1932

Abstract

We review the class of materials known as polar metals, in which polarity and metallicity coexist in the same phase. While the notion of polar metals was first invoked more than 50 years ago, their practical realization has proved challenging since the itinerant carriers required for metallicity tend to screen any polarization. Huge progress has been made in the last decade, with many mechanisms for combining polarity and metallicity proposed and the first examples, LiOsO and WTe, identified experimentally. The availability of polar metallic samples has opened a new paradigm in polar metal research, with implications in the fields of topology, ferroelectricity, magnetoelectricity, spintronics, and superconductivity. Here, we review the principles and techniques that have been developed to design and engineer polar metals and describe some of their interesting properties, with a focus on the most promising directions for future work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-105501
2023-07-03
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-105501.html?itemId=/content/journals/10.1146/annurev-matsci-080921-105501&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Resta R, Vanderbilt D 2007. Theory of polarization: a modern approach. Physics of Ferroelectrics KM Rabe, CA Ahn, J-M Triscone 31–68. Berlin: Springer-Verlag
    [Google Scholar]
  2. 2.
    Kohn W. 1964. Theory of the insulating state. Phys. Rev. 133:A171–81
    [Google Scholar]
  3. 3.
    Resta R. 1998. Quantum-mechanical position operator in extended systems. Phys. Rev. Lett. 80:1800–3
    [Google Scholar]
  4. 4.
    Resta R, Sorella S. 1999. Electron localization in the insulating state. Phys. Rev. Lett. 82:370–73
    [Google Scholar]
  5. 5.
    Resta R. 2002. Why are insulators insulating and metals conducting?. J. Phys. Condens. Matter 14:R625–56
    [Google Scholar]
  6. 6.
    Shirane G, Axe JD, Harada J, Remeika JP. 1970. Soft ferroelectric modes in lead titanate. Phys. Rev. B 2:155–59
    [Google Scholar]
  7. 7.
    Cohen RE. 1992. Origin of ferroelectricity in perovskite oxides. Nature 358:136–38
    [Google Scholar]
  8. 8.
    Burdett JK. 1981. Use of the Jahn–Teller theorem in inorganic chemistry. Inorg. Chem. 20:1959–62
    [Google Scholar]
  9. 9.
    Anderson PW, Blount EI. 1965. Symmetry considerations on martensitic transformations: “ferroelectric” metals?. Phys. Rev. Lett. 14:217–19
    [Google Scholar]
  10. 10.
    Batterman BW, Barrett CS. 1964. Crystal structure of superconducting V3Si. Phys. Rev. Lett. 13:390–92
    [Google Scholar]
  11. 11.
    Testardi LR, Bateman TB. 1967. Lattice instability of high-transition-temperature superconductors. II. Single-crystal V3Si results. Phys. Rev. 154:402–10
    [Google Scholar]
  12. 12.
    Brown PJ, Neumann KU, Ziebeck KRA. 2001. A polarized neutron investigation of the martensitic phase transition in V3Si: evidence for a band Jahn-Teller mechanism. J. Phys. Condens. Matter. 13:1111–17
    [Google Scholar]
  13. 13.
    Paduani C, Kuhnen CA. 2008. Martensitic phase transition from cubic to tetragonal V3Si: an electronic structure study. Eur. Phys. J. B 66:353–59
    [Google Scholar]
  14. 14.
    Sergienko IA, Keppens V, McGuire M, Jin R, He J et al. 2004. Metallic “ferroelectricity” in the pyrochlore Cd2Re2O7. Phys. Rev. Lett. 92:065501
    [Google Scholar]
  15. 15.
    Ishibashi Y, Iwata M. 2010. Structural and elastic aspects in phase transitions of superconducting pyrochlore oxide Cd2Re2O7. J. Phys. Soc. Jpn. 79:044604
    [Google Scholar]
  16. 16.
    Kolodiazhnyi T, Tachibana M, Kawaji H, Hwang J, Takayama-Muromachi E. 2010. Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition. Phys. Rev. Lett. 104:147602
    [Google Scholar]
  17. 17.
    Filippetti A, Fiorentini V, Ricci F, Delugas P, Íñiguez J. 2016. Prediction of a native ferroelectric metal. Nat. Commun. 7:11211
    [Google Scholar]
  18. 18.
    Urru A, Ricci F, Filippetti A, Íñiguez J, Fiorentini V. 2020. A three-order-parameter bistable magnetoelectric multiferroic metal. Nat. Commun. 11:4922
    [Google Scholar]
  19. 19.
    Shi Y, Guo Y, Wang X, Princep AJ, Khalyavin D et al. 2013. A ferroelectric-like structural transition in a metal. Nat. Mater. 12:1024–27
    [Google Scholar]
  20. 20.
    Fei Z, Zhao W, Palomaki TA, Sun B, Miller MK et al. 2018. Ferroelectric switching of a two-dimensional metal. Nature 560:336–39
    [Google Scholar]
  21. 21.
    Sharma P, Xiang FX, Shao DF, Zhang D, Tsymbal EY et al. 2019. A room-temperature ferroelectric semimetal. Sci. Adv. 5:eaax5080
    [Google Scholar]
  22. 22.
    Puggioni D, Giovannetti G, Rondinelli JM. 2018. Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors. J. Appl. Phys. 124:174102
    [Google Scholar]
  23. 23.
    Zhou WX, Ariando A. 2020. Review on ferroelectric/polar metals. Jpn. J. Appl. Phys. 59:SI0802
    [Google Scholar]
  24. 24.
    Hickox-Young D, Puggioni D, Rondinelli JM. 2022. Polar metals taxonomy for materials classification and discovery. arXiv:2210.05110 [cond-mat.mtrl-sci]
  25. 25.
    Kim TH, Puggioni D, Yuan Y, Xie L, Zhou H et al. 2016. Polar metals by geometric design. Nature 533:68–72
    [Google Scholar]
  26. 26.
    Özgür U, Alivov YI, Liu C, Teke A, Reshchikov MA et al. 2005. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98:041301
    [Google Scholar]
  27. 27.
    Ueno K, Taiga F, Kobayashi A, Fujioka H. 2019. Optical characteristics of highly conductive n-type GaN prepared by pulsed sputtering deposition. Sci. Rep. 9:20242
    [Google Scholar]
  28. 28.
    Jaffe H. 1958. Piezoelectric ceramics. J. Am. Ceram. Soc. 41:494–98
    [Google Scholar]
  29. 29.
    Moulson AJ, Herbert JM. 2003. Electroceramics: Materials, Properties, Applications West Sussex, UK: John Wiley & Sons
  30. 30.
    Buscaglia M, Buscaglia V, Viviani M, Nanni P, Hanuskova M. 2000. Influence of foreign ions on the crystal structure of BaTiO3.. J. Eur. Ceram. Soc. 20:1997–2007
    [Google Scholar]
  31. 31.
    Chen YL, Yang SF. 2011. PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties. Adv. Appl. Ceram. 110:257–69
    [Google Scholar]
  32. 32.
    Kolodiazhnyi T, Petric A, Niewczas M, Bridges C, Safa-Sefat A, Greedan JE. 2003. Thermoelectric power, Hall effect, and mobility of n-type BaTiO3. Phys. Rev. B 68:085205
    [Google Scholar]
  33. 33.
    Iguchi E, Kubota N, Nakamori T, Yamamoto N, Lee KJ. 1991. Polaronic conduction in n-type BaTiO3 doped with La2O3 or Gd2O3. Phys. Rev. B 43:8646–49
    [Google Scholar]
  34. 34.
    Gillot C, Michenaud JP, Maglione M, Jannot B. 1992. DC electrical resistivity of Nb-Doped BaTiO3 and EPR measurements. Solid State Commun. 84:1033–38
    [Google Scholar]
  35. 35.
    Kolodiazhnyi T. 2008. Insulator-metal transition and anomalous sign reversal of the dominant charge carriers in perovskite BaTiO3–δ. Phys. Rev. B 78:045107
    [Google Scholar]
  36. 36.
    Wang Y, Liu X, Burton JD, Jaswal SS, Tsymbal EY. 2012. Ferroelectric instability under screened Coulomb interactions. Phys. Rev. Lett. 109:247601
    [Google Scholar]
  37. 37.
    Cordero F, Trequattrini F, Craciun F, Langhammer HT, Quiroga DAB, Silva PS Jr. 2019. Probing ferroelectricity in highly conducting materials through their elastic response: persistence of ferroelectricity in metallic BaTiO3–δ. Phys. Rev. B 99:064106
    [Google Scholar]
  38. 38.
    Michel VF, Esswein T, Spaldin NA. 2021. Interplay between ferroelectricity and metallicity in BaTiO3. J. Mater. Chem. C 9:8640–49
    [Google Scholar]
  39. 39.
    Ma C, Jin K-J, Ge C, Yang G-Z. 2018. Strain-engineering stabilization of BaTiO3-based polar metals. Phys. Rev. B 97:115103
    [Google Scholar]
  40. 40.
    Walkingshaw AD, Spaldin NA, Artacho E. 2004. Density-functional study of charge doping in WO3. Phys. Rev. B 70:165110
    [Google Scholar]
  41. 41.
    Gu J-X, Jin K-J, Ma C, Zhang Q-H, Gu L et al. 2017. Coexistence of polar distortion and metallicity in PbTi1–xNbxO3. Phys. Rev. B 96:165206
    [Google Scholar]
  42. 42.
    Lewis G, Catlow C. 1986. Defect studies of doped and undoped barium titanate using computer simulation techniques. J. Phys. Chem. Solids 47:89–97
    [Google Scholar]
  43. 43.
    Liu J, Liu L, Zhang J, Jin L, Wang D et al. 2020. Charge effects in donor-doped perovskite ferroelectrics. J. Am. Ceram. Soc. 103:5392–99
    [Google Scholar]
  44. 44.
    Jeong IK, Lee S, Jeong SY, Won CJ, Hur N, Llobet A. 2011. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3–δ studied using neutron total scattering and Rietveld analysis. Phys. Rev. B 84:064125
    [Google Scholar]
  45. 45.
    Zhao HJ, Filippetti A, Escorihuela-Sayalero C, Delugas P, Canadell E et al. 2018. Meta-screening and permanence of polar distortion in metallized ferroelectrics. Phys. Rev. B 97:054107
    [Google Scholar]
  46. 46.
    He X, Jin K-J. 2016. Persistence of polar distortion with electron doping in lone-pair driven ferroelectrics. Phys. Rev. B 94:224107
    [Google Scholar]
  47. 47.
    Iijima T, Näfe H, Aldinger F. 2000. Ferroelectric properties of Al and Nb doped PbTiO3 thin films prepared by chemical solution deposition process. Integr. Ferroelectr. 30:9–17
    [Google Scholar]
  48. 48.
    Seidel J, Martin LW, He Q, Zhan Q, Chu YH et al. 2009. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8:229–34
    [Google Scholar]
  49. 49.
    López-Pérez J, Íñiguez J. 2011. Ab-initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7. Phys. Rev. B 84:075121
    [Google Scholar]
  50. 50.
    Ederer C, Spaldin NA. 2006. BaNiF: an electric field-switchable weak antiferromagnet. Phys. Rev. B 74:020401
    [Google Scholar]
  51. 51.
    Benedek NA, Fennie CJ. 2011. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106:107204
    [Google Scholar]
  52. 52.
    Núñez Valdez M, Spaldin NA 2019. Origin and evolution of ferroelectricity in the layered rare-earth-titanate, R2Ti2O7, Carpy-Galy phases. Polyhedron 171:181–92
    [Google Scholar]
  53. 53.
    Li S, Birol T. 2021. Free-carrier-induced ferroelectricity in layered perovskites. Phys. Rev. Lett. 127:087601
    [Google Scholar]
  54. 54.
    Yoshida Y, Ikeda SI, Matsuhata H, Shirakawa N, Lee CH, Katano S. 2005. Crystal and magnetic structure of Ca3Ru2O7. Phys. Rev. B 72:054412
    [Google Scholar]
  55. 55.
    Lei S, Gu M, Puggioni D, Stone G, Peng J et al. 2018. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal, Ca3Ru2O7. Nano Lett. 18:3088–95
    [Google Scholar]
  56. 56.
    Puggioni D, Rondinelli JM. 2014. Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy. Nat. Commun. 5:3432
    [Google Scholar]
  57. 57.
    Lichtenberg F, Herrnberger A, Wiedenmann K, Mannhart J. 2001. Synthesis of perovskite-related layered AnBnO3n+2 = ABOX type niobates and titanates and study of their structural, electric and magnetic properties. Prog. Solid. State Chem. 29:1–70
    [Google Scholar]
  58. 58.
    Luo W, Xu K, Xiang H. 2017. Two-dimensional hyperferroelectric metals: a different route to ferromagnetic-ferroelectric multiferroics. Phys. Rev. B 96:235415
    [Google Scholar]
  59. 59.
    Meng M, Wang Z, Fathima A, Ghosh S, Saghayezhian M et al. 2019. Interface-induced magnetic polar metal phase in complex oxides. Nat. Commun. 10:5248
    [Google Scholar]
  60. 60.
    Zhou WX, Wu HJ, Zhou J, Zeng SW, Li CJ et al. 2019. Artificial two-dimensional polar metal by charge transfer to a ferroelectric insulator. Commun. Phys. 2:125
    [Google Scholar]
  61. 61.
    Cao Y, Wang Z, Park SY, Yuan Y, Liu X et al. 2018. Artificial two-dimensional polar metal at room temperature. Nat. Commun. 9:1547
    [Google Scholar]
  62. 62.
    Phillpot SR, Gopalan V. 2004. Coupled displacive and order–disorder dynamics in LiNbO3 by molecular-dynamics simulation. Appl. Phys. Lett. 84:1916–18
    [Google Scholar]
  63. 63.
    Laurita NJ, Ron A, Shan JY, Puggioni D, Koocher NZ et al. 2019. Evidence for the weakly coupled electron mechanism in an Anderson-Blount polar metal. Nat. Commun. 10:3217
    [Google Scholar]
  64. 64.
    Xiang HJ. 2014. Origin of polar distortion in LiNbO3-type “ferroelectric” metals: role of a-site instability and short-range interactions. Phys. Rev. B 90:094108
    [Google Scholar]
  65. 65.
    Benedek NA, Birol T. 2016.. ‘ Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C 4:4000–15
    [Google Scholar]
  66. 66.
    Giovannetti G, Capone M. 2014. Dual nature of the ferroelectric and metallic state in LiOsO3. Phys. Rev. B 90:195113
    [Google Scholar]
  67. 67.
    Jin F, Zhang A, Ji J, Liu K, Wang L et al. 2016. Raman phonons in the ferroelectric-like metal LiOsO3. Phys. Rev. B 93:064303
    [Google Scholar]
  68. 68.
    Jin F, Wang L, Zhang A, Ji J, Shi Y et al. 2019. Raman interrogation of the ferroelectric phase transition in polar metal LiOsO3. PNAS 116:20322–27
    [Google Scholar]
  69. 69.
    Liu HM, Du YP, Xie YL, Liu JM, Duan CG, Wan X 2015. Metallic ferroelectricity induced by anisotropic unscreened coulomb interaction in LiOsO3. Phys. Rev. B 91:064104
    [Google Scholar]
  70. 70.
    Sim H, Kim BG. 2014. First-principles study of octahedral tilting and ferroelectric-like transition in metallic LiOsO3. Phys. Rev. B 89:201107
    [Google Scholar]
  71. 71.
    Pauling L. 1960. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry Ithaca, NY: Cornell Univ. Press
  72. 72.
    Lo Vecchio I, Giovannetti G, Autore M, Di Pietro P, Perucchi A et al. 2016. Electronic correlations in the ferroelectric metallic state of LiOsO3. Phys. Rev. B 93:161113
    [Google Scholar]
  73. 73.
    Paredes Aulestia EI, Cheung YW, Fang YW, He J, Yamaura K et al. 2018. Pressure-induced enhancement of non-polar to polar transition temperature in metallic LiOsO3. Appl. Phys. Lett. 113:012902
    [Google Scholar]
  74. 74.
    Narayan A. 2019. Effect of strain and doping on the polar metal phase in LiOsO3. J. Phys. Condens. Matter 32:125501
    [Google Scholar]
  75. 75.
    Lu J, Chen G, Luo W, Íñiguez J, Bellaiche L, Xiang H. 2019. Ferroelectricity with asymmetric hysteresis in metallic LiOsO3 ultrathin films. Phys. Rev. Lett. 122:227601
    [Google Scholar]
  76. 76.
    Yang Q, Wu M, Li J. 2018. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9:7160–64
    [Google Scholar]
  77. 77.
    Liu X, Yang Y, Hu T, Zhao G, Chen C, Ren W. 2019. Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale 11:18575–81
    [Google Scholar]
  78. 78.
    Garrity KF, Rabe KM, Vanderbilt D. 2014. Hyperferroelectrics: proper ferroelectrics with persistent polarization. Phys. Rev. Lett. 112:127601
    [Google Scholar]
  79. 79.
    Bennett JW, Garrity KF, Rabe KM, Vanderbilt D. 2012. Hexagonal ABC semiconductors as ferroelectrics. Phys. Rev. Lett. 109:167602
    [Google Scholar]
  80. 80.
    Birol T. 2018. Stable and switchable electric polarization in two dimensions. Nature 560:167602
    [Google Scholar]
  81. 81.
    Di Sante D, Barone P, Stroppa A, Garrity KF, Vanderbilt D, Picozzi S. 2016. Intertwined Rashba, Dirac, and Weyl Fermions in hexagonal hyperferroelectrics. Phys. Rev. Lett. 117:076401
    [Google Scholar]
  82. 82.
    Chen C, Wang S-S, Liu L, Yu Z-M, Sheng X-L et al. 2017. Ternary wurtzite CaAgBi materials family: A playground for essential and accidental, type-I and type-II Dirac fermions. Phys. Rev. Mater. 1:044201
    [Google Scholar]
  83. 83.
    Gao H, Kim Y, Venderbos JWF, Kane CL, Mele EJ et al. 2018. Dirac-Weyl semimetal: coexistence of Dirac and Weyl fermions in polar hexagonal ABC crystals. Phys. Rev. Lett. 121:106404
    [Google Scholar]
  84. 84.
    Du D, Lim A, Zhang C, Strohbeen PJ, Shourov EH et al. 2019. High electrical conductivity in the epitaxial polar metals LaAuGe and LaPtSb. APL Mater. 7:121107
    [Google Scholar]
  85. 85.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 2003. Magnetic control of ferroelectric polarization. Nature 426:55–58
    [Google Scholar]
  86. 86.
    Lei S, Chikara S, Puggioni D, Peng J, Zhu M et al. 2019. Comprehensive magnetic phase diagrams of the polar metal Ca3(Ru0.95Fe0.05)2O7. Phys. Rev. B 99:224411
    [Google Scholar]
  87. 87.
    McCall S, Cao G, Crow JE. 2003. Impact of magnetic fields on anisotropy in Ca3Ru2O7. Phys. Rev. B 67:094427
    [Google Scholar]
  88. 88.
    Yuan Y, Kissin P, Puggioni D, Cremin K, Lei S et al. 2019. Ultrafast quasiparticle dynamics in the correlated semimetal Ca3Ru2O7. Phys. Rev. B 99:155111
    [Google Scholar]
  89. 89.
    Zhang H, Shao YT, Chen R, Chen X, Susarla S et al. 2022. A room temperature polar magnetic metal. Phys. Rev. Mater. 6:044403
    [Google Scholar]
  90. 90.
    Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D et al. 2015. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6:7638
    [Google Scholar]
  91. 91.
    Tokura Y, Kanazawa N. 2021. Magnetic skyrmion materials. Chem. Rev. 121:2857–97
    [Google Scholar]
  92. 92.
    Zhang H, Deng B, Wang WC, Shi XQ. 2018. Parity-breaking in single-element phases: ferroelectric-like elemental polar metals. J. Phys. Condens. Matter 30:415504
    [Google Scholar]
  93. 93.
    Nukala P, Ren M, Agarwal R, Berger J, Liu G et al. 2017. Inverting polar domains via electrical pulsing in metallic germanium telluride. Nat. Commun. 8:15033
    [Google Scholar]
  94. 94.
    Shirodkar SN, Waghmare UV. 2014. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112:157601
    [Google Scholar]
  95. 95.
    Fei R, Kang W, Yang L 2016. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117:097601
    [Google Scholar]
  96. 96.
    Ding W, Zhu J, Wang Z, Gao Y, Xiao D et al. 2017. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8:14956
    [Google Scholar]
  97. 97.
    Rischau CW, Lin X, Grams CP, Finck D, Harms S et al. 2017. A ferroelectric quantum phase transition inside the superconducting dome of Sr1–xCaxTiO3δ. Nat. Phys. 13:643–48
    [Google Scholar]
  98. 98.
    Lee S, Bock JA, Trolier-McKinstry S, Randall CA. 2012. Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 32:3971–88
    [Google Scholar]
  99. 99.
    Sakai H, Ikeura K, Bahramy MS, Ogawa N, Hashizume D et al. 2016. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci. Adv. 2:e1601378
    [Google Scholar]
  100. 100.
    Wang C, Zhang Y, Huang J, Nie S, Liu G et al. 2016. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94:241119
    [Google Scholar]
  101. 101.
    Wu Y, Mou D, Jo NH, Sun K, Huang L et al. 2016. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94:121113
    [Google Scholar]
  102. 102.
    Zhang CL, Liang T, Bahramy MS, Ogawa N, Kocsis V et al. 2021. Berry curvature generation detected by Nernst responses in ferroelectric Weyl semimetal. PNAS 118:e2111855118
    [Google Scholar]
  103. 103.
    Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA. 2015. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14:871–82
    [Google Scholar]
  104. 104.
    Di Sante D, Barone P, Bertacco R, Picozzi S. 2013. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25:509–13. Correction. 2013. Adv. Mater. 25:3625–26
    [Google Scholar]
  105. 105.
    Arras R, Gosteau J, Zhao HJ, Paillard C, Yang Y, Bellaiche L 2019. Rashba-like spin-orbit and strain effects in tetragonal PbTiO3. Phys. Rev. B 100:174415
    [Google Scholar]
  106. 106.
    Ishizaka K, Bahramy MS, Murakawa H, Sakano M, Shimojima T et al. 2011. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10:521–26
    [Google Scholar]
  107. 107.
    Shanavas KV, Satpathy S. 2014. Electric field tuning of the Rashba effect in the polar perovskite structures. Phys. Rev. Lett. 112:086802
    [Google Scholar]
  108. 108.
    Bhowal S, Satpathy S. 2019. Electric field tuning of the anomalous Hall effect at oxide interfaces. npj Comput. Mater. 5:61
    [Google Scholar]
  109. 109.
    Picozzi S. 2014. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2:10
    [Google Scholar]
  110. 110.
    Varotto S, Nessi L, Cecchi S, Sławińska J, Noël P et al. 2021. Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nat. Electron. 4:740–47
    [Google Scholar]
  111. 111.
    Yan B, Felser C. 2017. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8:337–54
    [Google Scholar]
  112. 112.
    Armitage NP, Mele EJ, Vishwanath A. 2018. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90:015001
    [Google Scholar]
  113. 113.
    Lv BQ, Qian T, Ding H. 2021. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93:025002
    [Google Scholar]
  114. 114.
    Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349:613–17
    [Google Scholar]
  115. 115.
    Lv BQ, Weng HM, Fu BB, Wang XP, Miao H et al. 2015. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5:031013
    [Google Scholar]
  116. 116.
    Huang SM, Xu SY, Belopolski I, Lee CC, Chang G et al. 2015. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6:7373
    [Google Scholar]
  117. 117.
    Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S et al. 2012. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8:800–3
    [Google Scholar]
  118. 118.
    Dziawa P, Kowalski BJ, Dybko K, Buczko R, Szczerbakow A et al. 2012. Topological crystalline insulator states in Pb1–xSnxSe. Nat. Mater. 11:1023–27
    [Google Scholar]
  119. 119.
    O'Neill CD, Sokolov DA, Hermann A, Bossak A, Stock C, Huxley AD. 2017. Inelastic X-ray investigation of the ferroelectric transition in SnTe. Phys. Rev. B 95:144101
    [Google Scholar]
  120. 120.
    Li R, Xu Y, He J, Ullah S, Li J et al. 2016. Weyl ferroelectric semimetal. arXiv:1610.07142 [cond-mat.mtrl-sci]
  121. 121.
    Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M et al. 2015. Type-II Weyl semimetals. Nature 527:495–98
    [Google Scholar]
  122. 122.
    Li P, Wen Y, He X, Zhang Q, Xia C et al. 2017. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8:2150
    [Google Scholar]
  123. 123.
    Yu WC, Zhou X, Chuang FC, Yang SA, Lin H, Bansil A. 2018. Nonsymmorphic cubic Dirac point and crossed nodal rings across the ferroelectric phase transition in LiOsO3. Phys. Rev. Mater. 2:051201
    [Google Scholar]
  124. 124.
    Song Z, Dai X. 2019. Hear the sound of Weyl fermions. Phys. Rev. X 9:021053
    [Google Scholar]
  125. 125.
    Xiang J, Hu S, Song Z, Lv M, Zhang J et al. 2019. Giant magnetic quantum oscillations in the thermal conductivity of TaAs: indications of chiral zero sound. Phys. Rev. X 9:031036
    [Google Scholar]
  126. 126.
    Sodemann I, Fu L. 2015. Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115:216806
    [Google Scholar]
  127. 127.
    Ma Q, Xu SY, Shen H, MacNeill D, Fatemi V et al. 2019. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565:337–42
    [Google Scholar]
  128. 128.
    Kang K, Li T, Sohn E, Shan J, Mak KF. 2019. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18:324–28
    [Google Scholar]
  129. 129.
    Xiao RC, Shao DF, Huang W, Jiang H. 2020. Electrical detection of ferroelectriclike metals through the nonlinear Hall effect. Phys. Rev. B 102:024109
    [Google Scholar]
  130. 130.
    Levitov LS, Nazarov YV, Éliashberg GM. 1985. Magnetoelectric effects in conductors with mirror isomer symmetry. J. Exp. Theor. Phys. 61:133
    [Google Scholar]
  131. 131.
    Yoda T, Yokoyama T, Murakami S. 2015. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 5:12024
    [Google Scholar]
  132. 132.
    Zhong S, Moore JE, Souza I. 2016. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116:077201
    [Google Scholar]
  133. 133.
    Tsirkin SS, Puente PA, Souza I. 2018. Gyrotropic effects in trigonal tellurium studied from first principles. Phys. Rev. B 97:035158
    [Google Scholar]
  134. 134.
    He WY, Goldhaber-Gordon D, Law KT. 2020. Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat. Commun. 11:1650
    [Google Scholar]
  135. 135.
    Bhowal S, Satpathy S. 2020. Orbital gyrotropic magnetoelectric effect and its strain engineering in monolayer NbX2. Phys. Rev. B 102:201403
    [Google Scholar]
  136. 136.
    Bhowal S, Collins SP, Spaldin NA. 2022. Hidden k-space magnetoelectric multipoles in nonmagnetic ferroelectrics. Phys. Rev. Lett. 128:116402
    [Google Scholar]
  137. 137.
    Spaldin NA, Fiebig M, Mostovoy M. 2008. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter. 20:434203
    [Google Scholar]
  138. 138.
    Spaldin NA, Fechner M, Bousquet E, Balatsky A, Nordström L. 2013. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88:094429
    [Google Scholar]
  139. 139.
    Kanasugi S, Yanase Y. 2018. Spin-orbit-coupled ferroelectric superconductivity. Phys. Rev. B 98:024521
    [Google Scholar]
  140. 140.
    Rowley SE, Spalek LJ, Smith RP, Dean MPM, Itoh M et al. 2014. Ferroelectric quantum criticality. Nat. Phys. 10:367–72
    [Google Scholar]
  141. 141.
    Edge JM, Kedem Y, Aschauer U, Spaldin NA, Balatsky AV. 2015. Quantum critical origin of the superconducting dome in SrTiO3. Phys. Rev. Lett. 115:247002
    [Google Scholar]
  142. 142.
    Salmani-Rezaie S, Ahadi K, Stemmer S. 2020. Polar nanodomains in a ferroelectric superconductor. Nano Lett. 20:6542–47
    [Google Scholar]
  143. 143.
    Stucky A, Scheerer GW, Ren Z, Jaccard D, Poumirol JM et al. 2016. Isotope effect in superconducting n-doped SrTiO3. Sci. Rep. 6:37582
    [Google Scholar]
  144. 144.
    Ahadi K, Galletti L, Li Y, Salmani-Rezaie S, Wu W, Stemmer S. 2019. Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 5:eaaw0120
    [Google Scholar]
  145. 145.
    Herrera C, Cerbin J, Jayakody A, Dunnett K, Balatsky AV, Sochnikov I. 2019. Strain-engineered interaction of quantum polar and superconducting phases. Phys. Rev. Mater. 3:124801
    [Google Scholar]
  146. 146.
    Ueno K, Nakamura S, Shimotani H, Yuan HT, Kimura N et al. 2011. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Nat. Nanotechnol. 6:408–12
    [Google Scholar]
  147. 147.
    Liu C, Yan X, Jin D, Ma Y, Hsiao HW et al. 2021. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371:716–21
    [Google Scholar]
  148. 148.
    Gastiasoro MN, Trevisan TV, Fernandes RM. 2020. Anisotropic superconductivity mediated by ferroelectric fluctuations in cubic systems with spin-orbit coupling. Phys. Rev. B 101:174501
    [Google Scholar]
  149. 149.
    Enderlein C, de Oliveira JF, Tompsett DA, Saitovitch EB, Saxena SS et al. 2020. Superconductivity mediated by polar modes in ferroelectric metals. Nat. Commun. 11:4852
    [Google Scholar]
  150. 150.
    Kozii V, Bi Z, Ruhman J. 2019. Superconductivity near a ferroelectric quantum critical point in ultralow-density Dirac materials. Phys. Rev. X 9:031046
    [Google Scholar]
  151. 151.
    Sai N, Fennie CJ, Demkov AA. 2009. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys. Rev. Lett. 102:107601
    [Google Scholar]
  152. 152.
    Nordlander J, Campanini M, Rossell MD, Erni R, Meier QN et al. 2019. The ultrathin limit of improper ferroelectricity. Nat. Commun. 10:5591
    [Google Scholar]
  153. 153.
    Bennett JW. 2020. Surveying polar materials in the inorganic crystal structure database to identify emerging structure types. J. Solid State Chem. 281:121045
    [Google Scholar]
  154. 154.
    Fang Y-W, Chen H 2020. Design of a multifunctional polar metal via first-principles high-throughput structure screening. Commun. Mater. 1:1
    [Google Scholar]
  155. 155.
    Rondinelli JM, May SJ, Freeland JW. 2012. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37:261–70
    [Google Scholar]
  156. 156.
    Mundy JA, Grosso BF, Heikes CA, Segedin DF, Wang Z et al. 2020. A high-energy density antiferroelectric made by interfacial electrostatic engineering. arXiv:1812.09615 [cond-mat.mtrl-sci]
  157. 157.
    Zabalo A, Stengel M. 2021. Switching a polar metal via strain gradients. Phys. Rev. Lett. 126:127601
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-105501
Loading
/content/journals/10.1146/annurev-matsci-080921-105501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error