1932

Abstract

Hydrophobic interactions are driven by the combined influence of the direct attraction between oily solutes and an additional water-mediated interaction whose magnitude (and sign) depends sensitively on both solute size and attraction. The resulting delicate balance can lead to a slightly repulsive water-mediated interaction that drives oily molecules apart rather than pushing them together and thus opposes their direct (van der Waals) attraction for each other. As a consequence, competing solute size-dependent crossovers weaken hydrophobic interactions sufficiently that they are only expected to significantly exceed random thermal energy fluctuations for processes that bury more than ∼1 nm2 of water-exposed area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112412
2016-05-27
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112412.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112412&mimeType=html&fmt=ahah

Literature Cited

  1. Ben-Amotz D. 1.  2015. Hydrophobic ambivalence: teetering on the edge of randomness. J. Phys. Chem. Lett. 6:1696–701 [Google Scholar]
  2. Willard AP. 2.  2015. Illuminating the interactions between small solutes in liquid water. J. Phys. Chem. Lett. 6:1616–17 [Google Scholar]
  3. Schrodinger E. 3.  1944. What Is Life? Cambridge, UK: Cambridge Univ. Press
  4. Pohorille A, Pratt LR. 4.  2012. Is water the universal solvent for life?. Orig. Life Evol. Biosph. 42:405–9 [Google Scholar]
  5. Ball P. 5.  2008. Water as an active constituent in cell biology. Chem. Rev. 108:74–108 [Google Scholar]
  6. Lynden-Bell RM, Giovambattista N, Debenedetti PG, Head-Gordon T, Rossky PJ. 6.  2011. Hydrogen bond strength and network structure effects on hydration of non-polar molecules. Phys. Chem. Chem. Phys. 13:2748–57 [Google Scholar]
  7. Willard AP, Chandler D. 7.  2014. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like. J. Chem. Phys. 141:18C519 [Google Scholar]
  8. Baldwin RL. 8.  2014. Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding. PNAS 111:13052–56 [Google Scholar]
  9. Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chandler D, Garde S. 9.  2012. Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 116:2498–503 [Google Scholar]
  10. Sharp KA, Vanderkooi JM. 10.  2010. Water in the half shell: structure of water, focusing on angular structure and solvation. Acc. Chem. Res. 43:231–39 [Google Scholar]
  11. Ashbaugh HS, Pratt LR. 11.  2006. Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78:159–78 [Google Scholar]
  12. Southall NT, Dill KA, Haymet ADJ. 12.  2002. A view of the hydrophobic effect. J. Phys. Chem. B 106:521–33 [Google Scholar]
  13. Muller N. 13.  1990. Search for a realistic view of the hydrophobic effect. Acc. Chem. Res. 23:23–28 [Google Scholar]
  14. Pratt LR, Chandler D. 14.  1986. Theoretical and computational studies of hydrophobic interactions. Methods Enzymol. 127:48–63 [Google Scholar]
  15. Tanford C. 15.  1978. Hydrophobic effect and organization of living matter. Science 200:1012–18 [Google Scholar]
  16. Tanford C. 16.  1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes New York: Wiley
  17. Kauzmann W. 17.  1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1–63 [Google Scholar]
  18. Frank HS, Evans JW. 18.  1945. Free volume and entropy in condensed systems. 3. Entropy in binary liquid mixtures; partial molar entropy in dilute solutions: structure and thermodynamics of aqueous electrolytes. J. Chem. Phys. 13:507–32 [Google Scholar]
  19. Blokzijl W, Engberts JBFN. 19.  1993. Hydrophobic effects: opinions and facts. Angew. Chem. Int. Ed. 32:1545–79 [Google Scholar]
  20. Chandler D. 20.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  21. Stillinger FH. 21.  1973. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2:141–58 [Google Scholar]
  22. Lum K, Chandler D, Weeks JD. 22.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:4570–77 [Google Scholar]
  23. Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR. 23.  1998. Hydrophobic effects on a molecular scale. J. Phys. Chem. B 102:10469–82 [Google Scholar]
  24. Chaudhari MI, Holleran SA, Ashbaugh HS, Pratt LR. 24.  2013. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic. PNAS 110:20557–62 [Google Scholar]
  25. Harris RC, Pettitt BM. 24a.  2016. Reconciling the understanding of ‘hydrophobicity’ with physics-based models of proteins. J. Phys. Condens. Matter 28:083003 [Google Scholar]
  26. Harris RC, Pettitt BM. 24b.  2014. Effects of geometry and chemistry on hydrophobic solvation. PNAS 111:14681–86 [Google Scholar]
  27. Harris RC, Drake JA, Pettitt BM. 24c.  2014. Multibody correlations in the hydrophobic solvation of glycine peptides. J. Chem. Phys. 141:22D525 [Google Scholar]
  28. Jordan JH, Gibb BC. 25.  2015. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44:547–85 [Google Scholar]
  29. Baron R, McCammon JA. 26.  2013. Molecular recognition and ligand association. Annu. Rev. Phys. Chem. 64:151–75 [Google Scholar]
  30. Houk KN, Leach AG, Kim SP, Zhang XY. 27.  2003. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. Angew. Chem. Int. Ed. 42:4872–97 [Google Scholar]
  31. Rasaiah JC, Garde S, Hummer G. 28.  2008. Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59:713–40 [Google Scholar]
  32. Hummer G. 29.  2010. Molecular binding under water's influence. Nat. Chem. 2:906–7 [Google Scholar]
  33. Abel R, Young T, Farid R, Berne BJ, Friesner RA. 30.  2008. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130:2817–31 [Google Scholar]
  34. Hillyer MB, Gibb BC. 31.  2015. Molecular shape and the hydrophobic effect. Annu. Rev. Phys. Chem. 67:In press [Google Scholar]
  35. Jamadagni SN, Godawat R, Garde S. 32.  2011. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu. Rev. Chem. Biomol. Eng. 2:147–71 [Google Scholar]
  36. Berne BJ, Weeks JD, Zhou RH. 33.  2009. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60:85–103 [Google Scholar]
  37. Ben-Naim A. 34.  1987. Solvation Thermodynamics New York: Plenum
  38. Ben-Naim A. 35.  1978. Standard thermodynamics of transfer. Uses and misuses. J. Phys. Chem. 82:792–803 [Google Scholar]
  39. Underwood R, Tomlinson-Phillips J, Ben-Amotz D. 36.  2010. Are long-chain alkanes hydrophilic?. J. Phys. Chem. B 114:8646–51 [Google Scholar]
  40. Ben-Amotz D, Underwood R. 37.  2008. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration. Acc. Chem. Res. 41:957–67 [Google Scholar]
  41. Plyasunova NV, Plyasunov AV, Shock EL. 38.  2004. Database of thermodynamic properties for aqueous organic compounds. Int. J. Thermophys. 25:351–60 [Google Scholar]
  42. Gallicchio E, Kubo MM, Levy RM. 39.  2000. Enthalpy-entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 104:6271–85 [Google Scholar]
  43. Duffy EM, Jorgensen WL. 40.  2000. Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J. Am. Chem. Soc. 122:2878–88 [Google Scholar]
  44. Ferguson AL, Debenedetti PG, Panagiotopoulos AZ. 41.  2009. Solubility and molecular conformations of n-alkane chains in water. J. Phys. Chem. B 113:6405–14 [Google Scholar]
  45. Widom B. 42.  1982. Potential distribution theory and the statistical mechanics of fluids. J. Phys. Chem. 86:869–72 [Google Scholar]
  46. Ben-Amotz D, Raineri F, Stell G. 43.  2005. Solvation thermodynamics: theory and applications. J. Phys. Chem. B 109:6866–78 [Google Scholar]
  47. Ben-Amotz D, Widom B. 44.  2006. Generalized solvation heat capacities. J. Phys. Chem. B 110:19839–49 [Google Scholar]
  48. Ben-Naim A. 45.  1978. A simple model for demonstrating the relation between solubility, hydrophobic interaction, and structural changes in the solvent. J. Phys. Chem. 82:874–85 [Google Scholar]
  49. Yu HA, Karplus M. 46.  1988. A thermodynamic analysis of solvation. J. Chem. Phys. 89:2366–79 [Google Scholar]
  50. Raineri FO, Stell G, Ben-Amotz D. 47.  2005. New mean-energy formulae for free energy differences. Mol. Phys. 103:3209–21 [Google Scholar]
  51. Underwood R, Ben-Amotz D. 48.  2011. Communication: length scale dependent oil-water energy fluctuations. J. Chem. Phys. 113:201102 [Google Scholar]
  52. Lemmon EW, Perkins AP, McLinden MO, Friend DG. 49.  2000. NIST Standard Reference Database 12 Version 5.0 Boulder: Natl. Inst. Stand. Technol.
  53. Gallagher KR, Sharp KA. 50.  2003. A new angle on heat capacity changes in hydrophobic solvation. J. Am. Chem. Soc. 125:9853–60 [Google Scholar]
  54. Paschek D. 51.  2004. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. J. Chem. Phys. 120:6674–90 [Google Scholar]
  55. Paschek D. 52.  2004. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations. J. Chem. Phys. 120:10605–17 [Google Scholar]
  56. Davis JG, Gierszal KP, Wang P, Ben-Amotz D. 53.  2012. Water structural transformation at molecular hydrophobic interfaces. Nature 491:582–85 [Google Scholar]
  57. Ben-Amotz D. 54.  2005. Global thermodynamics of hydrophobic cavitation, dewetting, and hydration. J. Chem. Phys. 123:184504 [Google Scholar]
  58. Makhatadze GI, Privalov PL. 55.  1988. Partial specific-heat capacity of benzene and of toluene in aqueous-solution determined calorimetrically for a broad temperature-range. J. Chem. Thermodyn. 20:405–12 [Google Scholar]
  59. Dohnal V, Fenclova D, Vrbka P. 56.  2006. Temperature dependences of limiting activity coefficients, Henry's law constants, and derivative infinite dilution properties of lower (C1C5) 1-alkanols in water. Critical compilation, correlation, and recommended data. J. Phys. Chem. Ref. Data 35:1621–51 [Google Scholar]
  60. Makhatadze GI, Lopez MM, Privalov PL. 57.  1997. Heat capacities of protein functional groups. Biophys. Chem. 64:93–101 [Google Scholar]
  61. Pollack GL, Himm JF. 58.  1982. Solubility of xenon in liquid n-alkanes: temperature dependence and thermodynamic functions. J. Chem. Phys. 77:3221–29 [Google Scholar]
  62. Pollack GL, Kennan RP, Himm JF, Carr PW. 59.  1989. Solubility of xenon in 45 organic solvents including cycloalkanes, acids, and alkanals: experiment and theory. J. Chem. Phys. 90:6569–79 [Google Scholar]
  63. Angell CA, Oguni M, Sichina WJ. 60.  1982. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86:998–1002 [Google Scholar]
  64. Wheeler JC. 61.  1972. Behavior of a solute near critical point of an almost pure solvent. Ber. Bunsenges. Phys. Chem. 76:308–18 [Google Scholar]
  65. Biggerstaff DR, Wood RH. 62.  1988. Apparent molar heat-capacities of aqueous argon, ethylene, and xenon at temperatures up to 720 K and pressures to 33 MPa. J. Phys. Chem. 92:1994–2000 [Google Scholar]
  66. Gill SJ, Dec SF, Olofsson G, Wadso I. 63.  1985. Anomalous heat capacity of hydrophobic solvation. J. Phys. Chem. 89:3758–61 [Google Scholar]
  67. Ben-Naim A. 64.  1992. Statistical Thermodynamics for Chemists and Biochemists New York: Plenum
  68. Lee B, Graziano G. 65.  1996. A two-state model of hydrophobic hydration that produces compensating enthalpy and entropy changes. J. Am. Chem. Soc. 118:5163–68 [Google Scholar]
  69. Holten V, Palmer JC, Poole PH, Debenedetti PG, Anisimov MA. 66.  2014. Two-state thermodynamics of the ST2 model for supercooled water. J. Chem. Phys. 140:014502 [Google Scholar]
  70. Russo J, Tanaka H. 67.  2014. Understanding water's anomalies with locally favoured structures. Nat. Commun. 5:3556 [Google Scholar]
  71. Palmer JC, Martelli F, Liu Y, Car R, Panagiotopoulos AZ, Debenedetti PG. 68.  2014. Metastable liquid-liquid transition in a molecular model of water. Nature 510:385–88 [Google Scholar]
  72. Limmer DT, Chandler D. 69.  2013. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II. J. Chem. Phys. 138:214504 [Google Scholar]
  73. Giovambattista N, Loerting T, Lukanov BR, Starr FW. 70.  2012. Interplay of the glass transition and the liquid-liquid phase transition in water. Sci. Rep. 2:390 [Google Scholar]
  74. Seidl M, Fayter A, Stern JN, Zifferer G, Loerting T. 71.  2015. Shrinking water's no man's land by lifting its low-temperature boundary. Phys. Rev. B 91:144201 [Google Scholar]
  75. Cheng YK, Rossky PJ. 72.  1998. Surface topography dependence of biomolecular hydrophobic hydration. Nature 392:696–99 [Google Scholar]
  76. Friesen AD, Matyushov DV. 73.  2011. Non-Gaussian statistics of electrostatic fluctuations of hydration shells. J. Chem. Phys. 135:104501 [Google Scholar]
  77. Geissler PL. 74.  2005. Temperature dependence of inhomogeneous broadening: on the meaning of iso-sbestic points. J. Am. Chem. Soc. 127:14930–35 [Google Scholar]
  78. Smith JD, Cappa CD, Wilson KR, Cohen RC, Geissler PL, Saykally RJ. 75.  2005. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. PNAS 102:14171–74 [Google Scholar]
  79. Huang DM, Chandler D. 76.  2002. The hydrophobic effect and the influence of solute-solvent attractions. J. Phys. Chem. B 106:2047–53 [Google Scholar]
  80. Chandler D, Weeks JD, Andersen HC. 77.  1983. van der Waals picture of liquids, solids, and phase-transformations. Science 220:787–94 [Google Scholar]
  81. Remsing RC, Patel AJ. 78.  2015. Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions. J. Chem. Phys. 142:024502 [Google Scholar]
  82. Ashbaugh HS, Weiss K, Williams SM, Meng B, Surampudi LN. 79.  2015. Temperature and pressure dependence of methane correlations and osmotic second virial coefficients in water. J. Phys. Chem. B 119:6280–94 [Google Scholar]
  83. Koga K. 80.  2013. Osmotic second virial coefficient of methane in water. J. Phys. Chem. B 117:12619–24 [Google Scholar]
  84. Gupta R, Patey GN. 81.  2012. Aggregation in dilute aqueous tert-butyl alcohol solutions: insights from large-scale simulations. J. Chem. Phys. 137:034509 [Google Scholar]
  85. Ghosh MK, Uddin N, Choi CH. 82.  2012. Hydrophobic and hydrophilic associations of a methanol pair in aqueous solution. J. Phys. Chem. B 116:14254–60 [Google Scholar]
  86. Makowski M, Czaplewski C, Liwo A, Scheraga HA. 83.  2010. Potential of mean force of association of large hydrophobic particles: toward the nanoscale limit. J. Phys. Chem. B 114:993–1003 [Google Scholar]
  87. Morrone JA, Li J, Berne BJ. 84.  2012. Interplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes. J. Phys. Chem. B 116:378–89 [Google Scholar]
  88. Li JL, Car R, Tang C, Wingreen NS. 85.  2007. Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water. PNAS 104:2626–30 [Google Scholar]
  89. Smith DE, Haymet ADJ. 86.  1993. Free-energy, entropy, and internal energy of hydrophobic interactions: computer simulations. J. Chem. Phys. 98:6445–54 [Google Scholar]
  90. Chaudhari MI, Pratt LR, Paulaitis ME. 87.  2010. Communication: direct observation of a hydrophobic bond in loop closure of a capped (-OCH2CH2-)n oligomer in water. J. Chem. Phys. 133:231102 [Google Scholar]
  91. Ben-Naim A. 88.  1980. Hydrophobic Interactions New York: Plenum
  92. Yaacobi M, Ben-Naim A. 89.  1974. Solvophobic interaction. J. Phys. Chem. 78:175–78 [Google Scholar]
  93. Ben-Naim A, Wilf J. 90.  1979. Direct measurement of intra-molecular hydrophobic interactions. J. Chem. Phys. 70:771–77 [Google Scholar]
  94. Wu JZ, Prausnitz JM. 91.  2008. Pairwise-additive hydrophobic effect for alkanes in water. PNAS 105:9512–15 [Google Scholar]
  95. Martin MG, Siepmann JI. 92.  1998. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102:2569–77 [Google Scholar]
  96. Ashbaugh HS, Liu LX, Surampudi LN. 93.  2011. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration. J. Chem. Phys. 135:054150 [Google Scholar]
  97. Abascal JLF, Vega C. 94.  2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123:234505 [Google Scholar]
  98. Martin MG, Siepmann JI. 95.  1999. Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103:4508–17 [Google Scholar]
  99. Bowron DT, Moreno SD. 96.  2002. The structure of a concentrated aqueous solution of tertiary butanol: water pockets and resulting perturbations. J. Chem. Phys. 117:3753–62 [Google Scholar]
  100. Bowron DT, Soper AK, Finney JL. 97.  2001. Temperature dependence of the structure of a 0.06 mole fraction tertiary butanol-water solution. J. Chem. Phys. 114:6203–19 [Google Scholar]
  101. Sedlak M, Rak D. 98.  2013. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?. J. Phys. Chem. B 117:2495–504 [Google Scholar]
  102. Subramanian D, Anisimov MA. 99.  2011. Resolving the mystery of aqueous solutions of tertiary butyl alcohol. J. Phys. Chem. B 115:9179–83 [Google Scholar]
  103. Sinibaldi R, Casieri C, Melchionna S, Onori G, Segre AL. 100.  et al. 2006. The role of water coordination in binary mixtures. A study of two model amphiphilic molecules in aqueous solutions by molecular dynamics and NMR. J. Phys. Chem. B 110:8885–92 [Google Scholar]
  104. Rankin BM, Ben-Amotz D, van der Post ST, Bakker HJ. 101.  2015. Contacts between alcohols in water are random rather than hydrophobic. J. Phys. Chem. Lett. 6:688–92 [Google Scholar]
  105. Petersen C, Bakulin AA, Pavelyev VG, Pshenichnikov MS, Bakker HJ. 102.  2010. Femtosecond midinfrared study of aggregation behavior in aqueous solutions of amphiphilic molecules. J. Chem. Phys. 133:164514 [Google Scholar]
  106. Wilcox DS, Rankin BM, Ben-Amotz D. 103.  2013. Distinguishing aggregation from random mixing in aqueous t-butyl alcohol solutions. Faraday Discuss. 167:177–90 [Google Scholar]
  107. Freda M, Onori G, Santucci A. 104.  2001. Infrared and dielectric spectroscopy study of the water perturbation induced by two small organic solutes. J. Mol. Struct. 565:153–57 [Google Scholar]
  108. Maibaum L, Dinner AR, Chandler D. 105.  2004. Micelle formation and the hydrophobic effect. J. Phys. Chem. B 108:6778–81 [Google Scholar]
  109. Wennerstrom H, Lindman B. 106.  1979. Micelles: physical chemistry of surfactant association. Phys. Rep. 52:1–86 [Google Scholar]
  110. Mukerjee P, Mysels KJ. 107.  1971. Critical Micelle Concentrations of Aqueous Surfactant Systems Washington, DC: Natl. Bur. Stand.
  111. Li LW, Bedrov D, Smith GD. 108.  2006. Water-induced interactions between carbon nanoparticles. J. Phys. Chem. B 110:10509–13 [Google Scholar]
  112. Zangi R. 109.  2014. Are buckyballs hydrophobic?. J. Phys. Chem. B 118:12263–70 [Google Scholar]
  113. Ben-Amotz D, Widom B. 110.  2007. Nonideal gas solvation thermodynamics. J. Chem. Phys. 126:104502 [Google Scholar]
  114. Ben-Amotz D, Gift AD, Levine RD. 111.  2002. Improved corresponding states scaling of the equations of state of simple fluids. J. Chem. Phys. 117:4632–34 [Google Scholar]
  115. Chaudhari MI, Sabo D, Pratt LP, Rempe SB. 112.  2014. Hydration of Kr(aq) in dilute and concentrated solutions. J. Phys. Chem. B 119:9098–102 [Google Scholar]
  116. Hirschfelder JO, Curtiss CF, Bird RB. 113.  1964 (1954). Molecular Theory of Gases and Liquids New York: Wiley
  117. Van der Waals JH, Platteeuw JC. 114.  1959. Clathrate solutions. Adv. Chem. Phys. 2:1–57 [Google Scholar]
  118. Sloan ED. 115.  1998. Clathrate Hydrates of Natural Gases New York: Marcel Dekker
  119. Clawson JS, Cygan RT, Alam TM, Leung K, Rempe SB. 116.  2010. Ab initio study of hydrogen storage in water clathrates. J. Comput. Theor. Nanosci. 7:2602–6 [Google Scholar]
  120. Jacobson LC, Hujo W, Molinero V. 117.  2010. Amorphous precursors in the nucleation of clathrate hydrates. J. Am. Chem. Soc. 132:11806–11 [Google Scholar]
  121. Ward ZT, Marriott RA, Sum AK, Sloan ED, Koh CA. 118.  2015. Equilibrium data of gas hydrates containing methane, propane, and hydrogen sulfide. J. Chem. Eng. Data 60:424–28 [Google Scholar]
  122. Davis JG, Rankin BM, Gierszal KP, Ben-Amotz D. 119.  2013. On the cooperative formation of non-hydrogen bonded water at molecular hydrophobic interfaces. Nat. Chem. 5:796–802 [Google Scholar]
  123. Perera PN, Fega KR, Lawrence C, Sundstrom EJ, Tomlinson-Phillips J, Ben-Amotz D. 120.  2009. Observation of water dangling OH bonds around dissolved nonpolar groups. PNAS 106:12230–34 [Google Scholar]
  124. Clark AH, Franks F, Pedley MD, Reid DS. 121.  1977. Solute interactions in dilute-solutions. Part 2. Statistical mechanical study of hydrophobic interaction. J. Chem. Soc. Faraday Trans. I 73:290–305 [Google Scholar]
  125. Archer DG. 122.  1989. Second virial-coefficients of aqueous alcohols at elevated-temperatures: a calorimetric study. J. Phys. Chem. 93:5272–79 [Google Scholar]
  126. Watanabe K, Andersen HC. 123.  1986. Molecular dynamics study of the hydrophobic interaction in an aqueous solution of krypton. J. Phys. Chem. 90:795–802 [Google Scholar]
  127. Koga K, Widom B. 124.  2013. Thermodynamic functions as correlation-function integrals. J. Chem. Phys. 138:114504 [Google Scholar]
  128. Raschke TM, Tsai J, Levitt M. 125.  2001. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. PNAS 98:5965–69 [Google Scholar]
  129. Rogers DM, Jiao D, Pratt LR, Rempe SB. 126.  2012. Structural models and molecular thermodynamics of hydration of ions and small molecules. Annual Reports in Computational Chemistry RR Wheeler 71–127 New York: Elsevier [Google Scholar]
  130. Hands MD, Slipchenko LV. 127.  2012. Intermolecular interactions in complex liquids: effective fragment potential investigation of water-tert-butanol mixtures. J. Phys. Chem. B 116:2775–86 [Google Scholar]
  131. Jencks WP. 128.  1989. Catalysis in Chemistry and Enzymology New York: McGraw Hill
  132. Biedermann F, Nau WM, Schneider HJ. 129.  2014. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53:11158–71 [Google Scholar]
  133. Setny P, Baron R, McCammon JA. 130.  2010. How can hydrophobic association be enthalpy driven?. J. Chem. Theory Comput. 6:2866–71 [Google Scholar]
  134. Baron R, Setny P, McCammon JA. 131.  2010. Water in cavity-ligand recognition. J. Am. Chem. Soc. 132:12091–97 [Google Scholar]
  135. Biedermann F, Uzunova VD, Scherman OA, Nau WM, De Simone A. 132.  2012. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134:15318–23 [Google Scholar]
  136. Ben-Amotz D. 133.  2016. Interfacial solvation thermodynamics. J. Phys. Condens. Matter. Submitted
  137. Garde S, Patel AJ. 134.  2011. Unraveling the hydrophobic effect, one molecule at a time. PNAS 108:16491–92 [Google Scholar]
  138. Cerdeirina CA, Debenedetti PG, Rossky PJ, Giovambattista N. 135.  2011. Evaporation length scales of confined water and some common organic liquids. J. Phys. Chem. Lett. 2:1000–3 [Google Scholar]
  139. Li ITS, Walker GC. 136.  2012. Single polymer studies of hydrophobic hydration. Acc. Chem. Res. 45:2011–21 [Google Scholar]
  140. Li ITS, Walker GC. 137.  2011. Signature of hydrophobic hydration in a single polymer. PNAS 108:16527–32 [Google Scholar]
  141. Li ITS, Walker GC. 138.  2012. Temperature, length scale and surface dependence of single polymer hydrophobic hydration. Biophys. J. 102:(Suppl. 1175a [Google Scholar]
  142. Davis JG, Zukowski SR, Rankin BM, Ben-Amotz D. 139.  2015. Influence of a neighboring charged group on hydrophobic hydration shell structure. J. Phys. Chem. B 8:9417–22 [Google Scholar]
  143. Pratt LR, Chandler D. 140.  1980. Hydrophobic interactions and osmotic second virial-coefficients for methanol in water. J. Solut. Chem. 9:1–17 [Google Scholar]
  144. Asthagiri D, Merchant S, Pratt LR. 141.  2008. Role of attractive methane-water interactions in the potential of mean force between methane molecules in water. J. Chem. Phys. 128:244512 [Google Scholar]
  145. Wanjari PP, Gibb BC, Ashbaugh HS. 142.  2013. Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands. J. Chem. Phys. 139:234502 [Google Scholar]
  146. Shimizu S, Chan HS. 143.  2000. Temperature dependence of hydrophobic interactions: a mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures. J. Chem. Phys. 113:4683–700 [Google Scholar]
  147. Shimizu S, Chan HS. 144.  2001. Anti-cooperativity in hydrophobic interactions: a simulation study of spatial dependence of three-body effects and beyond. J. Chem. Phys. 115:1414–21 [Google Scholar]
  148. Czaplewski C, Rodziewicz-Motowidlo S, Liwo A, Ripoll DR, Wawak RJ, Scheraga HA. 145.  2000. Molecular simulation study of cooperativity in hydrophobic association. Protein Sci. 9:1235–45 [Google Scholar]
  149. Czaplewski C, Ripoll DR, Liwo A, Rodziewicz-Motowidlo S, Wawak RJ, Scheraga HA. 146.  2002. Can cooperativity in hydrophobic association be reproduced correctly by implicit solvation models?. Int. J. Quantum Chem. 88:41–55 [Google Scholar]
  150. Wang L, Friesner RA, Berne BJ. 147.  2010. Hydrophobic interactions in model enclosures from small to large length scales: non-additivity in explicit and implicit solvent models. Faraday Discuss. 146:247–62 [Google Scholar]
  151. Matsumoto M. 148.  2010. Four-body cooperativity in hydrophonic association of methane. J. Phys. Chem. Lett. 1:1552–56 [Google Scholar]
  152. Izvekov S. 149.  2011. Towards an understanding of many-particle effects in hydrophobic association in methane solutions. J. Chem. Phys. 134:034104 [Google Scholar]
  153. Song B, Molinero V. 150.  2013. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water. J. Chem. Phys. 139:054511 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112412
Loading
/content/journals/10.1146/annurev-physchem-040215-112412
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error