1932

Abstract

Bose–Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose–Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-010920-102509
2020-04-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-010920-102509.html?itemId=/content/journals/10.1146/annurev-physchem-010920-102509&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pekar S 1958. The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. JETP 6:785–96
    [Google Scholar]
  2. 2. 
    Hopfield J 1958. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112:1555–67
    [Google Scholar]
  3. 3. 
    Kavokin AV, Baumberg JJ, Malpuech G, Laussy FP 2007. Microcavities Oxford, UK: Oxford Univ. Press
  4. 4. 
    Carusotto I, Ciuti C 2013. Quantum fluids of light. Rev. Mod. Phys. 85:299–366
    [Google Scholar]
  5. 5. 
    Pitaevskii LP, Stringari S 2003. Bose–Einstein Condensation Oxford, UK: Clarendon
  6. 6. 
    Sanvitto D, Kéna-Cohen S 2016. The road towards polaritonic devices. Nat. Mater. 15:1061–73
    [Google Scholar]
  7. 7. 
    Berloff NG, Silva M, Kalinin K, Askitopoulos A, Töpfer JD 2017. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16:1120–26
    [Google Scholar]
  8. 8. 
    Kim NY, Yamamoto Y 2017. Exciton-polariton quantum simulators. Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics DG Angelakis 91–121 Cham, Switz.: Springer Int.
    [Google Scholar]
  9. 9. 
    Liew T, Kavokin A, Shelykh I 2008. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101:016402
    [Google Scholar]
  10. 10. 
    Ebbesen TW 2016. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49:2403–12
    [Google Scholar]
  11. 11. 
    Feist J, Galego J, Garcia-Vidal FJ 2017. Polaritonic chemistry with organic molecules. ACS Photonics 5:205–16
    [Google Scholar]
  12. 12. 
    Ribeiro RF, Martínez-Martínez LA, Du M, Campos-Gonzalez-Angulo J, Yuen-Zhou J 2018. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9:6325–39
    [Google Scholar]
  13. 13. 
    Agranovich VM 1968. The Theory of Excitons Moscow: Nauka
  14. 14. 
    Lidzey DG, Bradley DDC, Skolnick MS, Virgli T, Walker S, Whittaker DM 1998. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395:53–55
    [Google Scholar]
  15. 15. 
    Lidzey DG, Bradley DDC, Virgili T, Armitage A, Skolnick MS, Walker S 1999. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82:3316–19
    [Google Scholar]
  16. 16. 
    Lidzey DG, Bradley DDC, Armitage A, Walker S, Skolnick MS 2000. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288:1620–23
    [Google Scholar]
  17. 17. 
    Holmes RJ, Forrest SR 2004. Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93:186404
    [Google Scholar]
  18. 18. 
    Tischler JR, Bradley MS, Bulović V, Song JH, Nurmikko A 2005. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95:036401
    [Google Scholar]
  19. 19. 
    Tischler JR, Bradley MS, Zhang Q, Atay T, Nurmikko A, Bulović V 2007. Solid state cavity QED: strong coupling in organic thin films. Org. Electron. 8:94–113
    [Google Scholar]
  20. 20. 
    Kéna-Cohen S, Forrest SR 2010. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4:371–75
    [Google Scholar]
  21. 21. 
    Kéna-Cohen S, Davanço M, Forrest S 2008. Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101:116401
    [Google Scholar]
  22. 22. 
    Daskalakis KS, Maier SA, Murray R, Kéna-Cohen S 2014. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13:271–78
    [Google Scholar]
  23. 23. 
    Daskalakis KS, Maier SA, Kéna-Cohen S 2015. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett.115:035301
    [Google Scholar]
  24. 24. 
    Grant RT, Michetti P, Musser AJ, Gregoire P, Virgili T 2016. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Adv. Opt. Mater. 4:1615–23
    [Google Scholar]
  25. 25. 
    Cookson T, Georgiou K, Zasedatelev A, Grant RT, Virgili T 2017. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater. 5:1700203
    [Google Scholar]
  26. 26. 
    Rajendran SK, Wei M, Ohadi H, Ruseckas A, Turnbull GA, Samuel IDW 2019. Low threshold polariton lasing from a solution-processed organic semiconductor in a planar microcavity. Adv. Opt. Mater. 7:1801791
    [Google Scholar]
  27. 27. 
    Yagafarov T, Sannikov D, Zasedatelev A, Georgiou K, Baranikov A 2020. Mechanisms of blueshifts in organic polariton condensates. Commun. Phys. 3:18
    [Google Scholar]
  28. 28. 
    Plumhof JD, Stöferle T, Mai L, Scherf U, Mahrt RF 2014. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13:247–52
    [Google Scholar]
  29. 29. 
    Scafirimuto F, Urbonas D, Scherf U, Mahrt RF, Stferle T 2018. Room-temperature exciton-polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5:85–89
    [Google Scholar]
  30. 30. 
    Wei M, Rajendran SK, Ohadi H, Tropf L, Gather MC 2019. Low threshold polariton lasing in a highly disordered conjugated polymer. Optica 6:1124–49
    [Google Scholar]
  31. 31. 
    Dietrich CP, Steude A, Tropf L, Schubert M, Kronenberg NM 2016. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2:e1600666
    [Google Scholar]
  32. 32. 
    Betzold S, Dusel M, Kyriienko O, Dietrich CP, Klembt S 2020. Coherence and interaction in confined room-temperature polariton condensates with Frenkel excitons. ACS Photonics 7:384–92
    [Google Scholar]
  33. 33. 
    Sun Y, Wen P, Yoon Y, Liu G, Steger M 2017. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118:016602
    [Google Scholar]
  34. 34. 
    Pope M, Swenberg C 1999. Electronic Processes in Organic Crystals and Polymers Oxford, UK: Oxford Univ. Press
  35. 35. 
    Agranovich VM 2008. Hybrid organic-inorganic nanostructures and light-matter interaction. Problems of Condensed Matter Physics AL Ivanov, SG Tikhodeev24–42 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  36. 36. 
    Barford W 2013. Electronic and Optical Properties of Conjugated Polymers Oxford. UK: Oxford Univ. Press
  37. 37. 
    Savona V, Andreani L, Schwendimann P, Quattropani A 1995. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 93:733–39
    [Google Scholar]
  38. 38. 
    Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA 2016. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535:127–30
    [Google Scholar]
  39. 39. 
    Kéna-Cohen S, Maier SA, Bradley DDC 2013. Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1:827–33
    [Google Scholar]
  40. 40. 
    Panzarini G, Andreani LC, Armitage A, Baxter D, Skolnick MS 1999. Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting. Phys. Rev. B 59:5082–89
    [Google Scholar]
  41. 41. 
    Besga B, Vaneph C, Reichel J, Estève J, Reinhard A 2015. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3:014008
    [Google Scholar]
  42. 42. 
    Ramezani M, Halpin A, Fernández-Domínguez AI, Feist J, Rodriguez SRK 2017. Plasmon-exciton-polariton lasing. Optica 4:31–37
    [Google Scholar]
  43. 43. 
    Hakala TK, Moilanen AJ, Vkevinen AI, Guo R, Martikainen JP 2018. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 14:739–44
    [Google Scholar]
  44. 44. 
    Ballarini D, De Giorgi M, Gambino S, Lerario G, Mazzeo M 2014. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater. 2:1076–81
    [Google Scholar]
  45. 45. 
    Haken H 1970. The semiclassical and quantum theory of the laser. Quantum Optics SM Kay, A Maitland201–321 New York: Academic
    [Google Scholar]
  46. 46. 
    Staliunas K, Sanchez-Morcillo VJ 2003. Transverse Patterns in Nonlinear Optical Resonators Berlin: Springer-Verlag
  47. 47. 
    Aranson I, Kramer L 2002. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74:99–143
    [Google Scholar]
  48. 48. 
    Ciuti C, Savona V, Piermarocchi C, Quattropani A, Schwendimann P 1998. Threshold behaviour in the collision broadening of microcavity polaritons. Phys. Rev. B58:R10123
    [Google Scholar]
  49. 49. 
    Wouters M, Carusotto I 2007. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99:140402
    [Google Scholar]
  50. 50. 
    Bobrovska N, Matuszewski M, Daskalakis KS, Maier SA, Kéna-Cohen S 2017. Dynamical instability of a nonequilibrium exciton-polariton condensate. ACS Photonics 5:111–18
    [Google Scholar]
  51. 51. 
    Baboux F, De Bernardis D, Goblot V, Gladilin V, Gomez C 2018. Unstable and stable regimes of polariton condensation. Optica 5:1163–70
    [Google Scholar]
  52. 52. 
    Bajoni D, Senellart P, Lemaître A, Bloch J 2007. Photon lasing in GaAs microcavity: similarities with a polariton condensate. Phys. Rev. B 76:201305
    [Google Scholar]
  53. 53. 
    Rubo YG, Kavokin AV, Shelykh IA 2006. Suppression of superfluidity of exciton-polaritons by magnetic field. Phys. Lett. A 358:227–30
    [Google Scholar]
  54. 54. 
    Larionov A, Kulakovskii V, Höfling S, Schneider C, Worschech L, Forchel A 2010. Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105:256401
    [Google Scholar]
  55. 55. 
    Rahimi-Iman A, Schneider C, Fischer J, Holzinger S, Amthor M 2011. Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84:165325
    [Google Scholar]
  56. 56. 
    Assmann M, Tempel JS, Veit F, Bayer M, Rahimi-Iman A 2011. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. PNAS 108:1804–9
    [Google Scholar]
  57. 57. 
    Tempel JS, Veit F, Aßmann M, Kreilkamp LE, Rahimi-Iman A 2012. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85:075318
    [Google Scholar]
  58. 58. 
    Kammann E, Ohadi H, Maragkou M, Kavokin AV, Lagoudakis PG 2012. Crossover from photon to exciton-polariton lasing. New J. Phys. 14:105003
    [Google Scholar]
  59. 59. 
    Yamaguchi M, Kamide K, Nii R, Ogawa T, Yamamoto Y 2013. Second thresholds in BEC-BCS-laser crossover of exciton-polariton systems. Phys. Rev. Lett. 111:026404
    [Google Scholar]
  60. 60. 
    Hanai R, Edelman A, Ohashi Y, Littlewood PB 2019. Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122:185301
    [Google Scholar]
  61. 61. 
    Malpuech G, Rubo YG, Laussy FP, Bigenwald P, Kavokin AV 2003. Polariton laser: thermodynamics and quantum kinetic theory. Semicond. Sci. Technol. 18:S395–404
    [Google Scholar]
  62. 62. 
    Cao HT, Doan TD, Tran Thoai DB, Haug H 2004. Condensation kinetics of cavity polaritons interacting with a thermal phonon bath. Phys. Rev. B 69:245325
    [Google Scholar]
  63. 63. 
    Doan TD, Cao HT, Tran Thoai DB, Haug H, Thoai D, Haug H 2005. Condensation kinetics of microcavity polaritons with scattering by phonons and polaritons. Phys. Rev. B 72:085301
    [Google Scholar]
  64. 64. 
    Deng H, Haug H, Yamamoto Y 2010. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82:1489
    [Google Scholar]
  65. 65. 
    Mazza L, La Rocca GC 2009. Organic-based microcavities with vibronic progressions: photoluminescence. Phys. Rev. B 80:235314
    [Google Scholar]
  66. 66. 
    Kasprzak J, André R, Dang L, Shelykh I, Kavokin A 2007. Build up and pinning of linear polarization in the Bose condensates of exciton polaritons. Phys. Rev. B 75:045326
    [Google Scholar]
  67. 67. 
    Manni F, Lagoudakis KG, Liew TCH, André R, Deveaud-Plédran B 2011. Spontaneous pattern formation in a polariton condensate. Phys. Rev. Lett. 107:106401
    [Google Scholar]
  68. 68. 
    Slootsky M, Zhang Y, Forrest SR 2012. Temperature dependence of polariton lasing in a crystalline anthracene microcavity. Phys. Rev. B 86:045312
    [Google Scholar]
  69. 69. 
    Mizuno H, Akagi H, Tsubouchi M, Itakura R, Katsuki H, Yanagi H 2019. Incident angle and photon energy dependence of polariton lasing in an organic microcavity. Jpn. J. Appl. Phys. 58:052003
    [Google Scholar]
  70. 70. 
    Sannikov D, Yagafarov T, Georgiou K, Zasedatelev A, Baranikov A 2019. Room temperature broadband polariton lasing from a dye-filled microcavity. Adv. Opt. Mater. 7:1900163
    [Google Scholar]
  71. 71. 
    Oulton RF, Takada N, Koe J, Stavrinou PN, Bradley DDC 2003. Strong coupling in organic semiconductor microcavities. Semicond. Sci. Technol. 18:S419–27
    [Google Scholar]
  72. 72. 
    Holmes RJ, Forrest SR 2005. Exciton-photon coupling in organic materials with large intersystem crossing rates and strong excited-state molecular relaxation. Phys. Rev. B 71:235203
    [Google Scholar]
  73. 73. 
    Agranovich VM, Litinskaia M, Lidzey DG 2003. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67:085311
    [Google Scholar]
  74. 74. 
    Kéna-Cohen S, Forrest S 2008. Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Phys. Rev. B 77:073205
    [Google Scholar]
  75. 75. 
    Litinskaya M, Reineker P, Agranovich VM 2004. Exciton-polaritons in a crystalline anisotropic organic microcavity. Phys. Status Solidi 201:646–54
    [Google Scholar]
  76. 76. 
    Kondo H, Yamamoto Y, Takeda A, Yamamoto S, Kurisu H 2008. Optical responses in single-crystalline organic microcavities. J. Lumin. 128:777–79
    [Google Scholar]
  77. 77. 
    Tsuchimoto Y, Nagai H, Amano M, Bando K, Kondo H 2014. Cavity polaritons in an organic single-crystalline rubrene microcavity. Appl. Phys. Lett. 104:233307
    [Google Scholar]
  78. 78. 
    Davydov A 1971. Theory of Molecular Excitons New York: Springer
  79. 79. 
    Philpott MR 1971. Calculation of the exciton band structure of the 3800- and 2500-Å singlet transitions of crystalline anthracene. J. Chem. Phys. 54:111–13
    [Google Scholar]
  80. 80. 
    Kéna-Cohen S, Davanço M, Forrest SR 2008. Resonant Rayleigh scattering from an anisotropic organic single-crystal microcavity. Phys. Rev. B 78:153102
    [Google Scholar]
  81. 81. 
    Mazza L, Kéna-Cohen S, Michetti P, La Rocca GC 2013. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88:075321
    [Google Scholar]
  82. 82. 
    Forrest SR 2004. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–18
    [Google Scholar]
  83. 83. 
    Yokoyama D, Sakaguchi A, Suzuki M, Adachi C 2008. Horizontal molecular orientation in vacuum-deposited organic amorphous films of hole and electron transport materials. Appl. Phys. Lett. 93:173302
    [Google Scholar]
  84. 84. 
    Wu CC, Lin YT, Wong KT, Chen RT, Chien YY 2004. Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties. Adv. Mater. 16:61–65
    [Google Scholar]
  85. 85. 
    Lin HW, Lin CL, Chang HH, Lin YT, Wu CC 2004. Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. J. Appl. Phys. 95:881–86
    [Google Scholar]
  86. 86. 
    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis KS 2017. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13:837–41
    [Google Scholar]
  87. 87. 
    Müller JG, Lemmer U, Raschke G, Anni M, Scherf U 2003. Linewidth-limited energy transfer in single conjugated polymer molecules. Phys. Rev. Lett. 91:267403
    [Google Scholar]
  88. 88. 
    Hertel D, Bassler H, Scherf U, Horhold HH 1999. Charge carrier transport in conjugated polymers. J. Chem. Phys. 110:9214–22
    [Google Scholar]
  89. 89. 
    Stampfl J, Tasch S, Leising G, Scherf U 1995. Quantum efficiencies of electroluminescent poly(para-phenylenes). Synth. Met. 71:2125–28
    [Google Scholar]
  90. 90. 
    Laquai F, Mishra AK, Müllen K, Friend RH 2008. Amplified spontaneous emission of poly(ladder-type phenylene)s—the influence of photophysical properties on ASE thresholds. Adv. Funct. Mater. 18:3265–75
    [Google Scholar]
  91. 91. 
    Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20:448–55
    [Google Scholar]
  92. 92. 
    Agranovich V, Toshich B 1968. Collective properties of Frenkel excitons. Sov. Phys. JETP 26:104–12
    [Google Scholar]
  93. 93. 
    Combescot M, Pogosov W 2009. Composite boson many-body theory for Frenkel excitons. Eur. Phys. J. B 68:161–81
    [Google Scholar]
  94. 94. 
    Eastham P, Littlewood P 2000. Bose condensation in a model microcavity. Solid State Commun. 116:357–61
    [Google Scholar]
  95. 95. 
    Galego J, Garcia-Vidal FJ, Feist J 2015. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X 5:41022
    [Google Scholar]
  96. 96. 
    Flick J, Appel H, Ruggenthaler M, Rubio A 2017. Cavity Born–Oppenheimer approximation for correlated electron-nuclear-photon systems. J. Chem. Theory Comput. 13:1616–25
    [Google Scholar]
  97. 97. 
    Ćwik JA, Reja S, Littlewood PB, Keeling J 2014. Polariton condensation with saturable molecules dressed by vibrational modes. Europhys. Lett. 105:47009
    [Google Scholar]
  98. 98. 
    Martínez-Martínez LA, Eizner E, Kéna-Cohen S, Yuen-Zhou J 2019. Triplet harvesting in the polaritonic regime: a variational polaron approach. J. Chem. Phys. 151:054106
    [Google Scholar]
  99. 99. 
    Breuer HP, Petruccione F 2002. The Theory of Open Quantum Systems Oxford, UK: Oxford Univ. Press
  100. 100. 
    Strashko A, Kirton P, Keeling J 2018. Organic polariton lasing and the weak to strong coupling crossover. Phys. Rev. Lett. 121:193601
    [Google Scholar]
  101. 101. 
    Baldo MA, Holmes RJ, Forrest SR 2002. Prospects for electrically pumped organic lasers. Phys. Rev. B 66:035321
    [Google Scholar]
  102. 102. 
    Yang Y, Turnbull GA, Samuel IDW 2008. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92:163306
    [Google Scholar]
  103. 103. 
    Holmes RJ, Kéna-Cohen S, Menon VM, Forrest SR 2006. Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Phys. Rev. B 74:235211
    [Google Scholar]
  104. 104. 
    Paschos GG, Somaschi N, Tsintzos SI, Coles D, Bricks JL 2017. Hybrid organic-inorganic polariton laser. Sci. Rep. 7:11377
    [Google Scholar]
  105. 105. 
    Agranovich VM, Gartstein YN, Litinskaya M 2011. Hybrid resonant organic-inorganic nanostructures for optoelectronic applications. Chem. Rev. 111:5179–214
    [Google Scholar]
  106. 106. 
    Herrera F, Spano FC 2017. Dark vibronic polaritons and the spectroscopy of organic microcavities. Phys. Rev. Lett. 118:223601
    [Google Scholar]
  107. 107. 
    Herrera F, Spano FC 2016. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116:238301
    [Google Scholar]
  108. 108. 
    Orgiu E, George J, Hutchison JA, Devaux E, Dayen JF 2015. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14:1123–29
    [Google Scholar]
  109. 109. 
    Stranius K, Hertzog M, Brjesson K 2018. Selective manipulation of electronically excited states through strong light-matter interactions. Nat. Commun. 9:2273
    [Google Scholar]
  110. 110. 
    Eizner E, Martínez-Martínez LA, Yuen-Zhou J, Kéna-Cohen S 2019. Inverting singlet and triplet excited states using strong light-matter coupling. Sci. Adv. 5:eaax4482
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-010920-102509
Loading
/content/journals/10.1146/annurev-physchem-010920-102509
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error