron. Sustain. Dev. 35:8383–93
    [Google Scholar]
  15. 15.
    Bajak A. 2016. The developing world is awash in pesticides. There may be a better way. Vox July 3. https://www.vox.com/2016/7/3/12085368/developing-world-pesticides
    [Google Scholar]
  16. 16.
    Sarker S, Dias Bernardes Gil J, Keeley J, Mohring N, Jansen K. 2021. The use of pesticides in developing countries and their impact on health and the right to food Rep. Policy Dep. Extern. Relat. Direct. Gen. Extern. Pol. Union, Eur. Parliam. Strasbourg, Fr: https://www.europarl.europa.eu/cmsdata/219887/Pesticides%20health%20and%20food.pdf
  17. 17.
    Schreinemachers P, Tipraqsa P. 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:6616–26
    [Google Scholar]
  18. 18.
    Wu Y, Xi X, Tang X, Luo D, Gu B et al. 2018. Policy distortions, farm size, and the overuse of agricultural chemicals in China. PNAS 115:277010–15
    [Google Scholar]
  19. 19.
    Willy DK, Muyanga M, Jayne TS 2019. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 81:100–10
    [Google Scholar]
  20. 20.
    Khanal G, Singh A. 2016. Patterns of pesticide use and associated factors among the commercial farmers of Chitwan, Nepal. Environm. Health Insights 10:11–7
    [Google Scholar]
  21. 21.
    Rahaman MM, Islam KS, Jahan M. 2018. Rice farmers' knowledge of the risks of pesticide use in Bangladesh. J. Health Pollut. 8:20181203
    [Google Scholar]
  22. 22.
    Devi PI. 2010. Pesticides in agriculture—A boon or a curse? A case study of Kerala. Econ. Polit. Wkly. 45:26–27199–207
    [Google Scholar]
  23. 23.
    WHO (World Health Organ.), FAO (U. N. Food Agric. Organ.) 2019. Global situation of pesticide management in agriculture and public health: report of a 2018 WHO-FAO survey Rep. WHO Geneva: https://apps.who.int/iris/handle/10665/329971
  24. 24.
    Zhang J, Wang J, Zhou X. 2019. Farm machine use and pesticide expenditure in maize production: health and environment implications. Int. J. Environ. Res. Public Health 16:101808
    [Google Scholar]
  25. 25.
    Evans AEV, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A. 2019. Agricultural water pollution: key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 36::20–27
    [Google Scholar]
  26. 26.
    Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J. 2018. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int. J. Low-Carbon Technol. 13:4338–52
    [Google Scholar]
  27. 27.
    Zikankuba VL, Mwanyika G, Ntwenya JE, James A 2019. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric 5:1601544
    [Google Scholar]
  28. 28.
    Khan MN, Mobin M, Zahid A, Alamri S. 2017. Fertilizers and their contaminants in soils, surface and groundwater. Ref. Module Earth Syst. Environ. Sci. 5:225–40
    [Google Scholar]
  29. 29.
    Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC. 2020. Impact of agrochemicals on soil health. Agrochemicals Detection, Treatment and Remediation M Narasimha, V Prasad 161–87 Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  30. 30.
    Maggi F, Tang F, la Cecilia D, McBratney A. 2019. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6:1170
    [Google Scholar]
  31. 31.
    Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A et al. 2015. Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. PLOS ONE 10:9e0138411
    [Google Scholar]
  32. 32.
    Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR 2016. Effects of pesticides on environment. Plant, Soil and Microbes KR Hakeem, M Akhtar, S Abdullah 253–69 Cham, Switz: Springer
    [Google Scholar]
  33. 33.
    Pérez-Méndez N, Andersson GKS, Requier F, Hipólito J, Aizen MA et al. 2020. The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57:599–608
    [Google Scholar]
  34. 34.
    Gill HK, Garg H 2014. Pesticides: environmental impacts and management strategies. Pesticides—Toxic Aspects ML Larramendy, S Soloneski 187–230 London: IntechOpen
    [Google Scholar]
  35. 35.
    Gunstone T, Cornelisse T, Klein K, Dubey A, Donley N. 2021. Pesticides and soil invertebrates: a hazard assessment. Front. Environ. Sci. 9: https://doi.org/10.3389/fenvs.2021.643847
    [Crossref] [Google Scholar]
  36. 36.
    Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V et al. 2020. Impact of agrochemicals on soil microbiota and management: a review. Land 9:234
    [Google Scholar]
  37. 37.
    Virág D, Naár Z, Kiss A. 2007. Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull. Environ. Contam. Toxicol. 79:3356–59
    [Google Scholar]
  38. 38.
    Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:754545–50
    [Google Scholar]
  39. 39.
    Forister ML, Pelton EM, Black SH. 2019. Declines in insect abundance and diversity: We know enough to act now. Conserv. Sci. Pract. 1:8e80
    [Google Scholar]
  40. 40.
    Mourtzinis S, Krupke CH, Esker PD, Varenhorst A, Arneson NJ et al. 2019. Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers. Sci. Rep. 9:11207
    [Google Scholar]
  41. 41.
    Bernardes MFF, Pazin M, Pereira LC, Dorta DJ 2015. Impact of pesticides on environmental and human health. Toxicology StudiesCells, Drugs and Environment AC Andreazza, G Scola 195–233 London: IntechOpen
    [Google Scholar]
  42. 42.
    Chakraborty P, Zhang G, Li J, Sivakumar A, Jones KC. 2015. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Environ. Pollut 204:74–80
    [Google Scholar]
  43. 43.
    Debnath M, Khan MS 2017. Health concerns of pesticides. Pesticide Residue in Foods M Khan, M Rahman 103–18 Cham, Switz: Springer
    [Google Scholar]
  44. 44.
    Liu L, Tang J, Zhong G, Zhen X, Pan X, Tian C. 2018. Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in air and surface water of the Bohai Sea, China. Sci. Total Environ 621:516–23
    [Google Scholar]
  45. 45.
    Farhan M, Wajid A, Hussain T, Jabeen F, Ishaque U et al. 2021. Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. Environ. Sci. Pollut. Res. Int. 28:1113105–11
    [Google Scholar]
  46. 46.
    Prashar P, Shah S. 2016. Impact of fertilizers and pesticides on soil microflora in agriculture. Sustainable Agriculture Reviews, Vol. 19 E Lichtfouse 331–61 Cham, Switz.: Springer
    [Google Scholar]
  47. 47.
    Ou J, Li H, Ou X, Yang Z, Chen M et al. 2020. Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicol. Environ. Saf. 205:111374
    [Google Scholar]
  48. 48.
    Srivastava AL. 2020. Chemical fertilizers and pesticides: role in groundwater contamination. Agrochemicals Detection, Treatment and Remediation M Narasimha, V Prasad 143–59 Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  49. 49.
    Delcour I, Spanoghe P, Uyttendaele M. 2015. Literature review: impact of climate change on pesticide use. Food Res. Int. 68:7–15
    [Google Scholar]
  50. 50.
    Sunam R, Mahat A. 2020. Addressing water pollution from agriculture in South Asia Policy Brief November. https://www.caritas.ch/fileadmin/user_upload/Caritas_Schweiz/data/site/was-wir-tun/engagement-weltweit/klima/Regional_Policy_Brief-SACB-Final-1_Feb_2021.pdf
  51. 51.
    Sankoh AI, Whittle R, Semple KT, Jones KC, Sweetman AJ. 2016. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environ. Int. 94:458–66
    [Google Scholar]
  52. 52.
    Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ. 2018. The challenge of herbicide resistance around the world: a current summary. Pest Manag. Sci. 74:102246–59
    [Google Scholar]
  53. 53.
    Zhang D, Xiao Y, Xu P, Yang X, Wu Q, Wu K. 2021. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 20:3783–91
    [Google Scholar]
  54. 54.
    Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H et al. 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 112:2792–802
    [Google Scholar]
  55. 55.
    Schäfer RB, Liess M, Altenburger R, Filser J, Hollert H et al. 2019. Future pesticide risk assessment: narrowing the gap between intention and reality. Environ. Sci. Eur. 31:21
    [Google Scholar]
  56. 56.
    Brühl CA, Zaller JG. 2019. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7:177
    [Google Scholar]
  57. 57.
    Greenpeace 2015. The bitter taste of Europe's apple production and how ecological solutions can bloom Rep. Greenpeace Res. Lab., Sch. Biosci., Innov. Cent. Univ. Exeter, UK: . https://www.greenpeace.to/greenpeace/wp-content/uploads/2015/06/TheBitterTasteENG.pdf
    [Google Scholar]
  58. 58.
    Goulson D. 2015. Neonicotinoids impact bumblebee colony fitness in the field: a reanalysis of the UK's Food & Environment Research Agency 2012 experiment. PeerJ 3:e854
    [Google Scholar]
  59. 59.
    Sánchez-Bayo F, Tennekes HA 2015. Environmental risk assessment of agrochemicals—a critical appraisal of current approaches. Toxicity and Hazard of Agrochemicals LL Marcelo, S Soloneski 7–22 London: IntechOpen
    [Google Scholar]
  60. 60.
    van der Sluijs JP, Amaral-Rogers V, Belzunces LP, Bijleveld van Lexmond MF, Bonmatin JM et al. 2015. Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. Int. 22:1148–54
    [Google Scholar]
  61. 61.
    Reuter W, Neumeister L. 2015. Europe's pesticide addiction: how industrial agriculture damages our environment Sci. Rep., Greenpeace Amsterdam: https://www.greenpeace.org/static/planet4-international-stateless/2015/10/1a0d04c1-europes-pesticide-addiction.pdf
  62. 62.
    Schläpfer F. 2020. External costs of agriculture derived from payments for agri-environment measures: framework and application to Switzerland. Sustainability 12:156126
    [Google Scholar]
  63. 63.
    IDH, True Price 2016. The true price of cotton from India. Rep. IDH, True Price Amsterdam: https://trueprice.org/the-true-price-of-cotton-from-india/
  64. 64.
    FAO (U. N. Food Agric. Organ.) 2015. Natural capital impacts in agriculture: supporting better business decision-making Rep. FAO Rome: https://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Natural_Capital_Impacts_in_Agriculture_final.pdf
  65. 65.
    Mateo-Sagasta J, Marjani SZ, Turral H. 2017. Water pollution from agriculture: a global review. Executive summary Rep. U. N. Food Agric Organ: http://www.fao.org/3/i7754e/i7754e.pdf
  66. 66.
    CDC (Cent. Disease Control Prev.) 2009. Fourth national report on human exposure to environmental chemicals CDC, U.S. Dep. Health Hum. Serv. Atlanta: https://www.cdc.gov/exposurereport/pdf/fourthreport.pdf
  67. 67.
    Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health 4:148
    [Google Scholar]
  68. 68.
    UNEP (U. N. Environ. Progr.) 2021. Environmental and health impacts of pesticides and fertilizers and ways of minimizing them: envisioning a chemical safe world—summary for policymakers Rep. UNEP Nairobi: https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/34463/JSUNEPPF.pdf?sequence=13
  69. 69.
    Gupta S, Gupta K. 2020. Bioaccumulation of pesticides and its impact on biological systems. Pesticides in Crop Production: Physiological and Biochemical Action PK Srivastava, VP Singh, A Singh, DK Tripathi, S Singh et al.55–67 Hoboken, NJ: Wiley
    [Google Scholar]
  70. 70.
    Hassaan MA, Nemr AE. 2020. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt. J. Aqaut. Res 46:3207–20
    [Google Scholar]
  71. 71.
    Sajjad A, Muhammad U, Asif S, Qaiser S, Azhar H. 2021. Environmental and health effects of pesticide residues. Sustain. Agric. Rev. 48:311–36
    [Google Scholar]
  72. 72.
    Guan KL, Liu Y, Luo XJ, Zeng YH, Mai BX. 2020. Short- and medium-chain chlorinated paraffins in aquatic organisms from an e-waste site: biomagnification and maternal transfer. Sci. Total Environ. 708:134840
    [Google Scholar]
  73. 73.
    Wang X, Zhong W, Xiao B, Liu Q, Yang L et al. 2019. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: impacts of chemical properties and metabolism. Environ. Int. 125:25–32
    [Google Scholar]
  74. 74.
    Zhou S, Pan Y, Zhang L, Xue B, Zhang A, Jin M 2018. Biomagnification and enantiomeric profiles of organochlorine pesticides in food web components from Zhoushan Fishing Ground, China. Mar. Pollut. Bull 131:A602–10
    [Google Scholar]
  75. 75.
    Katagi T, Tanaka H. 2016. Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. J. Pestic. Sci. 41:225–37
    [Google Scholar]
  76. 76.
    Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A. 2021. Environmental and health effects of pesticide residues. Sustainable Agriculture Reviews, Vol. 48: Inamuddin, MI Ahamed, E Lichtfouse 311–66 Cham, Switz.: Springer
    [Google Scholar]
  77. 77.
    Mew EJ, Padmanathan P, Konradsen F, Eddleston M, Chang SS et al. 2017. The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J. Affect. Disord. 219:93–104
    [Google Scholar]
  78. 78.
    WHO (World Health Organ.), UNEP (U. N. Environ. Progr.), eds 1990. Public health impact of pesticides used in agriculture Rep. WHO Geneva:
  79. 79.
    Manjunatha AV, Ramappa KB. 2017. Farmer suicides: an all India study Rep. Dep. Agric. Coop. Farmers Welfare, Gov. India New Delhi:
  80. 80.
    Bonvoisin T, Utyasheva L, Knipe D, Gunnell D, Eddleston M. 2020. Suicide by pesticide poisoning in India: a review of pesticide regulations and their impact on suicide trends. BMC Public Health 20:251
    [Google Scholar]
  81. 81.
    Arya V, Page A, Gunnel D, Armstrong G 2021. Changes in method specific suicide following a national pesticide ban in India (2011–2014). J. Affect. Disord. 278:592–600
    [Google Scholar]
  82. 82.
    Karunarathne A, Gunnell D, Konradsen F, Eddleston M. 2020. How many premature deaths from pesticide suicide have occurred since the agricultural Green Revolution?. Clin. Toxicol 58:4227–32
    [Google Scholar]
  83. 83.
    Boedeker W, Watts M, Clausing P, Marquez E. 2020. The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20:1875
    [Google Scholar]
  84. 84.
    Knipe DW, Chang SS, Dawson A, Eddleston M, Konradsen F et al. 2017. Suicide prevention through means restriction: impact of the 2008–2011 pesticide restrictions on suicide in Sri Lanka. PLOS ONE 12:3e0172893
    [Google Scholar]
  85. 85.
    Utyasheva L, Eddleston M. 2021. Prevention of pesticide suicides and the right to life: the intersection of human rights and public health priorities. J. Hum. Rights 20:52–71
    [Google Scholar]
  86. 86.
    World Future Council 2021. Future policy award on protection from hazardous chemicals. World Future Council https://www.worldfuturecouncil.org/p/2021-protection-from-hazardous-chemicals
    [Google Scholar]
  87. 87.
    Carvalho FP. 2017. Pesticides, environment, and food safety. Food Energy Secur 6:248–60
    [Google Scholar]
  88. 88.
    Rajendran S. 2002. Pesticide spraying in Kerala—human costs and environmental loss. Econ. Political Wkly. 37:232206–7
    [Google Scholar]
  89. 89.
    Rajendran S. 2003. Environment and health aspects of pesticide use in Indian agriculture. Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December, 2003 MJ Bunch, VM Suresh, T Vasantha Kumaran 353–73 Dep. Geogr., Univ. Madras, Chennai, Tamil Nadu, India/Environ. Stud., York Univ. Toronto, ON: Can. http://www.yorku.ca/bunchmj/ICEH/proceedings/Rajendran_S_ICEH_papers_353to373.pdf
    [Google Scholar]
  90. 90.
    Prabhakumari C, Jayakrishnan T, Bina T. 2011. Epidemiological studies related to health in endosulfan affected areas at Kasaragod district in Kerala 2010–11 Rep. Dep. Commun. Med., Gov. Med. Coll., Calicut, Ind . https://www.scribd.com/doc/312236388/Calicut-Medical-College-Full-Report-Endosulfan-Issue
    [Google Scholar]
  91. 91.
    Embrandiri A, Singh RP, Ibrahim HM, Khan AB. 2012. An epidemiological study on the health effects of endosulfan spraying on cashew plantations in Kasaragod district, Kerala, India. Asian J. Epidemiol. 5:22–31
    [Google Scholar]
  92. 92.
    Sreekumar KM, Prathapan KD. 2013. A critique of the epidemiological studies on health in allegedly endosulfan-affected areas in Kasaragod, Kerala. Curr. Sci. 104:116–21
    [Google Scholar]
  93. 93.
    Mahapatro GK, Panigrahi M. 2014. Endosulfan issue: science versus conscience. Curr. Sci. 106:152–55
    [Google Scholar]
  94. 94.
    Dileep Kumar AD, Jayakumar C 2019. From precautionary principle to nationwide ban on endosulfan in India. Bus. Hum. Rights J. 4:2343–49
    [Google Scholar]
  95. 95.
    Sreekumar KM, Prathapan KD. 2021. An evidence based inquiry into the endosulfan tragedy in Kasaragod, Kerala. Econ. Political Wkly 56:4145–53
    [Google Scholar]
  96. 96.
    De Roos AJ, Blair A, Ruseicki JA, Hoppin JA, Svec M et al. 2005. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ. Health Perspect. 113:149–54
    [Google Scholar]
  97. 97.
    De Roos AJ, Zahm SH, Cantor KP, Weisenburger DD, Holmes FF et al. 2003. Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men. Occup. Environ. Med. 60:9e11
    [Google Scholar]
  98. 98.
    McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S et al. 2001. Non-Hodgkin's lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol. Biomark. Prev 10:111155–63
    [Google Scholar]
  99. 99.
    Eriksson M, Hardell L, Carlberg M, Akerman M. 2008. Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int. J. Cancer 123:71657–63
    [Google Scholar]
  100. 100.
    Schinasi L, Leon ME. 2014. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 11:44449–527
    [Google Scholar]
  101. 101.
    Chang ET, Delzell E. 2016. Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers. J. Environ. Sci. Health B 51:6402–34
    [Google Scholar]
  102. 102.
    Andreotti G, Koutros S, Hofmann JN, Sandler DP, Lubin JH et al. 2018. Glyphosate use and cancer incidence in the agricultural health study. J. Natl. Cancer Inst. 110:5509–16
    [Google Scholar]
  103. 103.
    Pluth TB, Zanini LAG, Battisti IDE 2019. Pesticide exposure and cancer: an integrative literature review. Saúde Debate 43:906–24
    [Google Scholar]
  104. 104.
    Srivastava AK, Kesavachandran C. 2019. Health Effects of Pesticides London: CRC Press
  105. 105.
    Sabarwal A, Kumar K, Singh RP. 2018. Hazardous effects of chemical pesticides on human health—cancer and other associated disorders. Environ. Toxicol. Pharmacol 63:103–14
    [Google Scholar]
  106. 106.
    Burns CJ, Juberg DR. 2021. Cancer and occupational exposure to pesticides: an umbrella review. Int. Arch. Occup. Environ. Health 94:5945–57
    [Google Scholar]
  107. 107.
    Faria NM, Fassa AG, Meucci RD, Fiori NS, Miranda VI. 2014. Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 45:347–54
    [Google Scholar]
  108. 108.
    Buralli RJ, Ribeiro H, Leão RS, Marques RC, Guimarães JRD. 2019. Data on pesticide exposure and mental health screening of family farmers in Brazil. Data Brief 25:103993
    [Google Scholar]
  109. 109.
    Buralli RJ, Ribeiro H, Iglesias V, Muñoz-Quezada MT, Leão RS et al. 2020. Occupational exposure to pesticides and health symptoms among family farmers in Brazil. Rev. Saúde Pública 54:133
    [Google Scholar]
  110. 110.
    Serrano-Medina A, Ugalde-Lizárraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, González-Corral et al. 2019. Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of Northwest México. Int. J. Environ. Res. Public Health 16:5689
    [Google Scholar]
  111. 111.
    Berg ZK, Rodriguez B, Davis J, Katz AR, Cooney RV, Masaki K. 2019. Association between occupational exposure to pesticides and cardiovascular disease incidence: the Kuakini Honolulu Heart Program. J. Am. Heart Assoc. 8:19 https://doi.org/10.1161/JAHA.119.012569
    [Crossref] [Google Scholar]
  112. 112.
    Dwivedi N, Mahdi AA, Deo S, Ahmad MK, Kumar D. 2022. Assessment of genotoxicity and oxidative stress in pregnant women contaminated to organochlorine pesticides and its correlation with pregnancy outcome. Environ. Res. 204:B112010
    [Google Scholar]
  113. 113.
    Lu D, Wang D, Ni R, Lin Y, Feng C et al. 2015. Organochlorine pesticides and their metabolites in human breast milk from Shanghai, China. Environ. Sci. Pollut. Res. Int. 22:129293–306
    [Google Scholar]
  114. 114.
    Buscail C, Chevrier C, Serrano T, Pelé F, Monfort C et al. 2015. Prenatal pesticide exposure and otitis media during early childhood in the PELAGIE mother-child cohort. Occup. Environ. Med. 72:12837–44
    [Google Scholar]
  115. 115.
    González-Alzaga B, Hernández AF, Rodríguez-Barranco M, Gómez I, Aguilar-Garduño C et al. 2015. Pre- and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from South-Eastern Spain. Environ. Int. 85:229–37
    [Google Scholar]
  116. 116.
    Singh N, Gupta VK, Kumar A, Sharma B. 2017. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5:70
    [Google Scholar]
  117. 118.
    Gunatilake S, Seneff S, Orlando L. 2019. Glyphosate's synergistic toxicity in combination with other factors as a cause of chronic kidney disease of unknown origin. Int. J. Environ. Res. Public Health 16:152734
    [Google Scholar]
  118. 119.
    UNIDO (U. N. Ind. Dev. Organ.) 2004. Stockholm Convention. United Nations Industrial Development Organization https://www.unido.org/our-focus-safeguarding-environment-implementation-multilateral-environmental-agreements/stockholm-convention
    [Google Scholar]
  119. 120.
    UNSTATS (U. N. Stat. Div.) 2021. SDG indicator metadata (harmonized metadata template - format version 1.0). United Nations Statistical Division https://unstats.un.org/sdgs/metadata/files/Metadata-05-03-01.pdf
    [Google Scholar]
  120. 121.
    FAO (U. N. Food Agric. Organ.), WHO (World Health Organ.) 2015. International code of conduct on pesticide management: guidelines on good labelling practice for pesticides (revised) Rep. FAO, Rome/WHO Geneva: https://apps.who.int/iris/bitstream/handle/10665/195650/9789241509688_eng.pdf?sequence=1&isAllowed=y
  121. 122.
    Some S, Roy J, Ghose A. 2019. Non-CO2 emission from cropland based agricultural activities in India: a decomposition analysis and policy link. J. Clean. Prod. 225:637–46
    [Google Scholar]
  122. 123.
    Manjula M, Venkatachalam L, Mukhopadhyay P, Kumar L. 2019. Ecosystems service approach for revitalizing agriculture in India. Curr. Sci. 116:5723–27
    [Google Scholar]
  123. 124.
    Kumar L, Manjula M, Bhatta R, Venkatachalam L, Kumar DS et al. 2019. Doubling India's farm incomes: paying farmers for ecosystem services, not just crops. Econ. Polit. Wkly. 54:2343–49
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-111015
Loading
/content/journals/10.1146/annurev-environ-120920-111015
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error