1932

Abstract

If variety is the spice of life, then abnormal grain growth (AGG) may be the materials processing equivalent of sriracha sauce. Abnormally growing grains can be prismatic, dendritic, or practically any shape in between. When they grow at least an order of magnitude larger than their neighbors in the matrix—a state we call extreme AGG—we can examine the abnormal/matrix interface for clues to the underlying mechanism. Simulating AGG for various formulations of the grain boundary (GB) equation of motion, we show that anisotropies in GB mobility and energy leave a characteristic fingerprint in the abnormal/matrix boundary. Except in the case of prismatic growth, the morphological signature of most reported instances of AGG is consistent with a certain degree of GB mobility variability. Open questions remain, however, concerning the mechanism by which the corresponding growth advantage is established and maintained as the GBs of abnormal grains advance through the matrix.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-091647
2023-07-03
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-091647.html?itemId=/content/journals/10.1146/annurev-matsci-080921-091647&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dunn CG, Walter JL. 1966. Secondary recrystallization. Recrystallization, Grain Growth and Textures461–521. Metals Park, OH: Am. Soc. Metals
    [Google Scholar]
  2. 2.
    Humphreys J, Rohrer GS, Rollett A 2017. Grain growth following recrystallization. Recrystallization and Related Annealing Phenomena J Humphreys, GS Rohrer, A Rollett 375–429. Oxford, UK: Elsevier. , 3rd ed..
    [Google Scholar]
  3. 3.
    Raabe D. 2014. Recovery and recrystallization: phenomena, physics, models, simulation. Physical Metallurgy DE Laughlin, K Hono 2291–397. Oxford, UK: Elsevier
    [Google Scholar]
  4. 4.
    Lawrence A, Rickman JM, Harmer MP, Rollett AD. 2016. Parsing abnormal grain growth. Acta Mater. 103:681–87
    [Google Scholar]
  5. 5.
    Kwon O, Hong S, Lee J, Chung U, Kim D, Hwang NM. 2002. Microstructural evolution during sintering of TiO2/SiO2-doped alumina: mechanism of anisotropic abnormal grain growth. Acta Mater. 50:4865–72
    [Google Scholar]
  6. 6.
    Zhao BB. 2015. Abnormal grain growth with {1 0 0} planar interface in the electrodeposited nickel. Mater. Res. Innov. 19:S251–54
    [Google Scholar]
  7. 7.
    Fisher JG, Lee BK, Brancquart A, Choi SY, Kang SJL. 2005. Effect of Al2O3 dopant on abnormal grain growth in BaTiO3. J. Eur. Ceram. Soc. 25:2033–36
    [Google Scholar]
  8. 8.
    Dillon SJ, Tang M, Carter WC, Harmer MP. 2007. Complexion: a new concept for kinetic engineering in materials science. Acta Mater. 55:6208–18
    [Google Scholar]
  9. 9.
    MacLaren I, Cannon RM, Gülgün MA, Voytovych R, Popescu-Pogrion N et al. 2003. Abnormal grain growth in alumina: synergistic effects of yttria and silica. J. Am. Ceram. Soc. 86:650–59
    [Google Scholar]
  10. 10.
    Lee SB, Hwang NM, Yoon DY, Henry MF. 2000. Grain boundary faceting and abnormal grain growth in nickel. Metall. Mater. Trans. A 31:985–94
    [Google Scholar]
  11. 11.
    Zaefferer S, Chen N. 2005. The Goss texture formation in silicon steels – growth selection or oriented nucleation. Solid State Phenom. 105:29–36
    [Google Scholar]
  12. 12.
    Park HK, Kang HG, Park CS, Huh MY, Hwang NM. 2012. Ex situ observation of microstructure evolution during abnormal grain growth in aluminum alloy. Metall. Mater. Trans. A 43:5218–23
    [Google Scholar]
  13. 13.
    Kim TY, Na TW, Shim HS, Gil K, Hwang NM. 2022. Effect of the magnitude of sub-boundary angles on the abnormal grain growth rate of Goss grains in Fe-3%Si steel. Mater. Char. 184:111655
    [Google Scholar]
  14. 14.
    Park H, Kim DY, Hwang NM, Joo YC, Han CH, Kim JK. 2004. Microstructural evidence of abnormal grain growth by solid-state wetting in Fe-3%Si steel. J. Appl. Phys. 95:5515–21
    [Google Scholar]
  15. 15.
    Fischer M. 2021. Investigation and analysis of microstructural evolution in nanocrystalline Pd100-xAux MA thesis Universität Ulm Ulm, Ger:.
  16. 16.
    Greiser J, Müllner P, Arzt E. 2001. Abnormal growth of “giant” grains in silver thin films. Acta Mater. 49:1041–50
    [Google Scholar]
  17. 17.
    Nielsen JP. 1966. The grain coalescence theory. Recrystallization, Grain Growth and Textures141–64. Metals Park, OH: Am. Soc. Metals
    [Google Scholar]
  18. 18.
    Thompson CV, Smith HI. 1984. Surface-energy-driven secondary grain growth in ultrathin (<100 nm) films of silicon. Appl. Phys. Lett. 44:603–5
    [Google Scholar]
  19. 19.
    Hennings DFK, Janssen R, Reynen PJL. 1987. Control of liquid-phase-enhanced discontinuous grain growth in barium titanate. J. Am. Ceram. Soc. 70:23–27
    [Google Scholar]
  20. 20.
    Stöckhert B, Duyster J. 1999. Discontinuous grain growth in recrystallised vein quartz—implications for grain boundary structure, grain boundary mobility, crystallographic preferred orientation, and stress history. J. Struct. Geol. 21:1477–90
    [Google Scholar]
  21. 21.
    Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. 2006. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54:2253–63
    [Google Scholar]
  22. 22.
    Duan J, Wen H, Zhou C, He X, Islamgaliev R, Valiev R. 2020. Discontinuous grain growth in an equal-channel angular pressing processed Fe-9Cr steel with a heterogeneous microstructure. Mater. Charact. 159:110004
    [Google Scholar]
  23. 23.
    Na SM, Flatau AB. 2007. Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe–Ga based alloys. J. Appl. Phys. 101:09N518
    [Google Scholar]
  24. 24.
    Hayakawa Y. 2017. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel. Sci. Technol. Adv. Mater. 18:480–97
    [Google Scholar]
  25. 25.
    Thompson CV, Frost HJ, Spaepen F. 1987. The relative rates of secondary and normal grain growth. Acta Metall. 35:887–90
    [Google Scholar]
  26. 26.
    Frost HJ, Thompson CV. 1988. Computer simulation of microstructural evolution in thin films. J. Electron. Mater. 17:447–58
    [Google Scholar]
  27. 27.
    Frost HJ, Thompson CV, Walton DT. 1992. Simulation of thin film grain structures—II. abnormal grain growth. Acta Metall. Mater. 40:779–93
    [Google Scholar]
  28. 28.
    Ciulik J, Taleff EM. 2009. Dynamic abnormal grain growth: a new method to produce single crystals. Scr. Mater. 61:895–98
    [Google Scholar]
  29. 29.
    Dake JM, Krill CE III 2012. Sudden loss of thermal stability in Fe-based nanocrystalline alloys. Scr. Mater. 66:390–93
    [Google Scholar]
  30. 30.
    Chen S, Wang W, Kono H, Sassa K, Asai S. 2010. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field. J. Cryst. Growth 312:323–26
    [Google Scholar]
  31. 31.
    Hansen N. 2004. Hall–Petch relation and boundary strengthening. Scr. Mater. 51:801–6
    [Google Scholar]
  32. 32.
    Furnish TA, Bufford DC, Ren F, Mehta A, Hattar K, Boyce BL. 2018. Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe. Scr. Mater. 143:15–19
    [Google Scholar]
  33. 33.
    Kingery WD, Bowen HK, Uhlmann DR. 1976. Introduction to Ceramics New York: Wiley-Interscience
  34. 34.
    Ouhiba S, Nicolay A, Boissonnet L, Bernacki M, Bozzolo N. 2022. Formation of coarse recrystallized grains in 6016 aluminum alloy during holding after hot deformation. Metall. Mater. Trans. A 53:2402–25
    [Google Scholar]
  35. 35.
    Engler O, Hirsch J. 2002. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater. Sci. Eng. A 336:249–62
    [Google Scholar]
  36. 36.
    Lingk C, Gross ME. 1998. Recrystallization kinetics of electroplated Cu in damascene trenches at room temperature. J. Appl. Phys. 84:5547–53
    [Google Scholar]
  37. 37.
    Lu CL, Lin HW, Liu CM, Huang YS, Lu TL et al. 2014. Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Mater. 6:e135
    [Google Scholar]
  38. 38.
    Matsuo M. 1989. Texture control in the production of grain oriented silicon steels. ISIJ Int. 29:809–27
    [Google Scholar]
  39. 39.
    Su C, Zhao G, Xiao H, Lan Y, Huang F. 2018. Abnormal grain growth of Hi–B steel in the secondary recrystallization. Metallogr. Microstruct. Anal. 7:608–17
    [Google Scholar]
  40. 40.
    Vollmer M, Arold T, Kriegel MJ, Klemm V, Degener S et al. 2019. Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat. Commun. 10:2337
    [Google Scholar]
  41. 41.
    Na SM, Atwater KM, Flatau AB. 2015. Particle pinning force thresholds for promoting abnormal grain growth in magnetostrictive Fe–Ga alloy sheets. Scr. Mater. 100:1–4
    [Google Scholar]
  42. 42.
    Hanaor DAH, Xu W, Ferry M, Sorrell CC. 2012. Abnormal grain growth of rutile TiO2 induced by ZrSiO4. J. Cryst. Growth 359:83–91
    [Google Scholar]
  43. 43.
    Wang Y, Chen M, Zhou F, Ma E. 2002. High tensile ductility in a nanostructured metal. Nature 419:912–15
    [Google Scholar]
  44. 44.
    Ma E, Zhu T. 2017. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20:323–31
    [Google Scholar]
  45. 45.
    Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y et al. 2013. Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–2
    [Google Scholar]
  46. 46.
    Noell PJ, Taleff EM. 2015. Dynamic abnormal grain growth in refractory metals. JOM 67:2642–45
    [Google Scholar]
  47. 47.
    Kusama T, Omori T, Saito T, Kise S, Tanaka T et al. 2017. Ultra-large single crystals by abnormal grain growth. Nat. Commun. 8:354
    [Google Scholar]
  48. 48.
    Moore RD, Beecroft T, Rohrer GS, Barr CM, Homer ER et al. 2021. The grain boundary stiffness and its impact on equilibrium shapes and boundary migration: analysis of the Σ5, 7, 9, and 11 boundaries in Ni. Acta Mater. 218:117220
    [Google Scholar]
  49. 49.
    Sutoki T. 1928. On the mechanism of crystal growth by annealing. Sci. Rep. Tohoku Imp. Univ. 17:857–76
    [Google Scholar]
  50. 50.
    Burke JE, Turnbull D. 1952. Recrystallization and grain growth. Prog. Metal Phys. 3:220–92
    [Google Scholar]
  51. 51.
    Srolovitz DJ, Grest GS, Anderson MP. 1985. Computer simulation of grain growth—V. Abnormal grain growth. Acta Metall. 33:2233–47
    [Google Scholar]
  52. 52.
    Rollett AD, Srolovitz DJ, Anderson MP. 1989. Simulation and theory of abnormal grain growth—anisotropic grain boundary energies and mobilities. Acta Metall. 37:1227–40
    [Google Scholar]
  53. 53.
    Grest GS, Anderson MP, Srolovitz DJ, Rollett AD. 1990. Abnormal grain growth in three dimensions. Scr. Metall. Mater. 24:661–65
    [Google Scholar]
  54. 54.
    Rollett AD, Mullins WW. 1997. On the growth of abnormal grains. Scr. Mater. 36:975–80
    [Google Scholar]
  55. 55.
    Rollett AD. 2005. Abnormal grain growth and texture development. Mater. Sci. Forum 495–97:1171–76
    [Google Scholar]
  56. 56.
    Rios PR. 1992. Abnormal grain growth in pure materials. Acta Metall. Mater. 40:2765–68
    [Google Scholar]
  57. 57.
    Taylor JE, Cahn JW, Handwerker CA. 1992. Overview no. 98 I—geometric models of crystal growth. Acta Metall. Mater. 40:1443–74
    [Google Scholar]
  58. 58.
    Gottstein G, Molodov DA, Shvindlerman LS, Srolovitz DJ, Winning M. 2001. Grain boundary migration: misorientation dependence. Curr. Opin. Solid State Mater. Sci. 5:9–14
    [Google Scholar]
  59. 59.
    Huang Y, Humphreys FJ. 2000. Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉. Acta Mater. 48:2017–30
    [Google Scholar]
  60. 60.
    Huang Y, Humphreys FJ, Ferry M. 2000. The annealing behaviour of deformed cube-oriented aluminium single crystals. Acta Mater. 48:2543–56
    [Google Scholar]
  61. 61.
    Li J, Dillon SJ, Rohrer GS. 2009. Relative grain boundary area and energy distributions in nickel. Acta Mater. 57:4304–11
    [Google Scholar]
  62. 62.
    Olmsted DL, Foiles SM, Holm EA. 2009. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 57:3694–703
    [Google Scholar]
  63. 63.
    Olmsted DL, Holm EA, Foiles SM. 2009. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Mater. 57:3704–13
    [Google Scholar]
  64. 64.
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS. 2015. Grain boundary energies in body-centered cubic metals. Acta Mater. 88:346–54
    [Google Scholar]
  65. 65.
    Ratanaphan S, Boonkird T, Sarochawikasit R, Beladi H, Barmak K, Rohrer GS. 2017. Atomistic simulations of grain boundary energies in tungsten. Mater. Lett. 186:116–18
    [Google Scholar]
  66. 66.
    Han J, Vitek V, Srolovitz DJ. 2016. Grain-boundary metastability and its statistical properties. Acta Mater. 104:259–73
    [Google Scholar]
  67. 67.
    He H, Ma S, Wang S. 2021. Survey of grain boundary energies in tungsten and beta-titanium at high temperature. Materials 15:156
    [Google Scholar]
  68. 68.
    Holm EA, Foiles SM. 2010. How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328:1138–41
    [Google Scholar]
  69. 69.
    Read WT, Shockley W. 1950. Dislocation models of crystal grain boundaries. Phys. Rev. 78:275–89
    [Google Scholar]
  70. 70.
    Sutton AP, Banks EP, Warwick AR. 2015. The five-dimensional parameter space of grain boundaries. Proc. R. Soc. A 471:20150442
    [Google Scholar]
  71. 71.
    Wagih M, Schuh CA. 2019. Spectrum of grain boundary segregation energies in a polycrystal. Acta Mater. 181:228–37
    [Google Scholar]
  72. 72.
    Barr CM, Foiles SM, Alkayyali M, Mahmood Y, Price PM et al. 2021. The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt–Au. Nanoscale 13:3552–63
    [Google Scholar]
  73. 73.
    Zhu Q, Samanta A, Li B, Rudd RE, Frolov T. 2018. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 9:467
    [Google Scholar]
  74. 74.
    Brandon DG. 1966. The structure of high-angle grain boundaries. Acta Metall. 14:1479–84
    [Google Scholar]
  75. 75.
    Nielsen JP. 1966. Some laws of grain growth. Recrystallization, Grain Growth and Textures286–94. Metals Park, OH: Am. Soc. Metals
    [Google Scholar]
  76. 76.
    Ferry M, Humphreys FJ. 1996. Discontinuous subgrain growth in deformed and annealed {110}〈001〉 aluminium single crystals. Acta Mater. 44:1293–308
    [Google Scholar]
  77. 77.
    Ko KJ, Cha PR, Srolovitz D, Hwang NM. 2009. Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: analysis by phase-field model simulations. Acta Mater. 57:838–45
    [Google Scholar]
  78. 78.
    Ko KJ, Rollett AD, Hwang NM. 2010. Abnormal grain growth of Goss grains in Fe-3% Si steel driven by sub-boundary-enhanced solid-state wetting: analysis by Monte Carlo simulation. Acta Mater. 58:4414–23
    [Google Scholar]
  79. 79.
    Park CS, Na TW, Park HK, Kim DK, Han CH, Hwang NM. 2012. Misorientation characteristics of penetrating morphologies at the growth front of abnormally growing grains in aluminum alloy. Philos. Mag. Lett. 92:344–51
    [Google Scholar]
  80. 80.
    Omori T, Iwaizako H, Kainuma R. 2016. Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater. Des. 101:263–69
    [Google Scholar]
  81. 81.
    Pei R, Korte-Kerzel S, Al-Samman T. 2020. Normal and abnormal grain growth in magnesium: experimental observations and simulations. J. Mater. Sci. Technol. 50:257–70
    [Google Scholar]
  82. 82.
    Wolf D. 1990. A broken-bond model for grain boundaries in face-centered cubic metals. J. Appl. Phys. 68:3221–36
    [Google Scholar]
  83. 83.
    Park YJ, Hwang NM, Yoon DY. 1996. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix. Metall. Mater. Trans. A 27:2809–19
    [Google Scholar]
  84. 84.
    Han J, Thomas SL, Srolovitz DJ. 2018. Grain-boundary kinetics: a unified approach. Progress Mater. Sci. 98:386–476
    [Google Scholar]
  85. 85.
    Chesser I, Runnels B, Holm E. 2022. A taxonomy of grain boundary migration mechanisms via displacement texture characterization. Acta Mater. 222:117425
    [Google Scholar]
  86. 86.
    Kacher J, Eftink BP, Cui B, Robertson IM. 2014. Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 18:227–43
    [Google Scholar]
  87. 87.
    Barr CM, Chen EY, Nathaniel JE, Lu P, Adams DP et al. 2022. Irradiation-induced grain boundary facet motion: in situ observations and atomic-scale mechanisms. Sci. Adv. 8:eabn0900
    [Google Scholar]
  88. 88.
    Huang Y, Humphreys FJ. 2012. The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys. Mater. Chem. Phys. 132:166–74
    [Google Scholar]
  89. 89.
    Dannenberg R, Stach EA, Groza JR, Dresser BJ. 2000. In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films. Thin Solid Films 370:54–62
    [Google Scholar]
  90. 90.
    Rohrer GS, Chesser I, Krause AR, Naghibzadeh K, Xu Z et al. 2023. Grain boundary migration in polycrystals. Annu. Rev. Mater. Sci. 53:347–70
    [Google Scholar]
  91. 91.
    Hillert M. 1965. On the theory of normal and abnormal grain growth. Acta Metall. 13:227–38
    [Google Scholar]
  92. 92.
    Gladman T, Allen NP. 1966. On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. Lond. A 294:298–309
    [Google Scholar]
  93. 93.
    Smith CS. 1948. Grains, phases, and interfaces—an interpretation of microstructure. Trans. AIME 175:15–51
    [Google Scholar]
  94. 94.
    Humphreys FJ. 1997. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles. Acta Mater. 45:5031–39
    [Google Scholar]
  95. 95.
    Dennis J, Bate P, Humphreys F. 2009. Abnormal grain growth in Al–3.5Cu. Acta Mater. 57:4539–47
    [Google Scholar]
  96. 96.
    Gangulee A, D'Heurle FM 1972. Anomalous large grains in alloyed aluminum thin films I. Secondary grain growth in aluminum-copper films. Thin Solid Films 12:399–402
    [Google Scholar]
  97. 97.
    Uttarasak K, Chongchitnan W, Matsuda K, Chairuangsri T, Kajornchaiyakul J, Banjongprasert C. 2019. Evolution of Fe-containing intermetallic phases and abnormal grain growth in 6063 aluminum alloy during homogenization. Results Phys. 15:102535
    [Google Scholar]
  98. 98.
    Lu N, Kang J, Senabulya N, Keinan R, Gueninchault N, Shahani AJ. 2020. Dynamics of particle-assisted abnormal grain growth revealed through integrated three-dimensional microanalysis. Acta Mater. 195:1–12
    [Google Scholar]
  99. 99.
    Trelewicz JR, Schuh CA. 2009. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79:094112
    [Google Scholar]
  100. 100.
    Cahn JW. 1962. The impurity-drag effect in grain boundary motion. Acta Metall. 10:789–98
    [Google Scholar]
  101. 101.
    Akiva R, Katsman A, Kaplan WD. 2014. Anisotropic grain boundary mobility in undoped and doped alumina. J. Am. Ceram. Soc. 97:1610–18
    [Google Scholar]
  102. 102.
    Janssens KGF, Holm EA. 2005. On the interaction between a transient solute concentration at a moving grain boundary, precipitates and abnormal grain growth Rep. SAND2005-0692C Sandia Natl. Lab. Albuquerque, NM:
  103. 103.
    Kim SG, Park YB. 2008. Grain boundary segregation, solute drag and abnormal grain growth. Acta Mater. 56:3739–53
    [Google Scholar]
  104. 104.
    Li J, Wang J, Yang G. 2010. Phase field simulation of grain growth with grain boundary segregation. Int. J. Mater. Res. 101:555–59
    [Google Scholar]
  105. 105.
    Lee DK, Lee BJ, Ko KJ, Hwang NM. 2009. Comparison of the advantages conferred by mobility and energy of the grain boundary in inducing abnormal grain growth using Monte Carlo simulations. Mater. Trans. 50:2521–25
    [Google Scholar]
  106. 106.
    Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U. 2002. An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scr. Mater. 47:83–87
    [Google Scholar]
  107. 107.
    Moelans N, Godfrey A, Zhang Y, Juul Jensen D. 2013. Phase-field simulation study of the migration of recrystallization boundaries. Phys. Rev. B 88:054103
    [Google Scholar]
  108. 108.
    Goss PN. 1935. New development in electrical strip steels characterized by fine grain structure approaching the properties of a single crystal. Trans. Am. Soc. Metals 23:511–44
    [Google Scholar]
  109. 109.
    Xia Z, Kang Y, Wang Q. 2008. Developments in the production of grain-oriented electrical steel. J. Magn. Magn. Mater. 320:3229–33
    [Google Scholar]
  110. 110.
    Etter AL, Baudin T, Penelle R. 2002. Influence of the Goss grain environment during secondary recrystallisation of conventional grain oriented Fe–3%Si steels. Scr. Mater. 47:725–30
    [Google Scholar]
  111. 111.
    Morawiec A. 2011. On abnormal growth of Goss grains in grain-oriented silicon steel. Scr. Mater. 64:466–69
    [Google Scholar]
  112. 112.
    Ferry M, Humphreys FJ. 2006. Onset of abnormal subgrain growth in cold rolled {110}〈001〉 oriented copper single crystals. Mater. Sci. Eng. A 435–36:447–52
    [Google Scholar]
  113. 113.
    Hau-Riege SP, Thompson CV. 2000. In situ transmission electron microscope studies of the kinetics of abnormal grain growth in electroplated copper films. Appl. Phys. Lett. 76:309–11
    [Google Scholar]
  114. 114.
    Dillon SJ, Harmer MP. 2008. Relating grain boundary complexion to grain boundary kinetics II: silica-doped alumina. J. Am. Ceram. Soc. 91:2314–20
    [Google Scholar]
  115. 115.
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. 2014. Grain boundary complexions. Acta Mater. 62:1–48
    [Google Scholar]
  116. 116.
    Betanda YA, Helbert AL, Brisset F, Waeckerlé T, Baudin T. 2015. Effect of annealing atmosphere on the recrystallized texture and abnormal grain growth of Ni–5%W alloy sheets. Adv. Eng. Mater. 17:1568–72
    [Google Scholar]
  117. 117.
    Lee BK, Chung SY, Kang SJL. 2000. Grain boundary faceting and abnormal grain growth in BaTiO3. Acta Mater. 48:1575–80
    [Google Scholar]
  118. 118.
    Roberts CG. 2007. Grain growth and the Zener pinning phenomenon: a computational and experimental investigation. PhD thesis Carnegie Mellon Univ. Pittsburgh, PA:
  119. 119.
    Holm EA, Miodownik MA, Rollett AD. 2003. On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater. 51:2701–16
    [Google Scholar]
  120. 120.
    Humphreys FJ. 1997. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater. 45:4231–40
    [Google Scholar]
  121. 121.
    DeCost BL, Holm EA. 2017. Phenomenology of abnormal grain growth in systems with nonuniform grain boundary mobility. Metall. Mater. Trans. A 48:2771–80
    [Google Scholar]
  122. 122.
    Holm EA, Miodownik MA, Healey KJ. 2004. A subgrain growth model for strain-free grain nucleation during recrystallization. Mater. Sci. Forum 467–70:611–16
    [Google Scholar]
  123. 123.
    Liu Y, Militzer M, Perez M. 2019. Phase field modelling of abnormal grain growth. Materials 12:4048
    [Google Scholar]
  124. 124.
    Rudnizki J, Zeislmair B, Prahl U, Bleck W. 2010. Prediction of abnormal grain growth during high temperature treatment. Comput. Mater. Sci. 49:209–16
    [Google Scholar]
  125. 125.
    Kinoshita T, Ohno M. 2020. Phase-field simulation of abnormal grain growth during carburization in Nb-added steel. Comput. Mater. Sci. 177:109558
    [Google Scholar]
  126. 126.
    Fjeldberg E, Holm EA, Rollett AD, Marthinsen K. 2012. Mobility driven abnormal grain growth in the presence of particles. Mater. Sci. Forum 715–16:930–35
    [Google Scholar]
  127. 127.
    Messina R, Soucail M, Kubin L. 2001. Monte Carlo simulation of abnormal grain growth in two dimensions. Mater. Sci. Eng. A 308:258–67
    [Google Scholar]
  128. 128.
    Holm EA, Hoffmann TD, Rollett AD, Roberts CG. 2015. Particle-assisted abnormal grain growth. IOP Conf. Ser. Mater. Sci. Eng. 89:012005
    [Google Scholar]
  129. 129.
    Lee DK, Ko KJ, Lee BJ, Hwang NM. 2008. Monte Carlo simulations of abnormal grain growth by sub-boundary-enhanced solid-state wetting. Scr. Mater. 58:683–86
    [Google Scholar]
  130. 130.
    Frazier WE, Rohrer GS, Rollett AD. 2015. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 96:390–98
    [Google Scholar]
  131. 131.
    Prajapati N, Späth M, Knecht L, Selzer M, Nestler B. 2021. Quantitative phase-field modeling of faceted crystal dissolution processes. Cryst. Growth Des. 21:3266–79
    [Google Scholar]
  132. 132.
    Chen J, Guo M, Yang M, Su H, Liu L, Zhang J. 2021. Phase-field simulation of γ′ coarsening behavior in cobalt-based superalloy. Comput. Mater. Sci. 191:110358
    [Google Scholar]
  133. 133.
    Hwang NM, Lee SB, Kim DY. 2001. Abnormal grain growth by solid-state wetting along grain boundary or triple junction. Scr. Mater. 44:1153–60
    [Google Scholar]
  134. 134.
    Mason JK, Lazar EA, MacPherson RD, Srolovitz DJ. 2015. Geometric and topological properties of the canonical grain-growth microstructure. Phys. Rev. E 92:063308
    [Google Scholar]
  135. 135.
    Braun C, Dake JM, Krill CE III, Birringer R. 2018. Abnormal grain growth mediated by fractal boundary migration at the nanoscale. Sci. Rep. 8:1592
    [Google Scholar]
  136. 136.
    Zeller RA, Fey HJ, Braun C, Birringer R, Krill CE III. 2019. Influence of rapid annealing on the evolution of fractal abnormal grains in nanocrystalline Pd–10 at% Au. IOP Conf. Ser. Mater. Sci. Eng. 580:012055
    [Google Scholar]
  137. 137.
    Koo JB, Yoon DY, Henry MF. 2000. Island grains of low misorientation angles formed during abnormal grain growth in Cu. Metall. Mater. Trans. A 31:1489–91
    [Google Scholar]
  138. 138.
    Bennett TA, Kalu PN, Rollett AD. 2007. On the character of host–island grain interfaces in Fe–1%Si alloy. Scr. Mater. 57:41–44
    [Google Scholar]
  139. 139.
    Hutchinson WB. 2012. Origin of Goss texture during secondary recrystallisation in silicon-steel. Mater. Sci. Forum715–716:73–80
    [Google Scholar]
  140. 140.
    Rajmohan N, Szpunar JA. 2000. Monte-Carlo simulation of Goss texture development in silicon steel in the presence of MnS particles. Mater. Sci. Eng. A 289:99–108
    [Google Scholar]
  141. 141.
    Chen K, Han J, Pan X, Srolovitz DJ. 2020. The grain boundary mobility tensor. PNAS 117:4533–38
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-091647
Loading
/content/journals/10.1146/annurev-matsci-080921-091647
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error