1932

Abstract

Ventral tegmental area (VTA) dopamine (DA) neurons are often thought to uniformly encode reward prediction errors. Conversely, DA release in the nucleus accumbens (NAc), the prominent projection target of these neurons, has been implicated in reinforcement learning, motivation, aversion, and incentive salience. This contrast between heterogeneous functions of DA release versus a homogeneous role for DA neuron activity raises numerous questions regarding how VTA DA activity translates into NAc DA release. Further complicating this issue is increasing evidence that distinct VTA DA projections into defined NAc subregions mediate diverse behavioral functions. Here, we evaluate evidence for heterogeneity within the mesoaccumbal DA system and argue that frameworks of DA function must incorporate the precise topographic organization of VTA DA neurons to clarify their contribution to health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110920-011929
2022-07-08
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110920-011929.html?itemId=/content/journals/10.1146/annurev-neuro-110920-011929&mimeType=html&fmt=ahah

Literature Cited

  1. Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ. 1989. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:51655–58
    [Google Scholar]
  2. Adrover MF, Shin JH, Quiroz C, Ferré S, Lemos JC, Alvarez VA. 2020. Prefrontal cortex-driven dopamine signals in the striatum show unique spatial and pharmacological properties. J. Neurosci. 40:397510–22
    [Google Scholar]
  3. Aitken TJ, Greenfield VY, Wassum KM. 2016. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues. J. Neurochem. 136:51026–36
    [Google Scholar]
  4. Albanese A, Minciacchi D 1983. Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J. Comp. Neurol. 216:4406–20
    [Google Scholar]
  5. Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP et al. 2015. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87:51063–77
    [Google Scholar]
  6. Aransay A, Rodríguez-López C, García-Amado M, Clascá F, Prensa L 2015. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front. Neuroanat. 9:59
    [Google Scholar]
  7. Badrinarayan A, Wescott SA, Vander Weele CM, Saunders BT, Couturier BE et al. 2012. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J. Neurosci. 32:4515779–90
    [Google Scholar]
  8. Bayer HM, Glimcher PW. 2005. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:1129–41
    [Google Scholar]
  9. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K et al. 2015. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162:3622–34
    [Google Scholar]
  10. Belin-Rauscent A, Everitt BJ, Belin D. 2012. Intrastriatal shifts mediate the transition from drug-seeking actions to habits. Biol. Psychiatry 72:5343–45
    [Google Scholar]
  11. Berendse HW, Graaf YG-D, Groenewegen HJ. 1992. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 316:3314–47
    [Google Scholar]
  12. Berke JD. 2018. What does dopamine mean?. Nat. Neurosci. 21:6787–93
    [Google Scholar]
  13. Bjorklund A, Dunnett SB. 2007. Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202
    [Google Scholar]
  14. Breton JM, Charbit AR, Snyder BJ, Fong PTK, Dias EV et al. 2019. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J. Comp. Neurol. 527:5916–41
    [Google Scholar]
  15. Brischoux F, Chakraborty S, Brierley DI, Ungless MA. 2009. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. PNAS 106:124894–99
    [Google Scholar]
  16. Bromberg-Martin ES, Matsumoto M, Hikosaka O 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:5815–34
    [Google Scholar]
  17. Budygin EA, Park J, Bass CE, Grinevich VP, Bonin KD, Wightman RM. 2012. Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 201:331–37
    [Google Scholar]
  18. Cabib S, Puglisi-Allegra S. 1994. Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. J. Neurosci. 14:5 Part 23333–40
    [Google Scholar]
  19. Cai LX, Pizano K, Gundersen GW, Hayes CL, Fleming WT et al. 2020. Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different times. eLife 9:e54936
    [Google Scholar]
  20. Cardozo Pinto DF, Lammel S 2018. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacol. Biochem. Behav. 174:23–32
    [Google Scholar]
  21. Castro DC, Bruchas MR. 2019. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 102:3529–52
    [Google Scholar]
  22. Coddington LT, Dudman JT. 2019. Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron 104:163–77
    [Google Scholar]
  23. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:738385–88
    [Google Scholar]
  24. Collins AL, Saunders BT. 2020. Heterogeneity in striatal dopamine circuits: form and function in dynamic reward seeking. J. Neurosci. Res. 98:61046–69
    [Google Scholar]
  25. Cone JJ, Fortin SM, McHenry JA, Stuber GD, McCutcheon JE, Roitman MF. 2016. Physiological state gates acquisition and expression of mesolimbic reward prediction signals. PNAS 113:71943–48
    [Google Scholar]
  26. Dabney W, Kurth-Nelson Z, Uchida N, Starkweather CK, Hassabis D et al. 2020. A distributional code for value in dopamine-based reinforcement learning. Nature 577:7792671–75
    [Google Scholar]
  27. Day JJ, Roitman MF, Wightman RM, Carelli RM. 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10:81020–28
    [Google Scholar]
  28. Dayan P, Berridge KC. 2014. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. Cogn. Affect. Behav. Neurosci. 14:2473–92
    [Google Scholar]
  29. de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C et al. 2019. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101:1133–51.e7This study demonstrates that dopamine release dynamics are specialized in distinct striatal areas to encode reward or aversion.
    [Google Scholar]
  30. Dennis EJ, El Hady A, Michaiel A, Clemens A, Tervo DRG et al. 2021. Systems neuroscience of natural behaviors in rodents. J. Neurosci. 41:5911–19
    [Google Scholar]
  31. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ et al. 2019. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570:7762509–13This study reveals novel computational metrics within individual dopamine neurons by exploiting longitudinal 2-photon imaging.
    [Google Scholar]
  32. Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, Uchida N. 2015. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525:7568243–46
    [Google Scholar]
  33. Eshel N, Tian J, Bukwich M, Uchida N. 2016. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19:3479–86
    [Google Scholar]
  34. Everitt BJ, Robbins TW. 2013. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37:9 Pt. A1946–54
    [Google Scholar]
  35. Faget L, Osakada F, Duan J, Ressler R, Johnson AB et al. 2016. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep 15:122796–808
    [Google Scholar]
  36. Farassat N, Costa KM, Stojanovic S, Albert S, Kovacheva L et al. 2019. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. eLife 8:e48408This study provides detailed mapping of electrophysiological properties of location- and projection-defined dopamine neurons in vivo.
    [Google Scholar]
  37. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A et al. 2011. A selective role for dopamine in stimulus-reward learning. Nature 469:732853–57
    [Google Scholar]
  38. Fleming W, Jewell S, Engelhard B, Witten DM, Witten IB. 2021. Inferring spikes from calcium imaging in dopamine neurons. PLOS ONE 16:6e0252345
    [Google Scholar]
  39. Floresco SB, West AR, Ash B, Moore H, Grace AA 2003. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6:9968–73
    [Google Scholar]
  40. Franklin KBJ, Paxinos G. 2001. Paxinos and Franklin's The Mouse Brain in Stereotaxic Coordinates Amsterdam: Academic Press. , 2nd ed..
  41. Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. 2016. Dopamine neurons encode performance error in singing birds. Science 354:63171278–82
    [Google Scholar]
  42. Gardner MPH, Schoenbaum G, Gershman SJ. 2018. Rethinking dopamine as generalized prediction error. Proc. Biol. Sci. 285:189120181645
    [Google Scholar]
  43. Gershman SJ, Uchida N. 2019. Believing in dopamine. Nat. Rev. Neurosci. 20:11703–14
    [Google Scholar]
  44. Grace AA, Bunney BS. 1984. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4:112877–90
    [Google Scholar]
  45. Groenewegen HJ. 1988. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography.. Neuroscience 24:2379–431
    [Google Scholar]
  46. Guarraci FA, Kapp BS. 1999. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential Pavlovian fear conditioning in the awake rabbit. Behav. Brain Res. 99:2169–79
    [Google Scholar]
  47. Guyenet PG, Aghajanian GK. 1978. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150:169–84
    [Google Scholar]
  48. Haber SN, Fudge JL, McFarland NR. 2000. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20:62369–82
    [Google Scholar]
  49. Haber SN, Knutson B. 2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:14–26
    [Google Scholar]
  50. Hamid AA, Frank MJ, Moore CI. 2021. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 184:102733–49.e16
    [Google Scholar]
  51. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R et al. 2016. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19:1117–26
    [Google Scholar]
  52. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. 2016. Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 80:7509–21This anatomical study demonstrates that homologous striatal compartments in rodents and primates receive specialized glutamatergic inputs.
    [Google Scholar]
  53. Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C et al. 2020. Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron 105:5909–20.e5
    [Google Scholar]
  54. Hollerman JR, Schultz W. 1998. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1:4304–9
    [Google Scholar]
  55. Howe MW, Tierney PL, Sandberg SG, Phillips PEM, Graybiel AM. 2013. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:7464575–79
    [Google Scholar]
  56. Hsu TM, Bazzino P, Hurh SJ, Konanur VR, Roitman JD, Roitman MF. 2020. Thirst recruits phasic dopamine signaling through subfornical organ neurons. PNAS 117:4830744–54
    [Google Scholar]
  57. Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R. 2002. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:2475–92
    [Google Scholar]
  58. Ikemoto S. 2007. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56:127–78
    [Google Scholar]
  59. Imperato A, Cabib S, Puglisi-Allegra S. 1993. Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Res. 601:1–2333–36
    [Google Scholar]
  60. Jackson ME, Moghaddam B 2004. Stimulus-specific plasticity of prefrontal cortex dopamine neurotransmission. J. Neurochem. 88:61327–34
    [Google Scholar]
  61. Jo YS, Heymann G, Zweifel LS. 2018. Dopamine neurons reflect the uncertainty in fear generalization. Neuron 100:4916–25.e3
    [Google Scholar]
  62. Joel D, Weiner I 2000. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:3451–74
    [Google Scholar]
  63. Jones JL, Day JJ, Aragona BJ, Wheeler RA, Wightman RM, Carelli RM. 2010. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol. Psychiatry 67:8737–44
    [Google Scholar]
  64. Jones MW, Kilpatrick IC, Phillipson OT. 1989. Regulation of dopamine function in the nucleus accumbens of the rat by the thalamic paraventricular nucleus and adjacent midline nuclei. Exp. Brain Res. 76:3572–80
    [Google Scholar]
  65. Juarez B, Han M-H. 2016. Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology 41:102424–46
    [Google Scholar]
  66. Keiflin R, Janak PH. 2015. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry. Neuron 88:2247–63
    [Google Scholar]
  67. Keiflin R, Pribut HJ, Shah NB, Janak PH. 2019. Ventral tegmental dopamine neurons participate in reward identity predictions. Curr. Biol. 29:193–103.e3This study delineates the actions of ventral tegmental area dopamine neurons in forming rich, model-based representations to support learning.
    [Google Scholar]
  68. Kelley AE. 2004. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci. Biobehav. Rev. 27:8765–76
    [Google Scholar]
  69. Kim HR, Malik AN, Mikhael JG, Bech P, Tsutsui-Kimura I et al. 2020. A unified framework for dopamine signals across timescales. Cell 183:61600–16.e25This study argues that dopamine activity and release is best described as reward prediction error.
    [Google Scholar]
  70. Kim Y, Wood J, Moghaddam B 2012. Coordinated activity of ventral tegmental neurons adapts to appetitive and aversive learning. PLOS ONE 7:1e29766
    [Google Scholar]
  71. Kim Y-B, Matthews M, Moghaddam B. 2010. Putative γ-aminobutyric acid neurons in the ventral tegmental area have a similar pattern of plasticity as dopamine neurons during appetitive and aversive learning. Eur. J. Neurosci. 32:91564–72
    [Google Scholar]
  72. Kosillo P, Zhang Y-F, Threlfell S, Cragg SJ 2016. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb. Cortex 26:114160–69
    [Google Scholar]
  73. Krabbe S, Duda J, Schiemann J, Poetschke C, Schneider G et al. 2015. Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. PNAS 112:12E1498–506
    [Google Scholar]
  74. Kramer DJ, Aisenberg EE, Kosillo P, Friedmann D, Stafford DA et al. 2021. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep 35:6109123
    [Google Scholar]
  75. Kreitzer AC. 2009. Physiology and pharmacology of striatal neurons. Annu. Rev. Neurosci. 32:127–47
    [Google Scholar]
  76. Kremer Y, Flakowski J, Rohner C, Lüscher C. 2020. Context-dependent multiplexing by individual VTA dopamine neurons. J. Neurosci. 40:397489–509The authors demonstrate diverse behaviorally relevant computations within the spiking of individual dopamine neurons.
    [Google Scholar]
  77. Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J 2008. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:5760–73
    [Google Scholar]
  78. Lammel S, Ion DI, Roeper J, Malenka RC 2011. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:5855–62
    [Google Scholar]
  79. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ et al. 2012. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:7423212–17
    [Google Scholar]
  80. Langdon AJ, Sharpe MJ, Schoenbaum G, Niv Y. 2018. Model-based predictions for dopamine. Curr. Opin. Neurobiol. 49:1–7
    [Google Scholar]
  81. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT et al. 2015. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:3635–47
    [Google Scholar]
  82. Liu C, Goel P, Kaeser PS. 2021. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22:6345–58
    [Google Scholar]
  83. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser PS 2018. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172:4706–18.e15This is a foundational study detailing unique challenges in relating activity of dopamine neurons to subsequent dopamine release.
    [Google Scholar]
  84. Liu Y, Jean-Richard-Dit-Bressel P, Yau JO-Y, Willing A, Prasad AA et al. 2020. The mesolimbic dopamine activity signatures of relapse to alcohol-seeking. J. Neurosci. 40:336409–27
    [Google Scholar]
  85. Ljungberg T, Apicella P, Schultz W 1991. Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res 567:2337–41
    [Google Scholar]
  86. Ljungberg T, Apicella P, Schultz W 1992. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67:1145–63
    [Google Scholar]
  87. Lloyd K, Dayan P 2015. Tamping ramping: algorithmic, implementational, and computational explanations of phasic dopamine signals in the accumbens. PLOS Comput. Biol. 11:12e1004622
    [Google Scholar]
  88. Lowet AS, Zheng Q, Matias S, Drugowitsch J, Uchida N 2020. Distributional reinforcement learning in the brain. Trends Neurosci 43:12980–97
    [Google Scholar]
  89. Mantz J, Thierry AM, Glowinski J. 1989. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 476:2377–81
    [Google Scholar]
  90. Margolis EB, Lock H, Hjelmstad GO, Fields HL. 2006. The ventral tegmental area revisited: Is there an electrophysiological marker for dopaminergic neurons?. J. Physiol. 577:907–24
    [Google Scholar]
  91. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F et al. 2009. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29:2444–53
    [Google Scholar]
  92. Matsumoto M, Hikosaka O. 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:7248837–41
    [Google Scholar]
  93. Menegas W, Bergan JF, Ogawa SK, Isogai Y, Venkataraju KU et al. 2015. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4:e10032
    [Google Scholar]
  94. Mirenowicz J, Schultz W. 1996. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:6564449–51
    [Google Scholar]
  95. Mogenson GJ, Jones DL, Yim CY. 1980. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14:2–369–97
    [Google Scholar]
  96. Mohebi A, Pettibone JR, Hamid AA, Wong J-MT, Vinson LT et al. 2019. Dissociable dopamine dynamics for learning and motivation. Nature 570:775965–70
    [Google Scholar]
  97. Montague PR, McClure SM, Baldwin PR, Phillips PEM, Budygin EA et al. 2004. Dynamic gain control of dopamine delivery in freely moving animals. J. Neurosci. 24:71754–59
    [Google Scholar]
  98. Morales M, Margolis EB. 2017. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18:273–85
    [Google Scholar]
  99. Nestler EJ, Carlezon WA. 2006. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59:121151–59
    [Google Scholar]
  100. Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R et al. 2016. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90:61286–98
    [Google Scholar]
  101. Niv Y, Daw ND, Joel D, Dayan P 2007. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191:3507–20
    [Google Scholar]
  102. Otomo K, Perkins J, Kulkarni A, Stojanovic S, Roeper J, Paladini CA 2020. In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons. Nat. Commun. 11:16286
    [Google Scholar]
  103. Paladini CA, Roeper J. 2014. Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 282:109–21
    [Google Scholar]
  104. Parsons MP, Li S, Kirouac GJ 2007. Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J. Comp. Neurol. 500:61050–63
    [Google Scholar]
  105. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396eaat4422
    [Google Scholar]
  106. Paxinos G, Watson C. 2007. The Rat Brain in Stereotaxic Coordinates San Diego, CA: Academic. , 6th ed..
  107. Pinto A, Jankowski M, Sesack SR. 2003. Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: ultrastructural characteristics and spatial relationships with dopamine afferents. J. Comp. Neurol. 459:2142–55
    [Google Scholar]
  108. Poulin J-F, Caronia G, Hofer C, Cui Q, Helm B et al. 2018. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21:91260–71
    [Google Scholar]
  109. Poulin J-F, Gaertner Z, Moreno-Ramos OA, Awatramani R. 2020. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. Trends Neurosci 43:3155–69
    [Google Scholar]
  110. Qi J, Zhang S, Wang H-L, Wang H, de Jesus Aceves Buendia J et al. 2014. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat. Commun. 5:5390
    [Google Scholar]
  111. Robinson TE, Berridge KC. 2008. The incentive sensitization theory of addiction: some current issues. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363:15073137–46
    [Google Scholar]
  112. Roeper J. 2013. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:6336–42
    [Google Scholar]
  113. Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM. 2004. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24:61265–71
    [Google Scholar]
  114. Roitman MF, Wheeler RA, Wightman RM, Carelli RM. 2008. Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat. Neurosci. 11:121376–77
    [Google Scholar]
  115. Russek EM, Momennejad I, Botvinick MM, Gershman SJ, Daw ND. 2017. Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLOS Comput. Biol. 13:9e1005768
    [Google Scholar]
  116. Sabatini BL. 2019. The impact of reporter kinetics on the interpretation of data gathered with fluorescent reporters. bioRxiv 834895. https://doi.org/10.1101/834895
    [Crossref]
  117. Sabatini BL, Tian L. 2020. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108:117–32
    [Google Scholar]
  118. Sadacca BF, Jones JL, Schoenbaum G 2016. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework. eLife 5:e13665
    [Google Scholar]
  119. Salinas-Hernández XI, Vogel P, Betz S, Kalisch R, Sigurdsson T, Duvarci S 2018. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. eLife 7:e38818
    [Google Scholar]
  120. Saunders BT, Richard JM, Margolis EB, Janak PH. 2018. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci. 21:81072–83This elegant study delineates circuit-specific behavioral functions of dopamine neurons in Pavlovian conditioning.
    [Google Scholar]
  121. Schultz W. 2007. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30:259–88
    [Google Scholar]
  122. Schultz W. 2019. Recent advances in understanding the role of phasic dopamine activity. F1000Research 8:1680
    [Google Scholar]
  123. Schultz W, Apicella P, Ljungberg T 1993. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13:3900–913
    [Google Scholar]
  124. Schultz W, Dayan P, Montague P. 1997. A neural substrate of prediction and reward. Science 275:53061593–99
    [Google Scholar]
  125. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI 1998. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18:72697–708
    [Google Scholar]
  126. Sharpe MJ, Batchelor HM, Mueller LE, Chang CY, Maes EJP et al. 2020. Dopamine transients do not act as model-free prediction errors during associative learning. Nat. Commun. 11:1106This study provides evidence from three behavioral preparations that dopamine neurons participate in forming model-based representations.
    [Google Scholar]
  127. Sharpe MJ, Chang CY, Liu MA, Batchelor HM, Mueller LE et al. 2017. Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nat. Neurosci. 20:5735–42
    [Google Scholar]
  128. Stalnaker TA, Howard JD, Takahashi YK, Gershman SJ, Kahnt T, Schoenbaum G 2019. Dopamine neuron ensembles signal the content of sensory prediction errors. eLife 8:e49315
    [Google Scholar]
  129. Steidl S, Wang H, Ordonez M, Zhang S, Morales M. 2017. Optogenetic excitation in the ventral tegmental area of glutamatergic or cholinergic inputs from the laterodorsal tegmental area drives reward. Eur. J. Neurosci. 45:4559–71
    [Google Scholar]
  130. Sulzer D, Cragg SJ, Rice ME. 2016. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 6:3123–48
    [Google Scholar]
  131. Sun F, Zeng J, Jing M, Zhou J, Feng J et al. 2018. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:2481–96.e19
    [Google Scholar]
  132. Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press. , 2nd ed..
  133. Takahashi YK, Batchelor HM, Liu B, Khanna A, Morales M, Schoenbaum G. 2017. Dopamine neurons respond to errors in the prediction of sensory features of expected rewards. Neuron 95:61395–405.e3
    [Google Scholar]
  134. Takahashi YK, Langdon AJ, Niv Y, Schoenbaum G. 2016. Temporal specificity of reward prediction errors signaled by putative dopamine neurons in rat VTA depends on ventral striatum. Neuron 91:1182–93
    [Google Scholar]
  135. Takahashi YK, Roesch MR, Wilson RC, Toreson K, O'Donnell P et al. 2011. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat. Neurosci. 14:121590–97
    [Google Scholar]
  136. Takahashi YK, Schoenbaum G. 2016. Ventral striatal lesions disrupt dopamine neuron signaling of differences in cue value caused by changes in reward timing but not number. Behav. Neurosci. 130:6593–99
    [Google Scholar]
  137. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M et al. 2016. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:2372–82
    [Google Scholar]
  138. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ 2012. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:158–64
    [Google Scholar]
  139. Tian J, Huang R, Cohen JY, Osakada F, Kobak D et al. 2016. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron 91:61374–89
    [Google Scholar]
  140. Tsutsui-Kimura I, Matsumoto H, Akiti K, Yamada MM, Uchida N, Watabe-Uchida M 2020. Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. eLife 9:e62390
    [Google Scholar]
  141. Ungless MA, Grace AA. 2012. Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 35:422–30
    [Google Scholar]
  142. Ungless MA, Magill PJ, Bolam JP. 2004. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:56662040–42
    [Google Scholar]
  143. Vancraeyenest P, Arsenault JT, Li X, Zhu Q, Kobayashi K et al. 2020. Selective mesoaccumbal pathway inactivation affects motivation but not reinforcement-based learning in macaques. Neuron 108:3568–81.e6
    [Google Scholar]
  144. Verharen JPH, Zhu Y, Lammel S. 2020. Aversion hot spots in the dopamine system. Curr. Opin. Neurobiol. 64:46–52
    [Google Scholar]
  145. Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA. 2004. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:8468–74
    [Google Scholar]
  146. Waelti P, Dickinson A, Schultz W. 2001. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:684243–48
    [Google Scholar]
  147. Wassum KM, Ostlund SB, Maidment NT. 2012. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatry 71:10846–54
    [Google Scholar]
  148. Watabe-Uchida M, Eshel N, Uchida N 2017. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40:373–94
    [Google Scholar]
  149. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. 2012. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:5858–73
    [Google Scholar]
  150. Willuhn I, Burgeno LM, Everitt BJ, Phillips PEM. 2012. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. PNAS 109:5020703–8
    [Google Scholar]
  151. Willuhn I, Burgeno LM, Groblewski PA, Phillips PEM. 2014. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat. Neurosci. 17:5704–9
    [Google Scholar]
  152. Wise RA. 2004. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5:6483–94
    [Google Scholar]
  153. Wise RA, Robble MA. 2020. Dopamine and addiction. Annu. Rev. Psychol. 71:79–106
    [Google Scholar]
  154. Wolfart J, Roeper J. 2002. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci. 22:93404–13
    [Google Scholar]
  155. Wright CI, Beijer AV, Groenewegen HJ. 1996. Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J. Neurosci. 16:51877–93
    [Google Scholar]
  156. Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. 2018. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97:2434–49.e4
    [Google Scholar]
  157. Young AMJ. 2004. Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J. Neurosci. Methods. 138:1–257–63
    [Google Scholar]
  158. Yuan L, Dou Y-N, Sun Y-G. 2019. Topography of reward and aversion encoding in the mesolimbic dopaminergic system. J. Neurosci. 39:336472–81
    [Google Scholar]
  159. Zahm DS, Brog JS. 1992. On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:4751–67
    [Google Scholar]
  160. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ et al. 2009. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. PNAS 106:187281–88
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110920-011929
Loading
/content/journals/10.1146/annurev-neuro-110920-011929
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error