1932

Abstract

Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023229
2021-01-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023229.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023229&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Libby P. 2012. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32:2045–51
    [Google Scholar]
  2. 2. 
    Saphir O, Gore I. 1950. Evidence for an inflammatory basis of coronary arteriosclerosis in the young. Arch. Pathol. 49:418–26
    [Google Scholar]
  3. 3. 
    Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M 1985. Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 71:709–16
    [Google Scholar]
  4. 4. 
    Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK et al. 2016. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–360
    [Google Scholar]
  5. 5. 
    Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK et al. 2016. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:447–54
    [Google Scholar]
  6. 6. 
    Libby P, Tabas I, Fredman G, Fisher EA 2014. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 114:1867–79
    [Google Scholar]
  7. 7. 
    Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V et al. 2014. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 16:435
    [Google Scholar]
  8. 8. 
    Salisbury D, Bronas U. 2014. Inflammation and immune system contribution to the etiology of atherosclerosis: mechanisms and methods of assessment. Nurs. Res. 63:375–85
    [Google Scholar]
  9. 9. 
    Towfighi A, Zheng L, Ovbiagele B 2009. Sex-specific trends in midlife coronary heart disease risk and prevalence. Arch. Intern. Med. 169:1762–66
    [Google Scholar]
  10. 10. 
    Marrugat J, Sala J, Masiá R, Pavesi M, Sanz G et al. 1998. Mortality differences between men and women following first myocardial infarction. RESCATE Investigators. Recursos Empleados en el Sindrome Coronario Agudo y Tiempo de Espera. JAMA 280:1405–9
    [Google Scholar]
  11. 11. 
    Gurvich C, Hoy K, Thomas N, Kulkarni J 2018. Sex differences and the influence of sex hormones on cognition through adulthood and the aging process. Brain Sci 8:163
    [Google Scholar]
  12. 12. 
    Orshal JM, Khalil RA. 2004. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R233–49
    [Google Scholar]
  13. 13. 
    Reckelhoff JF. 2005. Sex steroids, cardiovascular disease, and hypertension: unanswered questions and some speculations. Hypertension 45:170–74
    [Google Scholar]
  14. 14. 
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al. 2015. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322
    [Google Scholar]
  15. 15. 
    NHLBI (Natl. Heart, Lung, Blood Inst.), NIH (Natl. Health Inst.). 2006. Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases Bethesda, MD: NIH
  16. 16. 
    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW et al. 2019. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56–528
    [Google Scholar]
  17. 17. 
    Weaver WD, White HD, Wilcox RG, Aylward PE, Morris D et al. 1996. Comparisons of characteristics and outcomes among women and men with acute myocardial infarction treated with thrombolytic therapy. GUSTO-I investigators. JAMA 275:777–82
    [Google Scholar]
  18. 18. 
    Lansky AJ, Pietras C, Costa RA, Tsuchiya Y, Brodie BR et al. 2005. Gender differences in outcomes after primary angioplasty versus primary stenting with and without abciximab for acute myocardial infarction: results of the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) trial. Circulation 111:1611–18
    [Google Scholar]
  19. 19. 
    Scholz KH, Maier SKG, Maier LS, Lengenfelder B, Jacobshagen C et al. 2018. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 39:1065–74
    [Google Scholar]
  20. 20. 
    Wei J, Mehta PK, Grey E, Garberich RF, Hauser R et al. 2017. Sex-based differences in quality of care and outcomes in a health system using a standardized STEMI protocol. Am. Heart J. 191:30–36
    [Google Scholar]
  21. 21. 
    Motiejūnaitė J, Akiyama E, Cohen-Solal A, Maggioni AP, Mueller C et al. 2020. The association of long-term outcome and biological sex in patients with acute heart failure from different geographic regions. Eur. Heart J. 41:1357–64
    [Google Scholar]
  22. 22. 
    Haider A, Bengs S, Luu J, Osto E, Siller-Matula JM et al. 2019. Sex and gender in cardiovascular medicine: presentation and outcomes of acute coronary syndrome. Eur. Heart J. 41:1328–36
    [Google Scholar]
  23. 23. 
    Hochman JS, Tamis JE, Thompson TD, Weaver WD, White HD et al. 1999. Sex, clinical presentation, and outcome in patients with acute coronary syndromes. Global use of strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes IIb investigators. N. Engl. J. Med. 341:226–32
    [Google Scholar]
  24. 24. 
    Blomkalns AL, Chen AY, Hochman JS, Peterson ED, Trynosky K et al. 2005. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J. Am. Coll. Cardiol. 45:832–37
    [Google Scholar]
  25. 25. 
    Hasdai D, Porter A, Rosengren A, Behar S, Boyko V, Battler A 2003. Effect of gender on outcomes of acute coronary syndromes. Am. J. Cardiol. 91:1466–69
    [Google Scholar]
  26. 26. 
    Gebhard C. 2017. Women and acute coronary syndromes: still up to no good. Eur. Heart J. 38:1066–68
    [Google Scholar]
  27. 27. 
    Lansky AJ, Ng VG, Maehara A, Weisz G, Lerman A et al. 2012. Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. J. Am. Coll. Cardiol. Cardiovasc. Imaging 5:3 Suppl.S62–72
    [Google Scholar]
  28. 28. 
    Weusten JJAM, Blankstein MA, Gmeling-Meyling FHJ, Schuurman HJ, Kater L, Thijssen JHH 1986. Presence of oestrogen receptors in human blood mononuclear cells and thymocytes. Acta Endocrinol 112:409–14
    [Google Scholar]
  29. 29. 
    Ben-Hur H, Mor G, Insler V, Blickstein I, Amir-Zaltsman Y et al. 1995. Menopause is associated with a significant increase in blood monocyte number and a relative decrease in the expression of estrogen receptors in human peripheral monocytes. Am. J. Reprod. Immun. 34:363–69
    [Google Scholar]
  30. 30. 
    Murphy AJ, Guyre PM, Wira CR, Pioli PA 2009. Estradiol regulates expression of estrogen receptor ERα46 in human macrophages. PLOS ONE 4:e5539
    [Google Scholar]
  31. 31. 
    Benten WPM, Lieberherr M, Giese G, Wrehlke C, Stamm O et al. 1999. Functional testosterone receptors in plasma membranes of T cells. FASEB J 13:123–33
    [Google Scholar]
  32. 32. 
    Molero L, García-Durán M, Diaz-Recasens J, Rico L, Casado S, López-Farré A 2002. Expression of estrogen receptor subtypes and neuronal nitric oxide synthase in neutrophils from women and men: regulation by estrogen. Cardiovasc. Res. 56:43–51
    [Google Scholar]
  33. 33. 
    Ridker PM, Thuren T, Zalewski A, Libby P 2011. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162:597–605
    [Google Scholar]
  34. 34. 
    Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH et al. 2019. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380:752–62
    [Google Scholar]
  35. 35. 
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  36. 36. 
    Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R et al. 2019. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381:2497–505
    [Google Scholar]
  37. 37. 
    Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T et al. 2018. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391:319–28
    [Google Scholar]
  38. 38. 
    Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR et al. 2005. Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 46:464–69
    [Google Scholar]
  39. 39. 
    Lew J, Sanghavi M, Ayers CR, McGuire DK, Omland T et al. 2017. Sex-based differences in cardiometabolic biomarkers. Circulation 135:544–55
    [Google Scholar]
  40. 40. 
    Malek A, Alper SL, Izumo S 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–42
    [Google Scholar]
  41. 41. 
    Tabas I, Williams KJ, Boren J 2007. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–44
    [Google Scholar]
  42. 42. 
    Berliner JA, Watson AD. 2005. A role for oxidized phospholipids in atherosclerosis. N. Engl. J. Med. 353:9–11
    [Google Scholar]
  43. 43. 
    O'Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE 1996. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93:672–82
    [Google Scholar]
  44. 44. 
    Gourdy P, Mallat Z, Castano C, Garmy-Susini B, Mac Gregor JL et al. 2003. The atheroprotective effect of 17β-estradiol is not altered in P-selectin- or ICAM-1-deficient hypercholesterolemic mice. Atherosclerosis 166:41–48
    [Google Scholar]
  45. 45. 
    Nelken NA, Coughlin SR, Gordon D, Wilcox JN 1991. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Investig. 88:1121–27
    [Google Scholar]
  46. 46. 
    Dawson TC, Kuziel WA, Osahar TA, Maeda N 1999. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143:205–11
    [Google Scholar]
  47. 47. 
    Libby P, Ridker PM. 2006. Inflammation and atherothrombosis: from population biology and bench research to clinical practice. J. Am. Coll. Cardiol 48:A33–46
    [Google Scholar]
  48. 48. 
    Testa M, Yeh M, Lee P, Berman JW, Lejemtel TH et al. 1996. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J. Am. Coll. Cardiol. 28:964–71
    [Google Scholar]
  49. 49. 
    Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R 2017. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic. Biol. Med. 106:118–33
    [Google Scholar]
  50. 50. 
    Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S et al. 2010. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLOS ONE 5:e11765
    [Google Scholar]
  51. 51. 
    Bando S, Fukuda D, Soeki T, Nishimoto S, Uematsu E et al. 2015. Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 242:407–14
    [Google Scholar]
  52. 52. 
    Baldrighi M, Mallat Z, Li X 2017. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 267:127–38
    [Google Scholar]
  53. 53. 
    Galis ZS, Sukhova GK, Lark MW, Libby P 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 94:2493–503
    [Google Scholar]
  54. 54. 
    Newby AC. 2015. Metalloproteinases promote plaque rupture and myocardial infarction: a persuasive concept waiting for clinical translation. Matrix Biol 44–46:157–66
    [Google Scholar]
  55. 55. 
    Lundberg AM, Ketelhuth DF, Johansson ME, Gerdes N, Liu S et al. 2013. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc. Res. 99:364–73
    [Google Scholar]
  56. 56. 
    Mullick AE, Tobias PS, Curtiss LK 2005. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Investig. 115:3149–56
    [Google Scholar]
  57. 57. 
    Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J et al. 2004. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. PNAS 101:10679–84
    [Google Scholar]
  58. 58. 
    Tousoulis D, Psarros C, Demosthenous M, Patel R, Antoniades C, Stefanadis C 2014. Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. J. Am. Coll. Cardiol. 63:2491–502
    [Google Scholar]
  59. 59. 
    Li G, Chen SJ, Oparil S, Chen YF, Thompson JA 2000. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 101:1362–65
    [Google Scholar]
  60. 60. 
    Ueda K, Lu Q, Baur W, Aronovitz MJ, Karas RH 2013. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation. Arterioscler. Thromb. Vasc. Biol. 33:1837–43
    [Google Scholar]
  61. 61. 
    Li G, Chen YF, Greene GL, Oparil S, Thompson JA 1999. Estrogen inhibits vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro. Circulation 100:1639–45
    [Google Scholar]
  62. 62. 
    Ito I, Hayashi T, Yamada K, Kuzuya M, Naito M, Iguchi A 1995. Physiological concentration of estradiol inhibits polymorphonuclear leukocyte chemotaxis via a receptor mediated system. Life Sci 56:2247–53
    [Google Scholar]
  63. 63. 
    Egashira K, Zhao Q, Kataoka C, Ohtani K, Usui M et al. 2002. Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys. Circ. Res. 90:1167–72
    [Google Scholar]
  64. 64. 
    de Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM et al. 2003. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 107:690–95
    [Google Scholar]
  65. 65. 
    Sullivan S, Hammadah M, Wilmot K, Ramadan R, Pearce BD et al. 2018. Young women with coronary artery disease exhibit higher concentrations of interleukin‐6 at baseline and in response to mental stress. J. Am. Heart Assoc. 7:e010329
    [Google Scholar]
  66. 66. 
    Villar IC, Scotland RS, Khambata RS, Chan M, Duchene J et al. 2011. Suppression of endothelial P-selectin expression contributes to reduced cell trafficking in females: an effect independent of NO and prostacyclin. Arterioscler. Thromb. Vasc. Biol. 31:1075–83
    [Google Scholar]
  67. 67. 
    Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW 2011. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood 118:5918–27
    [Google Scholar]
  68. 68. 
    Kay E, Gomez-Garcia L, Woodfin A, Scotland RS, Whiteford JR 2015. Sexual dimorphisms in leukocyte trafficking in a mouse peritonitis model. J. Leukoc. Biol. 98:805–17
    [Google Scholar]
  69. 69. 
    Rankin SM. 2010. The bone marrow: a site of neutrophil clearance. J. Leukoc. Biol. 88:241–51
    [Google Scholar]
  70. 70. 
    Madalli S, Beyrau M, Whiteford J, Duchene J, Singh Nandhra I et al. 2015. Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states. Biol. Sex Differ. 6:27
    [Google Scholar]
  71. 71. 
    Ross R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–9
    [Google Scholar]
  72. 72. 
    Dimmeler S, Hermann C, Zeiher AM 1998. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis. ? Eur. Cytokine Netw. 9:697–98
    [Google Scholar]
  73. 73. 
    Sudoh N, Toba K, Akishita M, Ako J, Hashimoto M et al. 2001. Estrogen prevents oxidative stress-induced endothelial cell apoptosis in rats. Circulation 103:724–29
    [Google Scholar]
  74. 74. 
    Alvarez RJ Jr, Gips SJ, Moldovan N, Wilhide CC, Milliken EE et al. 1997. 17β-Estradiol inhibits apoptosis of endothelial cells. Biochem. Biophys. Res. Commun. 237:372–81
    [Google Scholar]
  75. 75. 
    Spyridopoulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW 1997. Estrogen-receptor–mediated inhibition of human endothelial cell apoptosis. Circulation 95:1505–14
    [Google Scholar]
  76. 76. 
    Vion A-C, Kheloufi M, Hammoutene A, Poisson J, Lasselin J et al. 2017. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. PNAS 114:E8675–84
    [Google Scholar]
  77. 77. 
    Zemskova M, Kurdyukov S, James J, McClain N, Rafikov R, Rafikova O 2020. Sex-specific stress response and HMGB1 release in pulmonary endothelial cells. PLOS ONE 15:e0231267
    [Google Scholar]
  78. 78. 
    Guo J-M, Shu H, Wang L, Xu J-J, Niu X-C, Zhang L 2017. SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci. Ther. 23:360–69
    [Google Scholar]
  79. 79. 
    Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K 2013. 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br. J. Pharmacol. 170:779–95
    [Google Scholar]
  80. 80. 
    Gao H, Liang M, Bergdahl A, Hamren A, Lindholm MW et al. 2006. Estrogen attenuates vascular expression of inflammation associated genes and adhesion of monocytes to endothelial cells. Inflamm. Res. 55:349–53
    [Google Scholar]
  81. 81. 
    Geraldes P, Gagnon S, Hadjadj S, Merhi Y, Sirois MG et al. 2006. Estradiol blocks the induction of CD40 and CD40L expression on endothelial cells and prevents neutrophil adhesion: an ERα-mediated pathway. Cardiovasc. Res. 71:566–73
    [Google Scholar]
  82. 82. 
    Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Chang MD 1997. Estradiol down-regulates LPS-induced cytokine production and NFκB activation in murine macrophages. Am. J. Reprod. Immunol. 38:46–54
    [Google Scholar]
  83. 83. 
    Demyanets S, Pfaffenberger S, Kaun C, Rega G, Speidl WS et al. 2006. The estrogen metabolite 17β-dihydroequilenin counteracts interleukin-1α induced expression of inflammatory mediators in human endothelial cells in vitro via NF-κB pathway. Thromb. Haemost. 95:107–16
    [Google Scholar]
  84. 84. 
    Shaw LJ, Shaw RE, Merz CN, Brindis RG, Klein LW et al. 2008. Impact of ethnicity and gender differences on angiographic coronary artery disease prevalence and in-hospital mortality in the American College of Cardiology-National Cardiovascular Data Registry. Circulation 117:1787–801
    [Google Scholar]
  85. 85. 
    Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M et al. 1999. Age at natural menopause and risk of cardiovascular disease. Arch. Intern. Med. 159:1061–66
    [Google Scholar]
  86. 86. 
    Bairey Merz CN, Johnson BD, Sharaf BL, Bittner V, Berga SL et al. 2003. Hypoestrogenemia of hypothalamic origin and coronary artery disease in premenopausal women: a report from the NHLBI-sponsored WISE study. J. Am. Coll. Cardiol. 41:413–19
    [Google Scholar]
  87. 87. 
    Taddei S, Virdis A, Ghiadoni L, Mattei P, Sudano I et al. 1996. Menopause is associated with endothelial dysfunction in women. Hypertension 28:576–82
    [Google Scholar]
  88. 88. 
    Kannel WB, Cupples LA, D'Agostino RB, Stokes J 3rd 1988. Hypertension, antihypertensive treatment, and sudden coronary death. The Framingham Study. Hypertension 11:II45–50
    [Google Scholar]
  89. 89. 
    Lindheim SR, Buchanan TA, Duffy DM, Vijod MA, Kojima T et al. 1994. Comparison of estimates of insulin sensitivity in pre- and postmenopausal women using the insulin tolerance test and the frequently sampled intravenous glucose tolerance test. J. Soc. Gynecol. Investig. 1:150–54
    [Google Scholar]
  90. 90. 
    Gambacciani M, Ciaponi M, Cappagli B, De Simone L, Orlandi R, Genazzani AR 2001. Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas 39:125–32
    [Google Scholar]
  91. 91. 
    Hisamoto K, Bender JR. 2005. Vascular cell signaling by membrane estrogen receptors. Steroids 70:382–87
    [Google Scholar]
  92. 92. 
    Pinna C, Cignarella A, Sanvito P, Pelosi V, Bolego C 2008. Prolonged ovarian hormone deprivation impairs the protective vascular actions of estrogen receptor α agonists. Hypertension 51:1210–17
    [Google Scholar]
  93. 93. 
    Caulin-Glaser T, Farrell WJ, Pfau SE, Zaret B, Bunger K et al. 1998. Modulation of circulating cellular adhesion molecules in postmenopausal women with coronary artery disease. J. Am. Coll. Cardiol. 31:1555–60
    [Google Scholar]
  94. 94. 
    Abu-Taha M, Rius C, Hermenegildo C, Noguera I, Cerda-Nicolas JM et al. 2009. Menopause and ovariectomy cause a low grade of systemic inflammation that may be prevented by chronic treatment with low doses of estrogen or losartan. J. Immunol. 183:1393–402
    [Google Scholar]
  95. 95. 
    Ralston SH, Russell RG, Gowen M 1990. Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J. Bone Miner. Res. 5:983–88
    [Google Scholar]
  96. 96. 
    Vural P, Akgul C, Canbaz M 2006. Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol. Res. 54:298–302
    [Google Scholar]
  97. 97. 
    Vitale C, Cornoldi A, Gebara O, Silvestri A, Wajngarten M et al. 2005. Interleukin-6 and flow-mediated dilatation as markers of increased vascular inflammation in women receiving hormone therapy. Menopause 12:552–58
    [Google Scholar]
  98. 98. 
    Wingrove CS, Walton C, Stevenson JC 1998. The effect of menopause on serum uric acid levels in non-obese healthy women. Metab. Clin. Exp. 47:435–38
    [Google Scholar]
  99. 99. 
    Prasad M, Matteson EL, Herrmann J, Gulati R, Rihal CS et al. 2017. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women. Hypertension 69:236–42
    [Google Scholar]
  100. 100. 
    Diaz Brinton R. 2012. Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology 153:3571–78
    [Google Scholar]
  101. 101. 
    Arenas IA, Armstrong SJ, Xu Y, Davidge ST 2005. Chronic tumor necrosis factor-α inhibition enhances NO modulation of vascular function in estrogen-deficient rats. Hypertension 46:76–81
    [Google Scholar]
  102. 102. 
    Xing D, Feng W, Miller AP, Weathington NM, Chen YF et al. 2007. Estrogen modulates TNF-α-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-β activation. Am. J. Physiol. Heart Circ. Physiol. 292:H2607–12
    [Google Scholar]
  103. 103. 
    Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P 1998. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–3
    [Google Scholar]
  104. 104. 
    Pollow DP Jr, Uhlorn JA, Sylvester MA, Romero-Aleshire MJ, Uhrlaub JL et al. 2019. Menopause and FOXP3+ Treg cell depletion eliminate female protection against T cell-mediated angiotensin II hypertension. Am. J. Physiol. Heart Circ. Physiol. 317:H415–23
    [Google Scholar]
  105. 105. 
    Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE 1994. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 24:471–76
    [Google Scholar]
  106. 106. 
    Vitale C, Mercuro G, Cerquetani E, Marazzi G, Patrizi R et al. 2008. Time since menopause influences the acute and chronic effect of estrogens on endothelial function. Arterioscler. Thromb. Vasc. Biol. 28:348–52
    [Google Scholar]
  107. 107. 
    Bush DE, Jones CE, Bass KM, Walters GK, Bruza JM, Ouyang P 1998. Estrogen replacement reverses endothelial dysfunction in postmenopausal women. Am. J. Med. 104:552–58
    [Google Scholar]
  108. 108. 
    Mathews L, Subramanya V, Zhao D, Ouyang P, Vaidya D et al. 2019. Endogenous sex hormones and endothelial function in postmenopausal women and men: the multi-ethnic study of atherosclerosis. J. Women's Health 28:900–9
    [Google Scholar]
  109. 109. 
    Lieberman EH, Gerhard MD, Uehata A, Walsh BW, Selwyn AP et al. 1994. Estrogen improves endothelium-dependent, flow-mediated vasodilation in postmenopausal women. Ann. Intern. Med. 121:936–41
    [Google Scholar]
  110. 110. 
    Hayashi T, Fukuto JM, Ignarro LJ, Chaudhuri G 1992. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. PNAS 89:11259–63
    [Google Scholar]
  111. 111. 
    Imthurn B, Rosselli M, Jaeger AW, Keller PJ, Dubey RK 1997. Differential effects of hormone-replacement therapy on endogenous nitric oxide (nitrite/nitrate) levels in postmenopausal women substituted with 17β-estradiol valerate and cyproterone acetate or medroxyprogesterone acetate. J. Clin. Endocrinol. Metab. 82:388–94
    [Google Scholar]
  112. 112. 
    Caulin-Glaser T, García-Cardeña G, Sarrel P, Sessa WC, Bender JR 1997. 17β-Estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ. Res. 81:885–92
    [Google Scholar]
  113. 113. 
    Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y et al. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601
    [Google Scholar]
  114. 114. 
    Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D et al. 2000. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87:677–82
    [Google Scholar]
  115. 115. 
    Murphy E, Steenbergen C. 2007. Cardioprotection in females: a role for nitric oxide and altered gene expression. Heart Fail. Rev. 12:293–300
    [Google Scholar]
  116. 116. 
    Villar IC, Hobbs AJ, Ahluwalia A 2008. Sex differences in vascular function: implication of endothelium-derived hyperpolarizing factor. J. Endocrinol. 197:447–62
    [Google Scholar]
  117. 117. 
    Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR 2000. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. PNAS 97:5930–35
    [Google Scholar]
  118. 118. 
    Rubanyi GM, Freay AD, Kauser K, Sukovich D, Burton G et al. 1997. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption. J. Clin. Investig. 99:2429–37
    [Google Scholar]
  119. 119. 
    Murphy E. 2011. Estrogen signaling and cardiovascular disease. Circ. Res. 109:687–96
    [Google Scholar]
  120. 120. 
    Collins P, Rosano GM, Sarrel PM, Ulrich L, Adamopoulos S et al. 1995. 17β-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation 92:24–30
    [Google Scholar]
  121. 121. 
    Forte P, Kneale BJ, Milne E, Chowienczyk PJ, Johnston A et al. 1998. Evidence for a difference in nitric oxide biosynthesis between healthy women and men. Hypertension 32:730–34
    [Google Scholar]
  122. 122. 
    Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO 3rd 1994. Acute vascular effects of estrogen in postmenopausal women. Circulation 90:786–91
    [Google Scholar]
  123. 123. 
    Gruetter CA, Gruetter DY, Lyon JE, Kadowitz PJ, Ignarro LJ 1981. Relationship between cyclic guanosine 3′:5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J. Pharmacol. Exp. Ther. 219:181–86
    [Google Scholar]
  124. 124. 
    Wynne FL, Payne JA, Cain AE, Reckelhoff JF, Khalil RA 2004. Age-related reduction in estrogen receptor-mediated mechanisms of vascular relaxation in female spontaneously hypertensive rats. Hypertension 43:405–12
    [Google Scholar]
  125. 125. 
    Mendelsohn ME. 2002. Genomic and nongenomic effects of estrogen in the vasculature. Am. J. Cardiol. 90:3F–6F
    [Google Scholar]
  126. 126. 
    Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH 2002. EDHF: bringing the concepts together. Trends Pharmacol. Sci. 23:374–80
    [Google Scholar]
  127. 127. 
    Chen G, Suzuki H, Weston AH 1988. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br. J. Pharmacol. 95:1165–74
    [Google Scholar]
  128. 128. 
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH 1998. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–72
    [Google Scholar]
  129. 129. 
    Shimokawa H, Morikawa K. 2005. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Mol. Cell. Cardiol. 39:725–32
    [Google Scholar]
  130. 130. 
    Fleming I, Busse R. 2006. Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 47:629–33
    [Google Scholar]
  131. 131. 
    Ahluwalia A, Hobbs AJ. 2005. Endothelium-derived C-type natriuretic peptide: more than just a hyperpolarizing factor. Trends Pharmacol. Sci. 26:162–67
    [Google Scholar]
  132. 132. 
    Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ 2003. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. PNAS 100:1426–31
    [Google Scholar]
  133. 133. 
    Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A 2006. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 70:840–53
    [Google Scholar]
  134. 134. 
    Huang A, Wu Y, Sun D, Koller A, Kaley G 2001. Effect of estrogen on flow-induced dilation in NO deficiency: role of prostaglandins and EDHF. J. Appl. Physiol. 91:2561–66
    [Google Scholar]
  135. 135. 
    Chan MV, Bubb KJ, Noyce A, Villar IC, Duchene J et al. 2012. Distinct endothelial pathways underlie sexual dimorphism in vascular autoregulation. Br. J. Pharmacol. 167:805–17
    [Google Scholar]
  136. 136. 
    Yap FC, Taylor MS, Lin MT 2014. Ovariectomy-induced reductions in endothelial SK3 channel activity and endothelium-dependent vasorelaxation in murine mesenteric arteries. PLOS ONE 9:e104686
    [Google Scholar]
  137. 137. 
    Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS et al. 2014. Endothelial C-type natriuretic peptide maintains vascular homeostasis. J. Clin. Investig. 124:4039–51
    [Google Scholar]
  138. 138. 
    Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ et al. 2018. Sex‐specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J. Am. Heart Assoc. 7:e007675
    [Google Scholar]
  139. 139. 
    Davis CM, Siler DA, Alkayed NJ 2011. Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state. Women's Health 7:293–303
    [Google Scholar]
  140. 140. 
    Selemidis S, Cocks TM. 2002. Endothelium-dependent hyperpolarization as a remote anti-atherogenic mechanism. Trends Pharmacol. Sci. 23:213–20
    [Google Scholar]
  141. 141. 
    Ozkor MA, Murrow JR, Rahman AM, Kavtaradze N, Lin J et al. 2011. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation 123:2244–53
    [Google Scholar]
  142. 142. 
    vom Steeg LG, Klein SL 2016. SeXX matters in infectious disease pathogenesis. PLOS Pathog 12:e1005374
    [Google Scholar]
  143. 143. 
    Klein SL, Passaretti C, Anker M, Olukoya P, Pekosz A 2010. The impact of sex, gender and pregnancy on 2009 H1N1 disease. Biol. Sex Differ. 1:5
    [Google Scholar]
  144. 144. 
    Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16:626–38
    [Google Scholar]
  145. 145. 
    Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382:1708–20
    [Google Scholar]
  146. 146. 
    Shi S, Qin M, Shen B, Cai Y, Liu T et al. 2020. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 5:802–10
    [Google Scholar]
  147. 147. 
    Cooper GS, Stroehla BC. 2003. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2:119–25
    [Google Scholar]
  148. 148. 
    Walsh SJ, Rau LM. 2000. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. Am. J. Public Health 90:1463–66
    [Google Scholar]
  149. 149. 
    Thomas SL, Griffiths C, Smeeth L, Rooney C, Hall AJ 2010. Burden of mortality associated with autoimmune diseases among females in the United Kingdom. Am. J. Public Health 100:2279–87
    [Google Scholar]
  150. 150. 
    Kurmann RD, Mankad R. 2018. Atherosclerotic heart disease in women with autoimmune rheumatologic inflammatory conditions. Can. J. Cardiol. 34:381–89
    [Google Scholar]
  151. 151. 
    Thorand B, Baumert J, Döring A, Herder C, Kolb H et al. 2006. Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis 184:216–24
    [Google Scholar]
  152. 152. 
    del Rincón I, Polak JF, Leary DH, Battafarano DF, Erikson JM et al. 2015. Systemic inflammation and cardiovascular risk factors predict rapid progression of atherosclerosis in rheumatoid arthritis. Ann. Rheum. Dis. 74:1118–23
    [Google Scholar]
  153. 153. 
    Ridker PM, Hennekens CH, Buring JE, Rifai N 2000. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342:836–43
    [Google Scholar]
  154. 154. 
    Schönbeck U, Varo N, Libby P, Buring J, Ridker PM 2001. Soluble CD40L and cardiovascular risk in women. Circulation 104:2266–68
    [Google Scholar]
  155. 155. 
    Nguyen VT, Benveniste EN. 2000. Involvement of STAT-1 and Ets family members in interferon-γ induction of CD40 transcription in microglia/macrophages. J. Biol. Chem. 275:23674–84
    [Google Scholar]
  156. 156. 
    Mach F, Schönbeck U, Sukhova GK, Bourcier T, Bonnefoy JY et al. 1997. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. PNAS 94:1931–36
    [Google Scholar]
  157. 157. 
    Lutgens E, van Suylen R-J, Faber BC, Gijbels MJ, Eurlings PM et al. 2003. Atherosclerotic plaque rupture: local or systemic process. ? Arterioscler. Thromb. Vasc. Biol. 23:2123–30
    [Google Scholar]
  158. 158. 
    Murata Y, Kubota K, Yukihiro M, Ito K, Watanabe H, Shibuya H 2006. Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nuclear Med. Biol. 33:999–1004
    [Google Scholar]
  159. 159. 
    Fiechter M, Haider A, Bengs S, Mardziak M, Burger IA et al. 2019. Sex differences in the association between inflammation and ischemic heart disease. Thromb. Haemost. 119:1471–80
    [Google Scholar]
  160. 160. 
    Colditz GA, Willett WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH 1987. Menopause and the risk of coronary heart disease in women. N. Engl. J. Med. 316:1105–10
    [Google Scholar]
  161. 161. 
    Grodstein F, Manson JE, Colditz GA, Willett WC, Speizer FE, Stampfer MJ 2000. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann. Intern. Med. 133:933–41
    [Google Scholar]
  162. 162. 
    Stampfer MJ, Colditz GA, Willett WC, Manson JE, Rosner B et al. 1991. Postmenopausal estrogen therapy and cardiovascular disease. N. Engl. J. Med. 325:756–62
    [Google Scholar]
  163. 163. 
    Sumino H, Ichikawa S, Kasama S, Kumakura H, Takayama Y et al. 2005. Effect of transdermal hormone replacement therapy on carotid artery wall thickness and levels of vascular inflammatory markers in postmenopausal women. Hypertens. Res. 28:579–84
    [Google Scholar]
  164. 164. 
    Dunaif A, Segal KR, Futterweit W, Dobrjansky A 1989. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 38:1165–74
    [Google Scholar]
  165. 165. 
    Wild S, Pierpoint T, Jacobs H, McKeigue P 2000. Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum. Fertil. 3:101–5
    [Google Scholar]
  166. 166. 
    Legro RS, Kunselman AR, Dunaif A 2001. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am. J. Med. 111:607–13
    [Google Scholar]
  167. 167. 
    Meyer C, McGrath BP, Teede HJ 2005. Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. J. Clin. Endocrinol. Metab. 90:5711–16
    [Google Scholar]
  168. 168. 
    Mani H, Levy MJ, Davies MJ, Morris DH, Gray LJ et al. 2013. Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. 78:926–34
    [Google Scholar]
  169. 169. 
    Dahlgren E, Janson PO, Johansson S, Lapidus L, Odén A 1992. Polycystic ovary syndrome and risk for myocardial infarction. Evaluated from a risk factor model based on a prospective population study of women. Acta Obstet. Gynecol. Scand. 71:599–604
    [Google Scholar]
  170. 170. 
    Hulley S, Grady D, Bush T, Furberg C, Herrington D et al. 1998. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 280:605–13
    [Google Scholar]
  171. 171. 
    Rossouw JE, Anderson GL, Prentice RL, LaCroiz AZ, Kooperberg C et al. 2002. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288:321–33
    [Google Scholar]
  172. 172. 
    Hodis HN, Mack WJ, Azen SP, Lobo RA, Shoupe D et al. 2003. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N. Engl. J. Med. 349:535–45
    [Google Scholar]
  173. 173. 
    Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD et al. 2007. Estrogen therapy and coronary-artery calcification. N. Engl. J. Med. 356:2591–602
    [Google Scholar]
  174. 174. 
    Luyer MD, Khosla S, Owen WG, Miller VM 2001. Prospective randomized study of effects of unopposed estrogen replacement therapy on markers of coagulation and inflammation in postmenopausal women. J. Clin. Endocrinol. Metab. 86:3629–34
    [Google Scholar]
  175. 175. 
    Cann JA, Register TC, Adams MR, St Clair RW, Espeland MA, Williams JK 2008. Timing of estrogen replacement influences atherosclerosis progression and plaque leukocyte populations in ApoE−/− mice. Atherosclerosis 201:43–52
    [Google Scholar]
  176. 176. 
    Ridker PM, Hennekens CH, Rifai N, Buring JE, Manson JE 1999. Hormone replacement therapy and increased plasma concentration of C-reactive protein. Circulation 100:713–16
    [Google Scholar]
  177. 177. 
    Cushman M, Meilahn EN, Psaty BM, Kuller LH, Dobs AS, Tracy RP 1999. Hormone replacement therapy, inflammation, and hemostasis in elderly women. Arterioscler. Thromb. Vasc. Biol. 19:893–99
    [Google Scholar]
  178. 178. 
    Cushman M, Legault C, Barrett-Connor E, Stefanick ML, Kessler C et al. 1999. Effect of postmenopausal hormones on inflammation-sensitive proteins: the Postmenopausal Estrogen/Progestin Interventions (PEPI) study. Circulation 100:717–22
    [Google Scholar]
  179. 179. 
    Störk S, von Schacky C, Angerer P 2002. The effect of 17β-estradiol on endothelial and inflammatory markers in postmenopausal women: a randomized, controlled trial. Atherosclerosis 165:301–7
    [Google Scholar]
  180. 180. 
    Goudev A, Georgiev DB, Koycheva N, Manasiev N, Kyurkchiev S 2002. Effects of low dose hormone replacement therapy on markers of inflammation in postmenopausal women. Maturitas 43:49–53
    [Google Scholar]
  181. 181. 
    Wakatsuki A, Okatani Y, Ikenoue N, Fukaya T 2002. Effect of medroxyprogesterone acetate on vascular inflammatory markers in postmenopausal women receiving estrogen. Circulation 105:1436–39
    [Google Scholar]
  182. 182. 
    Koh KK, Ahn JY, Kang MH, Kim DS, Jin DK et al. 2001. Effects of hormone replacement therapy on plaque stability, inflammation, and fibrinolysis in hypertensive or overweight postmenopausal women. Am. J. Cardiol. 88:1423–26
    [Google Scholar]
  183. 183. 
    Sumino H, Ichikawa S, Ohyama Y, Takahashi T, Saito Y et al. 2005. Effect of transdermal hormone replacement therapy on the monocyte chemoattractant protein-1 concentrations and other vascular inflammatory markers and on endothelial function in postmenopausal women. Am. J. Cardiol. 96:148–53
    [Google Scholar]
  184. 184. 
    Störk S, Baumann K, von Schacky C, Angerer P 2002. The effect of 17β-estradiol on MCP-1 serum levels in postmenopausal women. Cardiovasc. Res. 53:642–49
    [Google Scholar]
  185. 185. 
    Zanger D, Yang BK, Ardans J, Waclawiw MA, Csako G et al. 2000. Divergent effects of hormone therapy on serum markers of inflammation in postmenopausal women with coronary artery disease on appropriate medical management. J. Am. Coll. Cardiol. 36:1797–802
    [Google Scholar]
  186. 186. 
    Ylikorkala O, Orpana A, Puolakka J, Pyörälä T, Viinikka L 1995. Postmenopausal hormonal replacement decreases plasma levels of endothelin-1. J. Clin. Endocrinol. Metab. 80:3384–87
    [Google Scholar]
  187. 187. 
    Cicinelli E, Ignarro LJ, Lograno M, Matteo G, Falco N, Schonauer LM 1997. Acute effects of transdermal estradiol administration on plasma levels of nitric oxide in postmenopausal women. Fertil. Steril. 67:63–66
    [Google Scholar]
  188. 188. 
    Saitta A, Altavilla D, Cucinotta D, Morabito N, Frisina N et al. 2001. Randomized, double-blind, placebo-controlled study on effects of raloxifene and hormone replacement therapy on plasma NO concentrations, endothelin-1 levels, and endothelium-dependent vasodilation in postmenopausal women. Arterioscler. Thromb. Vasc. Biol. 21:1512–19
    [Google Scholar]
  189. 189. 
    Zitzmann M, Brune M, Nieschlag E 2002. Vascular reactivity in hypogonadal men is reduced by androgen substitution. J. Clin. Endocrinol. Metab. 87:5030–37
    [Google Scholar]
  190. 190. 
    Sader MA, Griffiths KA, McCredie RJ, Handelsman DJ, Celermajer DS 2001. Androgenic anabolic steroids and arterial structure and function in male bodybuilders. J. Am. Coll. Cardiol. 37:224–30
    [Google Scholar]
  191. 191. 
    Zhu XD, Bonet B, Knopp RH 1997. 17β-Estradiol, progesterone, and testosterone inversely modulate low-density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages. Am. J. Obstet. Gynecol. 177:196–209
    [Google Scholar]
  192. 192. 
    Ribeiro Júnior RF, Ronconi KS, Jesus ICG, Almeida PWM, Forechi L et al. 2018. Testosterone deficiency prevents left ventricular contractility dysfunction after myocardial infarction. Mol. Cell. Endocrinol. 460:14–23
    [Google Scholar]
  193. 193. 
    Ong PJ, Patrizi G, Chong WC, Webb CM, Hayward CS, Collins P 2000. Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. Am. J. Cardiol. 85:269–72
    [Google Scholar]
  194. 194. 
    Kang SM, Jang Y, Kim J, Chung N, Cho SY et al. 2002. Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am. J. Cardiol. 89:862–64
    [Google Scholar]
  195. 195. 
    Empen K, Lorbeer R, Dörr M, Haring R, Nauck M et al. 2012. Association of testosterone levels with endothelial function in men. Arterioscler. Thromb. Vasc. Biol. 32:481–86
    [Google Scholar]
  196. 196. 
    Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM et al. 2018. New insights into arterial stiffening: Does sex matter. ? Am. J. Physiol. Heart Circ. Physiol. 315:H1073–87
    [Google Scholar]
  197. 197. 
    English KM, Mandour O, Steeds RP, Diver MJ, Jones TH, Channer KS 2000. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. Eur. Heart J. 21:890–94
    [Google Scholar]
  198. 198. 
    Rosano GM, Leonardo F, Pagnotta P, Pelliccia F, Panina G et al. 1999. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation 99:1666–70
    [Google Scholar]
  199. 199. 
    Jaffe MD. 1977. Effect of testosterone cypionate on postexercise ST segment depression. Br. Heart J. 39:1217–22
    [Google Scholar]
  200. 200. 
    Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P 1995. Testosterone relaxes rabbit coronary arteries and aorta. Circulation 91:1154–60
    [Google Scholar]
  201. 201. 
    English KM, Jones RD, Jones TH, Morice AH, Channer KS 2002. Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J. Endocrinol. Investig. 25:455–58
    [Google Scholar]
  202. 202. 
    Yildiz O, Seyrek M, Gul H, Un I, Yildirim V et al. 2005. Testosterone relaxes human internal mammary artery in vitro. J. Cardiovasc. Pharmacol. 45:580–85
    [Google Scholar]
  203. 203. 
    Sasano H, Murakami H, Shizawa S, Satomi S, Nagura H, Harada N 1999. Aromatase and sex steroid receptors in human vena cava. Endocr. J. 46:233–42
    [Google Scholar]
  204. 204. 
    Diano S, Horvath TL, Mor G, Register T, Adams M et al. 2018. Aromatase and estrogen receptor immunoreactivity in the coronary arteries of monkeys and human subjects. Menopause 25:1201–7
    [Google Scholar]
  205. 205. 
    Nathan L, Shi W, Dinh H, Mukherjee TK, Wang X et al. 2001. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. PNAS 98:3589–93
    [Google Scholar]
  206. 206. 
    Chou TM, Sudhir K, Hutchison SJ, Ko E, Amidon TM et al. 1996. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 94:2614–19
    [Google Scholar]
  207. 207. 
    Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P 1999. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 100:1690–96
    [Google Scholar]
  208. 208. 
    Webb CM, Elkington AG, Kraidly MM, Keenan N, Pennell DJ, Collins P 2008. Effects of oral testosterone treatment on myocardial perfusion and vascular function in men with low plasma testosterone and coronary heart disease. Am. J. Cardiol. 101:618–24
    [Google Scholar]
  209. 209. 
    Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL 2006. Dihydrotestosterone decreases tumor necrosis factor-α and lipopolysaccharide-induced inflammatory response in human endothelial cells. J. Clin. Endocrinol. Metab. 91:546–54
    [Google Scholar]
  210. 210. 
    Boada-Romero E, Martinez J, Heckmann BL, Green DR 2020. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21:398–414
    [Google Scholar]
  211. 211. 
    Wan E, Yeap Xin Y, Dehn S, Terry R, Novak M et al. 2013. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113:1004–12
    [Google Scholar]
  212. 212. 
    Rathod KS, Kapil V, Velmurugan S, Khambata RS, Siddique U et al. 2017. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J. Clin. Investig. 127:169–82
    [Google Scholar]
  213. 213. 
    Chiang N, Hurwitz S, Ridker PM, Serhan CN 2006. Aspirin has a gender-dependent impact on antiinflammatory 15-epi-lipoxin A4 formation: a randomized human trial. Arterioscler. Thromb. Vasc. Biol. 26:e14–17
    [Google Scholar]
  214. 214. 
    Cavasin MA, Tao Z, Menon S, Yang XP 2004. Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci 75:2181–92
    [Google Scholar]
  215. 215. 
    Wu JC, Nasseri BA, Bloch KD, Picard MH, Scherrer-Crosbie M 2003. Influence of sex on ventricular remodeling after myocardial infarction in mice. J. Am. Soc. Echocardiogr. 16:1158–62
    [Google Scholar]
  216. 216. 
    van Eickels M, Patten RD, Aronovitz MJ, Alsheikh-Ali A, Gostyla K et al. 2003. 17-β-Estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. J. Am. Coll. Cardiol. 41:2084–92
    [Google Scholar]
  217. 217. 
    Kahlke V, Angele MK, Ayala A, Schwacha MG, Cioffi WG et al. 2000. Immune dysfunction following trauma-haemorrhage: influence of gender and age. Cytokine 12:69–77
    [Google Scholar]
  218. 218. 
    Esmailidehaj M, Kuchakzade F, Rezvani ME, Farhadi Z, Esmaeili H, Azizian H 2020. 17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: role of inflammatory and anti-inflammatory cytokines. Life Sci 253:117673
    [Google Scholar]
  219. 219. 
    Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F 1998. Gender differences in human sepsis. Arch. Surg. 133:1200–5
    [Google Scholar]
  220. 220. 
    DeLeon-Pennell KY, Mouton AJ, Ero OK, Ma Y, Padmanabhan Iyer R et al. 2018. LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res. Cardiol. 113:40
    [Google Scholar]
  221. 221. 
    Silvestre-Roig C, Hidalgo A, Soehnlein O 2016. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127:2173–81
    [Google Scholar]
  222. 222. 
    Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A 2015. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci. Rep. 5:15224
    [Google Scholar]
  223. 223. 
    Serhan CN, Chiang N, Van Dyke TE 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:349–61
    [Google Scholar]
  224. 224. 
    Smith JM, Shen Z, Wira CR, Fanger MW, Shen L 2007. Effects of menstrual cycle status and gender on human neutrophil phenotype. Am. J. Reprod. Immunol. 58:111–19
    [Google Scholar]
  225. 225. 
    Nadkarni S, Cooper D, Brancaleone V, Bena S, Perretti M 2011. Activation of the annexin A1 pathway underlies the protective effects exerted by estrogen in polymorphonuclear leukocytes. Arterioscler. Thromb. Vasc. Biol. 31:2749–59
    [Google Scholar]
  226. 226. 
    Serhan CN. 2007. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25:101–37
    [Google Scholar]
  227. 227. 
    Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K et al. 2002. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4. Nat. Med. 8:1018–23
    [Google Scholar]
  228. 228. 
    D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH et al. 2009. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Investig. 119:2898–913
    [Google Scholar]
  229. 229. 
    Serhan CN. 2010. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not. ? Am. J. Pathol. 177:1576–91
    [Google Scholar]
  230. 230. 
    Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA et al. 2016. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7:12859
    [Google Scholar]
  231. 231. 
    Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J et al. 2003. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–85
    [Google Scholar]
  232. 232. 
    Bazan HA, Lu Y, Jun B, Fang Z, Woods TC, Hong S 2017. Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot. Essent. Fatty Acids 125:43–47
    [Google Scholar]
  233. 233. 
    D'Agostino P, Milano S, Barbera C, Di Bella G, La Rosa M et al. 1999. Sex hormones modulate inflammatory mediators produced by macrophages. Ann. N. Y. Acad. Sci. 876:426–29
    [Google Scholar]
  234. 234. 
    Liva SM, Voskuhl RR. 2001. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J. Immunol. 167:2060–67
    [Google Scholar]
  235. 235. 
    Serhan CN, Chiang N, Dalli J, Levy BD 2014. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 7:a016311
    [Google Scholar]
  236. 236. 
    Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA et al. 2018. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380:11–22
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023229
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023229
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error