1932

Abstract

Hydrous transition metal oxides (TMOs) are redox-active materials that confine structural water within their bulk, organized in 1D, 2D, or 3D networks. In an electrochemical cell, hydrous TMOs can interact with electrolyte species not only via their outer surface but also via their hydrous inner surface, which can transport electrolyte species to the interior of the material. Many TMOs operating in an aqueous electrochemical environment transform to hydrous TMOs, which then serve as the electrochemically active phase. This review summarizes the physicochemical properties of hydrous TMOs and recent mechanistic insights into their behavior in electrochemical reactions of interest for energy storage, conversion, and environmental applications. Particular focus is placed on first-principles calculations and operando characterization to obtain an atomistic view of their electrochemical mechanisms. Hydrous TMOs represent an important class of energy and environmental materials in aqueous and nonaqueous environments. Further understanding of their interaction with electrolyte species is likely to yield advancements in electrochemical reactivity and kinetics for energy and environmental applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-124955
2023-07-03
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080819-124955.html?itemId=/content/journals/10.1146/annurev-matsci-080819-124955&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ardizzone S, Fregonara G, Trasatti S. 1990. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35:263–67
    [Google Scholar]
  2. 2.
    Burke LD, Lyons MEG. 1986. Electrochemistry of hydrous oxide films. Modern Aspects of Electrochemistry No. 18, ed. RE White, JO Bockris, BE Conway 169–248. New York: Plenum
    [Google Scholar]
  3. 3.
    Freedman ML. 1959. The tungstic acids. J. Am. Chem. Soc. 81:153834–39
    [Google Scholar]
  4. 4.
    Zheng JP, Cygan PJ, Jow TR. 1995. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142:82699–703
    [Google Scholar]
  5. 5.
    Saeed S, Fortunato J, Ganeshan K, van Duin ACT, Augustyn V. 2021. Decoupling proton and cation contributions to capacitive charge storage in birnessite in aqueous electrolytes. ChemElectroChem 8:224371–79
    [Google Scholar]
  6. 6.
    Zhang R, Pearce PE, Pimenta V, Cabana J, Li H et al. 2020. First example of protonation of Ruddlesden–Popper Sr2IrO4: a route to enhanced water oxidation catalysts. Chem. Mater. 32:83499–509
    [Google Scholar]
  7. 7.
    Hall DS, Lockwood DJ, Bock C, MacDougall BR. 2015. Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc. R. Soc. A 471:20140792
    [Google Scholar]
  8. 8.
    Jha G, Tran T, Qiao S, Ziegler JM, Ogata AF et al. 2018. Electrophoretic deposition of mesoporous niobium(V)oxide nanoscopic films. Chem. Mater. 30:186549–58
    [Google Scholar]
  9. 9.
    Pensel A, Peulon S. 2018. In situ XANES measurements during electrodeposition of thin film: example of birnessite, a promising material for environmental applications. Electrochim. Acta 281:738–45
    [Google Scholar]
  10. 10.
    Schaak RE, Mallouk TE. 2002. Exfoliation of layered rutile and perovskite tungstates. Chem. Commun. 2:7706–7
    [Google Scholar]
  11. 11.
    Wang R, Sun Y, Brady AB, Fleischmann S, Eldred TB et al. 2021. Fast proton insertion in layered H2W2O7 via selective etching of an aurivillius phase. Adv. Energy Mater. 11:12003335
    [Google Scholar]
  12. 12.
    Lemaire P, Sel O, Alves Dalla Corte D, Iadecola A, Perrot H, Tarascon J-MM 2020. Elucidating the origin of the electrochemical capacity in a proton-based battery HxIrO4 via advanced electrogravimetry. ACS Appl. Mater. Interfaces 12:44510–19
    [Google Scholar]
  13. 13.
    Rao RR, Tułodziecki M, Han B, Risch M, Abakumov A et al. 2020. Reactivity with water and bulk ruthenium redox of lithium ruthenate in basic solutions. Adv. Funct. Mater. 31:22002249
    [Google Scholar]
  14. 14.
    Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S. 2014. Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J. Mater. Chem. A. 2:3313415–21
    [Google Scholar]
  15. 15.
    Boyd S, Dhall R, LeBeau JM, Augustyn V. 2018. Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes. J. Mater. Chem. A. 6:4422266–76
    [Google Scholar]
  16. 16.
    Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M. 1987. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem. 67:2235–47
    [Google Scholar]
  17. 17.
    Birkner N, Navrotsky A. 2017. Thermodynamics of manganese oxides: sodium, potassium, and calcium birnessite and cryptomelane. PNAS 114:7E1046–53
    [Google Scholar]
  18. 18.
    Szymański JT, Roberts AC. 1984. The crystal structure of tungstite, WO3·H2O. Can. Mineral. 22:681–88
    [Google Scholar]
  19. 19.
    Crouch-Baker S, Dickens PG. 1984. The deuterium-atom positions in deuterated molybdic acid, MoO3·2D2O, by powder neutron diffraction. Acta Crystallogr. C 40:71121–24
    [Google Scholar]
  20. 20.
    Mitchell JB, Lo WC, Genc A, LeBeau J, Augustyn V. 2017. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29:93928–37
    [Google Scholar]
  21. 21.
    Wang R, Chung C, Liu Y, Jones JL, Augustyn V. 2017. Electrochemical intercalation of Mg2+ into anhydrous and hydrated crystalline tungsten oxides. Langmuir 33:379314–23
    [Google Scholar]
  22. 22.
    Kattouf B, Frey GL, Siegmann A, Ein-Eli Y. 2009. Enhanced reversible electrochromism via in situ phase transformation in tungstate monohydrate. Chem. Commun. 2009:477396–98
    [Google Scholar]
  23. 23.
    Wangoh LW, Huang Y, Jezorek RL, Kehoe AB, Watson GW et al. 2016. Correlating lithium hydroxyl accumulation with capacity retention in V2O5 aerogel cathodes. ACS Appl. Mater. Interfaces 8:11532–38
    [Google Scholar]
  24. 24.
    Chen D, Li T, Yin L, Hou X, Yu X et al. 2011. A comparative study on reactions of n-alkylamines with tungstic acids with various W–O octahedral layers: novel evidence for the “dissolution–reorganization” mechanism. Mater. Chem. Phys. 125:3838–45
    [Google Scholar]
  25. 25.
    Kittaka S, Hamaguchi H, Shinno T, Takenaka T. 1996. Interlayer water molecules in the vanadium pentoxide hydrate, V2O5·nH2O. 6. Rigidity of crystal structure against water adsorption and anisotropy of electrical conductivity. Langmuir 12:41078–83
    [Google Scholar]
  26. 26.
    Takahara S, Kittaka S, Kuroda Y, Yamaguchi T, Fujii H, Bellissent-Funel M-C. 2000. Interlayer water molecules in vanadium pentoxide hydrate, V2O5·nH2O. 7. Quasi-elastic neutron scattering study. Langmuir 16:10559–63
    [Google Scholar]
  27. 27.
    Uchida N, Kittaka S. 1994. Interlayer water molecules in vanadium pentoxide hydrate, V2O5·nH2O. 5. Dynamic motion analyzed by impedance measurements. J. Phys. Chem. 98:82129–33
    [Google Scholar]
  28. 28.
    Aldebert P, Baffier N, Gharbi N, Livage J. 1981. Layered structure of vanadium pentoxide gels. Mater. Res. Bull. 16:6669–76
    [Google Scholar]
  29. 29.
    Kittaka S, Uchida N, Kihara T, Suetsugi T, Sasaki T. 1992. Interlayer water molecules in vanadium pentaoxide hydrate. 2. Effect of intercalated metal ions on the adsorbability of water molecules. Langmuir 8:1245–48
    [Google Scholar]
  30. 30.
    Charles DS, Feygenson M, Page K, Neuefeind J, Xu W, Teng X. 2017. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat. Commun. 8:15520
    [Google Scholar]
  31. 31.
    Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR. 2002. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B. 106:4912677–83
    [Google Scholar]
  32. 32.
    Parker SF, Robertson SJ, Imberti S. 2019. Structure and spectroscopy of the supercapacitor material hydrous ruthenium oxide, RuO2·xH2O, by neutron scattering. Mol. Phys. 117:223417–23
    [Google Scholar]
  33. 33.
    De Graef M, McHenry ME. 2012. Structure of Materials Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  34. 34.
    Mitchell JB, Geise NR, Paterson AR, Osti NC, Sun Y et al. 2019. Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett 4:2805–12
    [Google Scholar]
  35. 35.
    Kang S, Reeves KG, Aguilar I, Porras Gutierrez AG, Badot JC et al. 2021. Ordering of a nanoconfined water network around zinc ions induces high proton conductivity in layered titanate. Chem. Mater. 34:93967–75
    [Google Scholar]
  36. 36.
    Hu X, Kitchaev DA, Wu L, Zhang B, Meng Q et al. 2018. Revealing and rationalizing the rich polytypism of todorokite MnO2. J. Am. Chem. Soc. 140:226961–68
    [Google Scholar]
  37. 37.
    Yuan Y, Liu C, Byles BW, Yao W, Song B et al. 2019. Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 3:2471–84
    [Google Scholar]
  38. 38.
    Lalik E, Drużbicki K, Irvine G, Gutmann M, Rudić S et al. 2021. Interplay between local structure and nuclear dynamics in tungstic acid: a neutron scattering study. J. Phys. Chem. C. 125:4323864–79
    [Google Scholar]
  39. 39.
    Lan J, Iannuzzi M. 2022. Nuclear quantum effects at aqueous metal interfaces captured by molecular dynamics simulations. Curr. Opin. Electrochem. 33:100934
    [Google Scholar]
  40. 40.
    Whittingham MS. 2000. Insertion electrodes as SMART materials: the first 25 years and future promises. Solid State Ionics 134:1–2169–78
    [Google Scholar]
  41. 41.
    Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. 2016. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1:16119
    [Google Scholar]
  42. 42.
    Ji X 2019. A paradigm of storage batteries. Energy Environ. Sci. 12:3203–24
    [Google Scholar]
  43. 43.
    Liang G, Mo F, Ji X, Zhi C 2021. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6:109–23
    [Google Scholar]
  44. 44.
    Kang S, Singh A, Reeves KG, Badot J-C, Durand-Vidal S et al. 2020. Hydronium ions stabilized in a titanate-layered structure with high ionic conductivity: application to aqueous proton batteries. Chem. Mater. 32:219458–69
    [Google Scholar]
  45. 45.
    Jiang H, Hong JJ, Wu X, Surta TW, Qi Y et al. 2018. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140:3711556–59
    [Google Scholar]
  46. 46.
    Sun Y, Zhan C, Kent PRC, Jiang DE. 2021. Optimal linear water density for proton transport in tunnel oxides. J. Phys. Chem. C. 125:2111508–12
    [Google Scholar]
  47. 47.
    Judeinstein P, Livage J. 1989. Role of the water content on the electrochromic properties of WO3, nH2O thin films. Mater. Sci. Eng. B 3:129–32
    [Google Scholar]
  48. 48.
    Fleischmann S, Mitchell JB, Wang R, Zhan C, Jiang D et al. 2020. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 120:146738–82
    [Google Scholar]
  49. 49.
    Wang R, Mitchell JB, Gao Q, Tsai WY, Boyd S et al. 2018. Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12:66032–39
    [Google Scholar]
  50. 50.
    Lin H, Zhou F, Liu C-PP, Ozoliņš V 2014. Non-Grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. J. Mater. Chem. A. 2:3112280–88
    [Google Scholar]
  51. 51.
    Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. 2018. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559:7715556–63
    [Google Scholar]
  52. 52.
    Cava RJ, Murphy DW, Zahurak S. 1983. Lithium insertion in Wadsley-Roth phases based on niobium oxide. J. Electrochem. Soc. 130:122345–51
    [Google Scholar]
  53. 53.
    Conway BE. 1999. The electrochemical behavior of ruthenium oxide as a material for electrochemical capacitors. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications259–97. New York: Springer
    [Google Scholar]
  54. 54.
    Mo Y, Antonio MR, Scherson DA. 2000. In situ Ru K-edge X-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevance to supercapacitor applications. J. Phys. Chem. B. 104:429777–79
    [Google Scholar]
  55. 55.
    Ozolins V, Zhou F, Asta M. 2013. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. Acc. Chem. Res. 46:51084–93
    [Google Scholar]
  56. 56.
    Keilbart N, Okada Y, Dabo I. 2019. Probing the pseudocapacitance and energy-storage performance of RuO2 facets from first principles. Phys. Rev. Mater. 3:885405
    [Google Scholar]
  57. 57.
    Boyd S, Augustyn V. 2018. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 5:5999–1015
    [Google Scholar]
  58. 58.
    Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. 2014. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114:2311788–827
    [Google Scholar]
  59. 59.
    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32:5751–67
    [Google Scholar]
  60. 60.
    Boyd S, Ganeshan K, Tsai W-Y, Wu T, Saeed S et al. 2021. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 20:1689–94
    [Google Scholar]
  61. 61.
    Shan X, Guo F, Charles DS, Lebens-Higgins Z, Abdel Razek S et al. 2019. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10:14975
    [Google Scholar]
  62. 62.
    Fleischmann S, Zhang Y, Wang X, Cummings PT, Wu J et al. 2022. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7:3222–28
    [Google Scholar]
  63. 63.
    Mitchell JB, Wang R, Ko JS, Long JW, Augustyn V. 2022. Critical role of structural water for enhanced Li+ insertion kinetics in crystalline tungsten oxides. J. Electrochem. Soc. 169:3030534
    [Google Scholar]
  64. 64.
    Muldoon J, Bucur CB, Gregory T. 2014. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114:11683–720
    [Google Scholar]
  65. 65.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. 2013. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6:82265–79
    [Google Scholar]
  66. 66.
    Levi E, Gofer Y, Aurbach D. 2010. On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22:3860–68
    [Google Scholar]
  67. 67.
    Novák P, Scheifele W, Joho F, Haas O. 1995. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc. 142:82544–50
    [Google Scholar]
  68. 68.
    Lee HJ, Shin J, Choi JW. 2018. Intercalated water and organic molecules for electrode materials of rechargeable batteries. Adv. Mater. 30:421705851
    [Google Scholar]
  69. 69.
    Wang R, Chung C-C, Liu Y, Jones JL, Augustyn V. 2017. Electrochemical intercalation of Mg2+ into anhydrous and hydrated crystalline tungsten oxides. Langmuir 33:379314–23
    [Google Scholar]
  70. 70.
    Nam KW, Kim S, Lee S-SS, Salama M, Shterenberg I et al. 2015. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett 15:4071–79
    [Google Scholar]
  71. 71.
    Nam KW, Kim H, Choi JH, Choi JW. 2019. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12:61999–2009
    [Google Scholar]
  72. 72.
    Sa N, Kinnibrugh L, Wang H, Gautam GS, Chapman KW et al. 2016. Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28:92962–69
    [Google Scholar]
  73. 73.
    Sai Gautam G, Canepa P, Richards WD, Malik R, Ceder G 2016. Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett 16:42426–31
    [Google Scholar]
  74. 74.
    Johnston B, Henry H, Kim N, Lee SB. 2021. Mechanisms of water-stimulated Mg2+ intercalation in vanadium oxide: toward the development of hydrated vanadium oxide cathodes for mg batteries. Front. Energy Res. 8:611391
    [Google Scholar]
  75. 75.
    Lopez M, Yoo HD, Hu L, Andrews JL, Banerjee S, Cabana J. 2020. Does water enhance Mg intercalation in oxides? The case of a tunnel framework. ACS Energy Lett 5:113357–61
    [Google Scholar]
  76. 76.
    Zhao Q, Liu L, Yin J, Zheng J, Zhang D et al. 2020. Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells. Angew. Chem. Int. Ed. 59:83048–52
    [Google Scholar]
  77. 77.
    Wu D, Housel LM, Kim SJ, Sadique N, Quilty CD et al. 2020. Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ. Sci. 13:114322–33
    [Google Scholar]
  78. 78.
    Akbashev AR. 2022. Electrocatalysis on oxide surfaces: fundamental challenges and opportunities. Curr. Opin. Electrochem. 35:1101095
    [Google Scholar]
  79. 79.
    Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW. 2015. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27:7549–58
    [Google Scholar]
  80. 80.
    Trotochaud L, Boettcher SW. 2014. Precise oxygen evolution catalysts: status and opportunities. Scr. Mater. 74:25–32
    [Google Scholar]
  81. 81.
    Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW. 2016. Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49:4733–40
    [Google Scholar]
  82. 82.
    Mefford JT, Akbashev AR, Kang M, Bentley CL, Gent WE et al. 2021. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593:67–73
    [Google Scholar]
  83. 83.
    Kang Q, Vernisse L, Remsing RC, Thenuwara AC, Shumlas SL et al. 2017. Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 139:1863–70
    [Google Scholar]
  84. 84.
    Thenuwara AC, Shumlas SL, Attanayake NH, Aulin YV, McKendry IG et al. 2016. Intercalation of cobalt into the interlayer of birnessite improves oxygen evolution catalysis. ACS Catal 6:7739–43
    [Google Scholar]
  85. 85.
    Thenuwara AC, Cerkez EB, Shumlas SL, Attanayake NH, McKendry IG et al. 2016. Oxygen evolution reaction nickel confined in the interlayer region of birnessite: an active electrocatalyst for water oxidation. Angew. Chem. Int. Ed. 55:10381–85
    [Google Scholar]
  86. 86.
    Lucht KP, Mendoza-Cortes JL. 2015. Birnessite: a layered manganese oxide to capture sunlight for water-splitting catalysis. J. Phys. Chem. C. 119:4022838–46
    [Google Scholar]
  87. 87.
    Peng H, McKendry IG, Ding R, Thenuwara AC, Kang Q et al. 2017. Redox properties of birnessite from a defect perspective. PNAS 114:369523–28
    [Google Scholar]
  88. 88.
    Ding R, Yasini P, Peng H, Perdew JP, Borguet E, Zdilla MJ. 2021. Reimagining the eg1 electronic state in oxygen evolution catalysis: oxidation-state-modulated superlattices as a new type of heterostructure for maximizing catalysis. Adv. Energy Mater. 11:412101636
    [Google Scholar]
  89. 89.
    Bhullar RK, Zdilla MJ, Klein ML, Remsing RC. 2021. Effect of water frustration on water oxidation catalysis in the nanoconfined interlayers of layered manganese oxides birnessite and buserite. J. Mater. Chem. A. 9:116924–32
    [Google Scholar]
  90. 90.
    Spencer MA, Fortunato J, Augustyn V. 2022. Electrochemical proton insertion modulates the hydrogen evolution reaction on tungsten oxides. J. Chem. Phys. 156:6064704
    [Google Scholar]
  91. 91.
    Yang C, Rousse G, Svane KL, Pearce PE, Abakumov AM et al. 2020. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 11:1978
    [Google Scholar]
  92. 92.
    Srimuk P, Su X, Yoon J, Aurbach D, Presser V. 2020. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5:517–38
    [Google Scholar]
  93. 93.
    Alkhadra MA, Su X, Suss ME, Tian H, Guyes EN et al. 2022. Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122:1613547–635
    [Google Scholar]
  94. 94.
    Byles BW, Hayes-Oberst B, Pomerantseva E. 2018. Ion removal performance, structural/compositional dynamics, and electrochemical stability of layered manganese oxide electrodes in hybrid capacitive deionization. ACS Appl. Mater. Interfaces 10:1832313–22
    [Google Scholar]
  95. 95.
    Byles BW, Cullen DA, More KL, Pomerantseva E. 2018. Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy 44:476–88
    [Google Scholar]
  96. 96.
    Ghodbane O, Ataherian F, Wu N-L, Favier F. 2012. In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206:454–62
    [Google Scholar]
  97. 97.
    Ghodbane O, Pascal J-L, Favier F. 2009. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1:51130–39
    [Google Scholar]
  98. 98.
    Jin J, Li M, Tang M, Li Y, Liu Y et al. 2020. Phase- and crystallinity-tailorable MnO2 as an electrode for highly efficient hybrid capacitive deionization (HCDI). ACS Sustain. Chem. Eng. 8:3011424–34
    [Google Scholar]
  99. 99.
    Lee J, Srimuk P, Aristizabal K, Kim C, Choudhury S et al. 2017. Pseudocapacitive desalination of brackish water and seawater with vanadium-pentoxide-decorated multiwalled carbon nanotubes. ChemSusChem 10:183611–23
    [Google Scholar]
  100. 100.
    Fortunato J, Peña J, Benkaddour S, Zhang H, Huang J et al. 2020. Surveying manganese oxides as electrode materials for harnessing salinity gradient energy. Environ. Sci. Technol. 54:95746–54
    [Google Scholar]
  101. 101.
    Johnson EA, Post JE. 2006. Water in the interlayer region of birnessite: importance in cation exchange and structural stability. Am. Miner. 91:609–18
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-124955
Loading
/content/journals/10.1146/annurev-matsci-080819-124955
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error