1932

Abstract

During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties—collectively referred to as the blood–brain barrier—that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-102127
2022-07-08
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-102127.html?itemId=/content/journals/10.1146/annurev-neuro-111020-102127&mimeType=html&fmt=ahah

Literature Cited

  1. Aird WC. 2012. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2:a006429
    [Google Scholar]
  2. Allinson KR, Lee HS, Fruttiger M, McCarty JH, Arthur HM. 2012. Endothelial expression of TGFβ type II receptor is required to maintain vascular integrity during postnatal development of the central nervous system. PLOS ONE 7:e39336
    [Google Scholar]
  3. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ et al. 2011. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–31
    [Google Scholar]
  4. Anbalagan S, Gordon L, Blechman J, Matsuoka RL, Rajamannar P et al. 2018. Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev. Cell 47:711–26.e5
    [Google Scholar]
  5. Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR et al. 2011. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. PNAS 108:2807–12
    [Google Scholar]
  6. Apte RS, Chen DS, Ferrara N 2019. VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–64
    [Google Scholar]
  7. Argandoña EG, Lafuente JV. 2000. Influence of visual experience deprivation on the postnatal development of the microvascular bed in layer IV of the rat visual cortex. Brain Res 855:137–42
    [Google Scholar]
  8. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E et al. 2010. Pericytes regulate the blood-brain barrier. Nature 468:557–61
    [Google Scholar]
  9. Arnold TD, Ferrero GM, Qiu H, Phan IT, Akhurst RJ et al. 2012. Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. J. Neurosci. 32:1197–206
    [Google Scholar]
  10. Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K et al. 2014. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 141:4489–99
    [Google Scholar]
  11. Ashton N. 1957. Experimental retrolental fibroplasia. Annu. Rev. Med. 8:441–54
    [Google Scholar]
  12. Bader BL, Rayburn H, Crowley D, Hynes RO. 1998. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–19
    [Google Scholar]
  13. Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V et al. 2019. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug. Des. Dev. Ther. 13:3591–3605
    [Google Scholar]
  14. Bakhsheshian J, Strickland BA, Mack WJ, Zlokovic BV 2021. Investigating the blood-spinal cord barrier in preclinical models: a systematic review of in vivo imaging techniques. Spinal Cord 59:596–612
    [Google Scholar]
  15. Banks WA. 2016. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15:275–92
    [Google Scholar]
  16. Barrett KE, Barman SM, Brooks HL, Yuan J. 2019. Ganong's Review of Medical Physiology New York: McGraw Hill. , 26th ed..
  17. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y et al. 2014. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–11
    [Google Scholar]
  18. Benz F, Wichitnaowarat V, Lehmann M, Germano RF, Mihova D et al. 2019. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 8:e43818
    [Google Scholar]
  19. Biswas S, Cottarelli A, Agalliu D 2020. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 147:dev182279
    [Google Scholar]
  20. Black JE, Sirevaag AM, Greenough WT. 1987. Complex experience promotes capillary formation in young rat visual cortex. Neurosci. Lett. 83:351–55
    [Google Scholar]
  21. Blanco R, Gerhardt H. 2013. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3:a006569
    [Google Scholar]
  22. Bonney S, Dennison BJC, Wendlandt M, Siegenthaler JA 2018. Retinoic acid regulates endothelial β-catenin expression and pericyte numbers in the developing brain vasculature. Front. Cell. Neurosci. 12:476
    [Google Scholar]
  23. Bonney S, Harrison-Uy S, Mishra S, MacPherson AM, Choe Y et al. 2016. Diverse functions of retinoic acid in brain vascular development. J. Neurosci. 36:7786–801
    [Google Scholar]
  24. Bonney S, Siegenthaler JA. 2017. Differential effects of retinoic acid concentrations in regulating blood-brain barrier properties. eNeuro 4:ENEURO.0378–16.2017
    [Google Scholar]
  25. Cambier S, Gline S, Mu D, Collins R, Araya J et al. 2005. Integrin αvβ8-mediated activation of transforming growth factor-β by perivascular astrocytes: an angiogenic control switch. Am. J. Pathol. 166:1883–94
    [Google Scholar]
  26. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH et al. 2019. Ischaemic stroke. Nat. Rev. Dis. Primers 5:70
    [Google Scholar]
  27. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM et al. 2001. Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93
    [Google Scholar]
  28. Chang J, Mancuso MR, Maier C, Liang X, Yuki K et al. 2017. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat. Med. 23:450–60
    [Google Scholar]
  29. Chang TH, Hsieh FL, Zebisch M, Harlos K, Elegheert J et al. 2015. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. eLife 4:e06554
    [Google Scholar]
  30. Chappell L, Russell AJC, Voet T. 2018. Single-cell (multi)omics technologies. Annu. Rev. Genom. Hum. Genet. 19:15–41
    [Google Scholar]
  31. Chen J, Luo Y, Hui H, Cai T, Huang H et al. 2017. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. PNAS 114:E7622–31
    [Google Scholar]
  32. Cho C, Smallwood PM, Nathans J. 2017. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:1056–73
    [Google Scholar]
  33. Cho C, Wang Y, Smallwood PM, Williams J, Nathans J 2019. Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. eLife 8:e47300
    [Google Scholar]
  34. Cruciat CM, Niehrs C. 2013. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 5:a015081
    [Google Scholar]
  35. Cudmore RH, Dougherty SE, Linden DJ. 2017. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.. J. Cereb. Blood Flow Metab. 37:3725–43
    [Google Scholar]
  36. Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J et al. 2011. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. PNAS 108:5759–64
    [Google Scholar]
  37. Damkier HH, Brown PD, Praetorius J. 2013. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93:1847–92
    [Google Scholar]
  38. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ et al. 2009. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS 106:641–46
    [Google Scholar]
  39. Daneman R, Zhou L, Kebede AA, Barres BA. 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–66
    [Google Scholar]
  40. Dave JM, Mirabella T, Weatherbee SD, Greif DM 2018. Pericyte ALK5/TIMP3 axis contributes to endothelial morphogenesis in the developing brain. Dev. Cell 44:665–678
    [Google Scholar]
  41. Drack A. 2006. Retinopathy of prematurity. Adv. Pediatr. 53:211–26
    [Google Scholar]
  42. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P et al. 2018. A molecular mechanism for Wnt ligand-specific signaling. Science 361:eaat1178
    [Google Scholar]
  43. Ferrara N, Adamis AP. 2016. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15:385–403
    [Google Scholar]
  44. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161:1163–77
    [Google Scholar]
  45. Gilmour DF. 2015. Familial exudative vitreoretinopathy and related retinopathies. Eye 29:1–14
    [Google Scholar]
  46. Groppa E, Brkic S, Uccelli A, Wirth G, Korpisalo-Pirinen P et al. 2018. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep 19:e45054
    [Google Scholar]
  47. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J et al. 2003. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262:225–41
    [Google Scholar]
  48. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K et al. 1999. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J 18:5931–42
    [Google Scholar]
  49. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C et al. 2021. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69:436–72
    [Google Scholar]
  50. Hellbach N, Weise SC, Vezzali R, Wahane SD, Heidrich S et al. 2014. Neural deletion of Tgfbr2 impairs angiogenesis through an altered secretome. Hum. Mol. Genet. 23:6177–90
    [Google Scholar]
  51. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO et al. 2016. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36:862–90
    [Google Scholar]
  52. Heng JS, Rattner A, Stein-O'Brien GL, Winer BL, Jones BW et al. 2019. Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution. PNAS 116:9103–14
    [Google Scholar]
  53. Hillman EM. 2014. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37:161–81
    [Google Scholar]
  54. Himmels P, Paredes I, Adler H, Karakatsani A, Luck R et al. 2017. Motor neurons control blood vessel patterning in the developing spinal cord. Nat. Commun. 8:14583
    [Google Scholar]
  55. Hirota S, Liu Q, Lee HS, Hossain MG, Lacy-Hulbert A et al. 2011. The astrocyte-expressed integrin αvβ8 governs blood vessel sprouting in the developing retina. Development 138:5157–66
    [Google Scholar]
  56. Hogan KA, Ambler CA, Chapman DL, Bautch VL. 2004. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131:1503–13
    [Google Scholar]
  57. Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K et al. 2018. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21:120–29
    [Google Scholar]
  58. Ikeda E, Flamme I, Risau W 1996. Developing brain cells produce factors capable of inducing the HT7 antigen, a blood-brain barrier-specific molecule, in chick endothelial cells. Neurosci. Lett. 209:149–52
    [Google Scholar]
  59. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B et al. 2010. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12:943–53
    [Google Scholar]
  60. James JM, Gewolb C, Bautch VL. 2009. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 136:833–41
    [Google Scholar]
  61. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC 2012. Structural basis of Wnt recognition by Frizzled. Science 337:59–64
    [Google Scholar]
  62. Jiang H, Gallet S, Klemm P, Scholl P, Folz-Donahue K et al. 2020. MCH neurons regulate permeability of the median eminence barrier. Neuron 107:306–19
    [Google Scholar]
  63. Junge HJ, Yang S, Burton JB, Paes K, Shu X et al. 2009. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/β-catenin signaling. Cell 139:299–311
    [Google Scholar]
  64. Juraschka K, Taylor MD. 2019. Medulloblastoma in the age of molecular subgroups: a review. J. Neurosurg. Pediatr. 24:353–363
    [Google Scholar]
  65. Kaplan L, Chow BW, Gu C. 2020. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21:416–32
    [Google Scholar]
  66. Kaur C, Ling E-A. 2017. The circumventricular organs. Histol. Histopathol. 32:879–92
    [Google Scholar]
  67. Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C 2011. Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev 25:1399–411
    [Google Scholar]
  68. Kirst C, Skriabine S, Vieites-Prado A, Topilko T, Pertin P et al. 2020. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180:780–95.e25
    [Google Scholar]
  69. Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J et al. 2011. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev. Cell 20:33–46
    [Google Scholar]
  70. Körbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A et al. 2016. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8:609–25
    [Google Scholar]
  71. Kozberg MG, Ma Y, Shaik MA, Kim SH, Hillman EM 2016. Rapid postnatal expansion of neural networks occurs in an environment of altered neurovascular and neurometabolic coupling. J. Neurosci. 36:6704–17
    [Google Scholar]
  72. Kubotera H, Ikeshima-Kataoka H, Hatashita Y, Allegra Mascaro AL, Pavone FS et al. 2019. Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci. Rep. 9:1263
    [Google Scholar]
  73. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V et al. 2010. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–89
    [Google Scholar]
  74. Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X et al. 2014. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83:1117–30
    [Google Scholar]
  75. Lai MB, Zhang C, Shi J, Johnson V, Khandan L et al. 2017. TSPAN12 is a norrin co-receptor that amplifies Frizzled4 ligand selectivity and signaling. Cell Rep 19:2809–22
    [Google Scholar]
  76. Langen UH, Ayloo S, Gu C 2019. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35:591–613
    [Google Scholar]
  77. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A et al. 2013a. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–17
    [Google Scholar]
  78. Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B 2013b. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J. Comp. Neurol. 521:3389–405
    [Google Scholar]
  79. Lejmi E, Leconte L, Pédron-Mazoyer S, Ropert S, Raoul W et al. 2008. Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. PNAS 105:12491–96
    [Google Scholar]
  80. Li H, Miki T, Almeida GM, Hanashima C, Matsuzaki T et al. 2019. RECK in neural precursor cells plays a critical role in mouse forebrain angiogenesis. iScience 19:559–71
    [Google Scholar]
  81. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A et al. 2008. Wnt/β-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 183:409–17
    [Google Scholar]
  82. Luhmann UF, Lin J, Acar N, Lammel S, Feil S et al. 2005. Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Investig. Ophthalmol. Vis. Sci. 46:3372–82
    [Google Scholar]
  83. Luo L, Uehara H, Zhang X, Das SK, Olsen T et al. 2013. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife 2:e00324
    [Google Scholar]
  84. Mackenzie F, Ruhrberg C 2012. Diverse roles for VEGF-A in the nervous system. Development 139:1371–80
    [Google Scholar]
  85. Masamoto K, Takuwa H, Seki C, Taniguchi J, Itoh Y et al. 2014. Microvascular sprouting, extension, and creation of new capillary connections with adaptation of the neighboring astrocytes in adult mouse cortex under chronic hypoxia. J. Cereb. Blood Flow Metab. 34:325–31
    [Google Scholar]
  86. Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM et al. 2016. Radial glia regulate vascular patterning around the developing spinal cord. eLife 5:e20253
    [Google Scholar]
  87. McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D et al. 2005. Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132:165–76
    [Google Scholar]
  88. Mizee MR, Wooldrik D, Lakeman KAM, van het Hof B, Drexhage JAR et al. 2013. Retinoic acid induces blood-brain barrier development. J. Neurosci. 33:1660–71
    [Google Scholar]
  89. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K et al. 2015. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain. Cell Tissue Res 359:865–84
    [Google Scholar]
  90. Mu Z, Yang Z, Yu D, Zhao Z, Munger JS 2008. TGFβ1 and TGFβ3 are partially redundant effectors in brain vascular morphogenesis. Mech. Dev. 125:508–16
    [Google Scholar]
  91. Mullier A, Bouret SG, Prevot V, Dehouck B 2010. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 518:943–62
    [Google Scholar]
  92. Nguyen HL, Lee YJ, Shin J, Lee E, Park SO et al. 2011. TGF-β signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab. Investig. 91:1554–63
    [Google Scholar]
  93. Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I et al. 2014. Neurons limit angiogenesis by titrating VEGF in retina. Cell 159:584–96
    [Google Scholar]
  94. Paredes I, Himmels P, Ruiz de Almodóvar C. 2018. Neurovascular communication during CNS development. Dev. Cell 45:10–32
    [Google Scholar]
  95. Patz A. 1984. Retinal neovascularization: early contributions of Professor Michaelson and recent observations. Br. J. Ophthalmol. 68:42–46
    [Google Scholar]
  96. Pawlikowski B, Wragge J, Siegenthaler JA 2019. Retinoic acid signaling in vascular development. Genesis 57:e23287
    [Google Scholar]
  97. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO et al. 2016. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–22
    [Google Scholar]
  98. Posokhova E, Shukla A, Seaman S, Volate S, Hilton MB et al. 2015. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Rep 10:123–30
    [Google Scholar]
  99. Proctor JM, Zang K, Wang D, Wang R, Reichardt LF 2005. Vascular development of the brain requires β8 integrin expression in the neuroepithelium. J. Neurosci. 25:9940–48
    [Google Scholar]
  100. Profaci CP, Munji RN, Pulido RS, Daneman R. 2020. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217:e20190062
    [Google Scholar]
  101. Pulido RS, Munji RN, Chan TC, Quirk CR, Weiner GA et al. 2020. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 108:937–52.e7
    [Google Scholar]
  102. Raab S, Beck H, Gaumann A, Yüce A, Gerber HP et al. 2004. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb. Haemost. 91:595–605
    [Google Scholar]
  103. Rama N, Dubrac A, Mathivet T, Ní Chárthaigh RA, Genet G et al. 2015. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat. Med. 21:483–91
    [Google Scholar]
  104. Rattner A, Williams J, Nathans J 2019. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J. Clin. Investig. 129:3807–20
    [Google Scholar]
  105. Regard JB, Scheek S, Borbiev T, Lanahan AA, Schneider A et al. 2004. Verge: a novel vascular early response gene. J. Neurosci. 24:4092–103
    [Google Scholar]
  106. Richter M, Gottanka J, May CA, Welge-Lüssen U, Berger W et al. 1998. Retinal vasculature changes in Norrie disease mice. Investig. Ophthalmol. Vis. Sci. 39:2450–57
    [Google Scholar]
  107. Risau W, Hallmann R, Albrecht U, Henke-Fahle S 1986. Brain induces the expression of an early cell surface marker for blood-brain barrier-specific endothelium. EMBO J 5:3179–83
    [Google Scholar]
  108. Robertson IB, Rifkin DB. 2016. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8:a021907
    [Google Scholar]
  109. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S et al. 2002. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–98
    [Google Scholar]
  110. Rust R, Grönnert L, Weber RZ, Mulders G, Schwab ME. 2019. Refueling the ischemic CNS: guidance molecules for vascular repair. Trends Neurosci 42:644–56
    [Google Scholar]
  111. Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR et al. 2018. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 7:e36187
    [Google Scholar]
  112. Sabbagh MF, Nathans J 2020. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. eLife 9:e51276
    [Google Scholar]
  113. Saunders NR, Dziegielewska KM, Unsicker K, Ek CJ. 2016. Delayed astrocytic contact with cerebral blood vessels in FGF-2 deficient mice does not compromise permeability properties at the developing blood-brain barrier. Dev. Neurobiol. 76:1201–12
    [Google Scholar]
  114. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME et al. 2010. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–91
    [Google Scholar]
  115. Selvam S, Kumar T, Fruttiger M. 2018. Retinal vasculature development in health and disease. Prog. Retina Eye Res. 63:1–19
    [Google Scholar]
  116. Semenza GL. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408
    [Google Scholar]
  117. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS et al. 1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–85
    [Google Scholar]
  118. Shibuya M. 2013. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153:13–19
    [Google Scholar]
  119. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ et al. 2010. The mouse retina as an angiogenesis model. Investig. Ophthalmol. Vis. Sci. 51:2813–26
    [Google Scholar]
  120. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y et al. 2012. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev. Cell 23:1203–18
    [Google Scholar]
  121. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J et al. 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–50
    [Google Scholar]
  122. Stewart PA, Wiley MJ. 1981. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev. Biol. 84:183–92
    [Google Scholar]
  123. Stone J, Itin A, Alon T, Pe'er J, Gnessin H et al. 1995. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15:4738–47
    [Google Scholar]
  124. Sweeney MD, Ayyadurai S, Zlokovic BV 2016. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19:771–83
    [Google Scholar]
  125. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. 2019. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99:21–78
    [Google Scholar]
  126. Tran KA, Zhang X, Predescu D, Huang X, Machado RF et al. 2016. Endothelial β-catenin signaling is required for maintaining adult blood-brain barrier integrity and central nervous system homeostasis. Circulation 133:177–86
    [Google Scholar]
  127. Ulrich F, Carretero-Ortega J, Menéndez J, Narvaez C, Sun B et al. 2016. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 143:147–59
    [Google Scholar]
  128. Usui Y, Westenskow PD, Kurihara T, Aguilar E, Sakimoto S et al. 2015. Neurovascular crosstalk between interneurons and capillaries is required for vision. J. Clin. Investig. 125:2335–46
    [Google Scholar]
  129. Vallon M, Yuki K, Nguyen TD, Chang J, Yuan J et al. 2018. A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability. Cell Rep 25:339–49.e9
    [Google Scholar]
  130. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y et al. 2015. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4:06489
    [Google Scholar]
  131. Wälchli T, Wacker A, Frei K, Regli L, Schwab ME et al. 2015. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87:271–96
    [Google Scholar]
  132. Wang Y, Cho C, Williams J, Zhang C, Junge HJ et al. 2018. Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in postnatal blood-brain barrier and blood-retina barrier development and maintenance. PNAS 115:E11827–36
    [Google Scholar]
  133. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM et al. 2012. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332–44
    [Google Scholar]
  134. Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J et al. 2019. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 8:e43257
    [Google Scholar]
  135. Wang Z, Liu CH, Huang S, Chen J. 2019. Wnt signaling in vascular eye diseases. Prog. Retin. Eye Res. 70:110–33
    [Google Scholar]
  136. Wang Z, Liu CH, Huang S, Fu Z, Tomita Y et al. 2020. Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Sci. Adv. 6:eaba7457
    [Google Scholar]
  137. Wild R, Klems A, Takamiya M, Hayashi Y, Strähle U et al. 2017. Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat. Commun. 8:13991
    [Google Scholar]
  138. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J et al. 2004. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–95
    [Google Scholar]
  139. Ye X, Wang Y, Cahill H, Yu M, Badea TC et al. 2009. Norrin, Frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139:285–98
    [Google Scholar]
  140. Ye X, Wang Y, Nathans J 2010. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol. Med. 16:417–25
    [Google Scholar]
  141. Zarkada G, Howard JP, Xiao X, Park H, Bizou M et al. 2021. Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev. Cell 56:2237–51.e6
    [Google Scholar]
  142. Zhou Y, Nathans J. 2014. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical Wnt signaling. Dev. Cell 31:248–56
    [Google Scholar]
  143. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM et al. 2014. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Investig. 124:3825–46
    [Google Scholar]
  144. Zhu J, Motejlek K, Wang D, Zang K, Schmidt A et al. 2002. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–903
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-102127
Loading
/content/journals/10.1146/annurev-neuro-111020-102127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error